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Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata
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Very simple unitary cellular automata on a cubic lattice are introduced to model a discretized
time evolution of the wave functions for spinning particles. In each evolution step the updated
value of the wave function at a given site depends only on the values at the nearest sites. The
discretized evolution is also unitary and preserves chiral symmetry. The case of the spin-- particle
is studied in detail, and it is shown that every local and unitary automaton on a cubic lattice,
under some natural assumptions, leads in the continuum limit to the Weyl equation. The sum over
histories is evaluated and is shown to reproduce the retarded propagator in the continuum limit.
Generalizations to include massive particles (Dirac theory), spin-1 particles (Maxwell theory), and
higher-spin particles are also described.

PACS number(s): 03.65.Pm, 02.70.—c, 11.15.Ha

I. INTRODUCTION

The aim of this paper is to present a simple lattice algo-
rithm that in the continuum limit reproduces the propa-
gation of massless or massive spinning particles. The dis-
cretized time evolution of the wave function satisfies the
fundamental physical requirements of locality (the up-
dated value at a given site depends only on the values at
the nearest neighboring sites), unitarity (the norm of the
wave function is preserved), and chiral symmetry (both
helicity components propagate independently). An un-
expected result of this study is a discovery that for two-
component wave functions on a cubic lattice the Weyl
equation necessarily follows in the continuum limit from
locality, unitarity, and two additional, natural assump-
tions: (A) the wave functions that are constant through-
out the whole lattice should not change in time and (B)
the evolution algorithm must preserve the symmetry of
the lattice. Thus, the rotation group, the Lorentz group,
and spin emerge automatically in the continuum limit
from unitary dynamics on a cubic lattice.

The results presented in this paper are directly related
to numerous proposals of path integrals for a Dirac par-
ticle since an iteration of a discretized time evolution
automatically gives a sum over histories. The path in-
tegral for the Dirac particle in one space dimension was
found a long time ago by Feynman [1,2] and indepen-
dently by Riazanov [3], but even this relatively simple
problem, where there is no spin to complicate matters,
is still attracting attention [4,5]. There is no consensus
at all as to the form of path integrals for a Dirac parti-
cle in three dimensions. Proposed path integrals fall into
three categories. The first category [3,6—13] comprises
those approaches that work by "reverse engineering" in-

Permanent address.

troducing from the outset the Dirac matrices to describe
the spin degrees of freedom. Into the second category
[14—16] fall those formulations that derive spin from con-
tinuously parametrized space of states related to the ro-
tation group. To the third category [17—21] belong all
approaches based on anticommuting Grassmannian vari-
ables. The sum over histories that is obtained from my
lattice algorithm is distinct from all these path integrals.
In the discretized evolution the spin degree of freedom en-
ters only through a multicomponent wave function, and
the rotation group emerges in the continuum limit.

There is a connection between this work and theories
of fermions on a lattice, but there is also an essential dif-
ference in the choice of objects that are being studied.
Instead of seeking discretized versions of the Hamilto-
nian or the Lagrangian, I introduce a discretized version
of the evolution operator. In this way, common diKcul-
ties (breaking of chiral symmetry, doubling of fermion
species, special limiting procedures) encountered in for-

mulating the dynamics of a Dirac particle on a lattice
[22—31] and the no-go theorem concerning Weyl particles
on a lattice [32,33] are avoided.

In a recent paper Kostin [34] has introduced a cellular
automaton for the Dirac equation that conserves proba-
bility, but his algorithm is nonlinear and it gives a linear
equation only in the continuum limit. Following the ex-
ample set by Kostin, I use the term cellular automata
despite the fact that one of the eight properties usually
required of cellular automata (cf., for example, [35]) does
not hold: the states are described by continuous, and
not by discrete variables. I shall call a unitary cellular
automaton a system described by a wave function on a
lattice whose discretized time evolution is unitary, syn-
chronous, homogeneous, discrete in space and in time,
deterministic, and spatially and temporally local. |en-
uine Boolean cellular automata were recently introduced
by 't Hooft [36—38] to describe quantum systems, but
his approach was fully successful only in the case of one
spatial dimension.
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II. WEYL EQUATION ON A LATTICE

I shall start with a lattice description of the wave equa-
tion for a massless spin-1/2 particle and extend it later
to massive particles and to higher spins. In my quan-
tum cellular automaton the two-component wave func-
tion P(i, j, k, t) is defined on a cubic lattice and it is up-
dated at each time increment At according to the local
algorithm

P(r, t+ b, t) = ) W(h)P(r+ h, t), (2)

where all eight W s are 2 x 2 matrices and the integers i, j,
and k are the coordinates of the lattice sites, r = (i, j, k)a,
in units of the cell size a. Equation (1) can be written in
a compact form

P(i, j, k, t + b, t) = W+++ P(i + 1,j + 1, k + 1, t)
+W++ P(i + 1,j + 1, k —1, t) +.. .

+W P(i —1,j —1, k —1, t), (1)

where the summation extends over a set of vectors h
pointing Erom a given site to the eight nearest sites. The
components of all vectors h are equal to ka,

(h j = ((I, 1, I), (I, 1, —I), (I, —1, I), (I, —1, —I), (—1, 1, I), (—1, 1, —I), (—1, —1, I), (—1, —1, —I))a. (3)

The unitary operator U~ acting on the wave functions at
each iteration,

P(t+ At) = U~Q(t),

Depending on the mutual orientation of the vectors h'
and h", the conditions (7) and (10) have one, two, or
four terms, as exempli6ed below

can be expressed explicitly as a sum of eight shift opera-
tors along the vectors h

Ua = ) W(h) exp(h V).

W+++ W+

W+++ W++t

+W ++W +

W+++ W———t

+W ++Wt

+ W+ +W+t

+ Wt, W

=0,
=0,

= 0.

(1la)

(lib)

(1lc)
Upon evaluating the norm of the updated wave func-

tion, one 6nds that in order to guarantee the unitarity of
the transformation (2), the matrices W(h) must satisfy
the algebraic relations

) Wt(h)W(h) = 1,
h

) Wt(h) W(11 + 11' h") —0

where h' and h" g h' are arbitrarily chosen vectors be-
longing to the set (3). The sum in Eq. (7) extends only
over those vectors h that the vectors h + h' —h" are also
members of the set (3). It follows from these unitarity
conditions that the inverse of (2) has a similar local form
so that my automaton is fully reversible,

W+++ ——q+Pq, W++ ——q P2, W+ + ——q Pz,

W+ ——q+P2, W ++ ——q P3, W + ——q+P4,
W + ——q+P3, =q P4,

(12a)

(12b)

(12c)

where

q+ ——(1+i)/4, q = (1 —i)/4, (13)

and

In total there are 8 conditions of the type (1la), 12 condi-
tions of the type (lib), 6 conditions of the type (llc), one
condition (6), and then the same number of conditions
with W and Wt interchanged. Nonetheless they can all
be met by the following simple choice of the matrices W

P(r, t) = ) Wt(h)P(r —h, t + b,t). (8)

Since the inverse of a unitary transformation is also
unitary, the Hermitian conjugate matrices Wt must obey
the same conditions as do the matrices W,

1 0 ' 0 I) (14a)

(14b)

) W(h)Wt(h) = 1,
h

) W(h)Wt(h+ h' —h") = 0.

I have obtained this representation of the matrices W
by choosing an approximation to the exact evolution op-
erator for the Weyl particle in the continuum case in the
form of a product T of three unitary operators,

exp(c o .V At) —T—:exp(ao 8 ) exp(acr„B„)exp(acr, 8,),



6922 IWO BIALYNICKI-BIRULA 49

where a = CAt. Each factor on the right-hand side can
be written as a sum of two shift operators. For example,

W(k) = P W(h) exp(ik h). (21)

exp(acr 0 ) = —[1+e(h )o ]exp(h 0 )

+2[1 —e(h )o ] exp( —h 0 ), (16)

where e(h ) denotes the sign function. I have determined
all matrices W(h) by multiplying out the Pauli matrices
in the product (15) of three such factors,

W(k) = mp + m o + mvo'v + m o (22)

Owing to the unitarity conditions for the W s, this matrix
is unitary for all values of k. For the special choice (12)
of the TV's, the structure factor takes on the form

T = —,
' +[1+e(h )o ]

h

x [1+e(h„)cr„][1+e(h, )cr, ] exp(h V), (17)

and by identifying the evolution operator T with the
generic evolution operator U~ introduced before. The
exact evolution operator in the continuum limit is re-
covered from the Lie-Trotter product formula (cf., for
example, Ref. [39]), when N = t/At tends to infinity,

and

mp = C+CyCz + SxSySz)

m~: s~cycz c~ sy sz )

my = C~SyCz + S~CySz)

mz CxCySz SxSyCz)

c, = cos(k, a), s, = sin(k, a).

(23a)

(23b)

(23c)

(23d)

(24)

lim [exp(ao 8 ) exp(ao„O„) exp(aa, B,)] The eigenvalues Ay of W(k) are

= exp(c cr V' At). (18) A~ ——exp(+i(p) = mo +i 1 —mo. (25)

P(r, t + At) = ) W(h) exp(h 7')P(r, t) (19)

I would like to point out that the approximation (15)
associated with the Lie-Trotter formula leads automati-
cally to the body-centered lattice (CsC1 lattice structure,
8 nearest neighbors). The unitarity conditions represent
such severe constraints on the W's that I am inclined
to believe that they can be satisfied only for the body-
centered lattice owing to the relationship with the Lie-
Trotter formula. In particular, I prove in the Appendix
that the unitarity conditions (6) and (7) cannot be satis-
fied for the standard form of a lattice used in gauge field
theories —the simple cubic lattice (NaCl lattice struc-
ture, 6 nearest neighbors).

In order to And the continuum limit of the evolution
equation, I shall use the exponential representation of the
evolution operator (5) and then expand both sides of the
equation

) W(h) exp(ih k) = 1+ia S k+
h

(26)

where I have made use of the assumption A that a ho-
mogeneous wave function should not change in time,

W(0) = g W(h) = 1, (27)

and I have defined the matrices S, ,

S~ = W++++ W++ + W+ ++ W+
—W ++ —W + —W

Sy = W+++ + W++ —W+

+W +++W + —W

(28a)

(28b)

For small values of k, the matrix W(k) can be approx-
imated by

in powers of At and a (h is of the order of a). The linear
terms in this expansion give the Weyl equation,

B,P(r, t) = co. V'P(r, t) (20)

Incidentally, to obtain a discretized Weyl equation in two
spatial dimensions one may choose as the four matrices
W++, W+, W +, and W the real matrices P;/2

(28c)

The unitarity of the matrix (26) requires that the three
matrices S,. must be Hermitian and, therefore, the formu-
las (28) must also hold with all the matrices W replaced
by their Hermitian conjugates. This enables me to use
the unitarity conditions (7) and (10) to evaluate the prod-
ucts of the matrices S,. The unitarity conditions imply
that the products of any matrix W by its Hermitian con-
jugate all commute,

III. UNIQUENESS OF THE WEYL EQUATION
[Q(h), Q(h')] = 0, (29)

I shall prove now that for every set of 2 x 2 matrices
satisfying the unitarity conditions, and not just for the
choice (12), one obtains the Weyl equation in the con-
tinuum limit. To this end, let me introduce, as in solid
state physics, the lattice structure factor W(k),

Q(h) = Wt(h)W(h) (3o)

and hence all six Q's can be simultaneously diagonalized.
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S;S, +S,S; = 2h;, .

There exist only two inequivalent two-dimensional repre-
sentations of these relations: S = cr or S = —n. They
describe the propagation of two helicities. Thus, up to a
choice of helicity, the universality of the Weyl equation
under the listed assumptions is established.

The matrix W(k) determines the discretized time evo-
lution for each Fourier component of the wave function.
This matrix is related to the momentum space Hamilto-
nian through the formula

W(k)
—iH(k)&t

and from the formulas (22) and (23) we deduce that

(32)

From the equivalence of all six lattice directions (assump-
tion B), I conclude that the eigenvalues of all matrices Q
must be the same, and then from equations (6) and (9)
I find that these eigenvalues are 1/4 and 0. It is now a
matter of tedious but straightforward algebraic manipu-
lations to show that the matrices S; satisfy the familiar
anticommutation relations,

6 k = (0.3,0.7,1)
5-
4

ul 2

0

k = (1,0,1)
5.
4

5

4

oQ 3

p1 2

H(k) = —arctaa()tl/mrc —1)
/m/

Note that for a local time evolution operator U~, the
Hamiltonian becomes nonlocal; as a logarithm of a lo-
cal evolution operator it contains interactions not only
among nearest neighbors but with all the lattice sites.
For small values of k, the spectrum of W(k) determines
the energy spectrum uniquely through the formula (26).
However, for the values of k comparable to 1/a, the spec-
trum of the Hamiltonian is not unique for one can always
add multiples of 2z /b, t to its eigenvalues. This point has
been forcefully made by 't Hooft [36,37]. That is why for
a discretized time evolution one can escape the conclusion
that there are pathological states with large momenta
and small energy that lead to the fermion doubling prob-
lem. This fact was known to Nielsen and Ninomiya who
state explicitly in Ref. [32] that one possibility to avoid
their no-go theorem is to introduce discretized time evo-
lution. One can see clearly how the Nielsen-Ninomiya
no-go theorem is avoided by going over a simple proof of
this theorem given by Pelissetto [33]. In that proof the
assumption of locality is used to obtain the continuity of
the Lagrangian (or the Hamiltonian) in momentum space
which, in turn, leads to the appearance of additional, un-
wanted poles in the propagator. The possibility of avoid-
ing the conclusions of the Nielsen-Ninomiya theorem for
discontinuous energy spectra (in particular for a discrete
spectrum of any system occupying a finite volume) has
also been stressed by Quinn and Weinstein [30,31].

ID order to decide this issue in the present case, we
must first define the Hamiltonian as a function of k. The
arctan function appearing in Eq. (33) is multivalued, but
one can choose uniquely its branches by making a nat-
ural assumption that the (positive energy) spectrum of
the Hamiltonian H(sk) is a nondecreasing function of the
scaling parameter s with only minimal jumps at all dis-
continuities. This choice is illustrated in Fig. 1 for three

vr/2

Scaling parameter s

FIG. 1. These graphs show the energy in the form of an
increasing function of the length of the momentum vector for
three arbitrarily chosen directions of the momentum vector.
In each graph the length of the momentum vector varies with
the scaling parameter s. Straight lines in each graph represent
the energy spectrum of the standard continuum theory. In
each case the two spectra clearly coincide for small momenta.

selected values of the momentum vector. For an increas-
ing spectrum there will never be any unphysical states
with large momenta and small energies that plague lat-
tice theories with local Hamiltonians. The graphs shown
in Fig. 1 exhibit only the positive branch of the en-
ergy spectrum. The negative-energy branch is obtained
in each case by a mirror re6ection.

IV. SUM OVER HISTORIES

I shall now write down the sum over histories for the
Weyl particle arising from the time-evolution algorithm
(2), and I shall show that the solution of the initial value
problem, given as a suxh over trajectories, yields in the
continuum limit the correct expression for the retarded
propagator.

The N-fold iteration of a single-step time evolution
leads to the formula

P(r, t + Ndt) = ) W(hi) . W(hiv)
h1, ...,h~

xP(r+ h, + . . + h~, t).

When the summation in this formula is restricted to only
those terms that produce a given total displacement, we
obtain the following discretized form of the propagator
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K(r —r', t) = ) W(hi). W(h~)8, , +h, +.. .+h, (35)
h1, . . . ,hy;

where t = %At. Each term in this sum corresponds to a
lattice trajectory that in N steps connects the initial and
the final lattice sites. A single step described by a vector
h is represented as a multiplication by the matrix W(h).
Contributions from all trajectories are coherently added.

The constraint on the sum in (35) can be handled (cf. ,

for example, [40]) with the help of the Fourier represen-
tation of the Kronecker delta, leading to an integral form
of the propagator involving our structure factor W(k)

K(r —r', t) = (
—) d k [W(k)] exp[ik (r —r')], (36)
27r

where the integration extends over the Brillouin zone:
—vr/a & k, & n/a. In the limit, when a —

& 0 and N —i oo

with t fixed, the Xth power of W can be written, on
account of (26), in the form

lim [W(k)] = exp(icr k t).
N —+oo

It is clear that such a modification does not aKect the
unitarity conditions; the matrices D will also satisfy all
of them. The continuum limit of (39) gives the Dirac
equation in the Weyl representation of the Dirac matrices

Big(r, t) = (ps cr 7'+ ipim)g(r, t) (41)

Having reproduced in the previous section the prop-
agator of a massless particle as a sum over histories, I
can easily include the mass in this sum since that part of
the problem has been already solved by Feynman [1,2] in
one dimension. More recently Feynman's "checkerboard"
picture of a particle zigzagging through spacetime, re-
versing its helicity at each bend, has also been described
by a Poisson process [9,15,20,21,40]. This Poisson pro-
cess must be combined with the propagation of definite
helicity states. Thus, the propagator for a massive Dirac
particle will be a sum of terms, each term describing a
fixed number of helicity reversals. Between the reversals
induced by the mass term the propagation is described
by the sum over histories (35), evaluated separately for
each helicity.

This result was to be expected since it is just the
momentum-space representation of the Lie-Trotter for-
mula (18). The exponential of the Weyl Hamiltonian is,
of course, the Fourier representation of the propagator
for the Weyl equation. Thus, the sum over histories (34)
reproduces correctly in the continuum limit the retarded
propagator.

V. DIRAC EQUATION ON A LATTICE

W(h) i o„W*(h)cr„= W. (
—h), (38)

as seen from the formulas (28). For massive particles,
however, the two helicity states are mixed by the mass
term. Therefore, the discretized time evolution for a mas-
sive particle must be described, as in the standard Dirac
equation, in terms of two two-component wave functions.
The discrete time-evolution algorithm for a massive Dirac
particle can again be written in the same general form

(8) as for the massless case

g(r, t + At) = ) D(h)g(r + h, t).

The 4 x 4 matrices D that act on four-component wave
functions g(r, t) can be expressed in terms of the matrices
W(h) and W( —h) by the following block-matrix formulas
(from now on, I set e = a/6t = 1 and h = 1)

D(h)
os(ma) i»n(m ) &[[&W(h)»~ (40)i sin(ma) cos(ma) p q 0 W( —h) y

'

For massless particles each helicity state propagates
independently. Chiral invariance (or CP symmetry) is
expressed in my discretized form of time evolution by
the fact that the matrices W corresponding to the two
helicities are related by the spatial reHection

VI. MAXWELL EQUATIONS ON A LATTICE

Ppp —— F+ iF„, —

4oi = F* = 4'io

Pii ——F, + xF„.

(42a)

(42b)

(42c)

The Maxwell equations can be expressed in the spinor
notation in the form (cf. , for example, Ref. [41])

(43)

x'awhere the four spin matrices 0" are equal to the unit
matrix and to the Pauli matrices,

PA'B } ~1 ~A'B

The equations (43), together with the symmetry condi-
tion for JAB, are equivalent to the Maxwell equations. I
shall write these equations in the following form that is

directly amenable to the treatment applied before to the
spin-1/2 case,

BgC = —p. V'C. (45)

The vector 4 is related to the spinorial components JAB
through the formula

An extension of my lattice algorithm to wave equa-
tions describing massless particles with higher spins is
most easily accomplished with the help of the spinor rep-
resentation of relativistic wave functions. In the simplest
case of spin-1 particles the photons —the wave func-
tion can be represented as the self-dual (or the anti-self-

dual) part of the electromagnetic field tensor (cf. Ref.
[41]). More explicitly, I construct a second rank symmet-
ric spinor JAB from the components of a complex vector
F = (E+ iB)/~2,
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@1 i40 ~ @2 = 401, ~ 3 4'10' O4 411 (46)

and the matrices p; have the form

p2 =

~0 0 1 0~

1 0 0 0
(0 1 0 0)
(0 0 i o—

~0 0 0 —i
i 0 0 0

(0 i o 0)
o o oi

0 1 0 0
0 0 —1 0
0 0 0 —I)

(47a)

(47b)

(47c)

The set of four equations (45) becomes equivalent to
the full set of Maxwell equations if one imposes two aux-
iliary conditions

42 ——43 (48)

and

(AiC) = 0, (Aip VC') = 0, (5o)

where the vector A is equal to (0, 1, —1,0).
The matrices p; can be expressed as tensor products

cr, x I, where I is the 2 x 2 unit matrix. Therefore,
the equation (45) is ready for discretization along the
lines adopted in this paper. One can just take the basic
formula (1) for the discrete time evolution, replace the
two-dimensional vector P by the four-dimensional vector
4 and enlarge all 2 x 2 matrices W(h) to the size 4 x 4 by
substituting for all matrix elements in the formulas (14)
the appropriate multiples of the unit 2 x 2 matrix. For
example,

(00 —1 0~t'0 —1) 0 0 0 —1
o 1 '~'I- oo 1 o

(0 0 0 1

(51)

Such a substitution leads to the formula for the struc-
ture factor analogous to (22) but with all the matrices
cr, replaced by the matrices p;. The only new ingredient
needed for the spin-1 case is the discretized form of the
second auxiliary conditions that must be imposed on the
vector 4 to bring about the equivalence with the Maxwell

—(8 + i8„)C1+cj,e2+ ct,@3+(8 —iB„)C'4 ——0. (49)

The first condition reduces the number of components
&om four to three, and the second one expresses the van-
ishing of the divergence of the field vectors. If these con-
ditions are imposed initially, they will be valid for all
times as a result of the evolution equations (45). Note
that the divergence condition can be obtained by de-
manding that the time derivative of O also obeys the
first condition. In other words, one may just impose ini-
tially at each point in space two orthogonality conditions
of the form

theory. While the first auxiliary condition is again the
same equality (48) of the second and the third component
of 4, the divergence condition (49) must be replaced by
its discretized version. The proper form of this condition
is obtained from the continuous case by adapting it to
the present situation. In that way, instead of Eq. (50)
one obtains

(AiU~4) = 0, (52)

where U~ is the discretized evolution operator for the
Maxwell field. One may check that these conditions are
preserved during the discretized time evolution.

As in the case of the Weyl equation, the propagation
of particles of opposite helicity is described by a complex
conjugate wave function whose components form a sec-

I ~lond rank symmetric primed spinor P+ built from the
components of the complex conjugate vector F*,

yo'0' F* Fe

yO'1' F+ yl'0'

P'' =F' iF*

(53a)

(53b)

(53c)

The unitarity condition for the photon wave function C

(or its complex conjugate) leads to the exact energy con-
servation in each evolution step for the associated elec-
tromagnetic field.

An extension of my discretization algorithm to mass-
less particles of arbitrary spin can be based again on the
spinor form of the wave equations describing all such par-
ticles (cf. Ref. [41]). The only case that is not covered
by my algorithm is that of a spinless particle.

VII. CONCLUSIONS

A discretized version of the evolution equations for rel-
ativistic wave functions, described in this paper, has been
originally intended as a new numerical algorithm for solv-
ing these equations. However, being accurate only up to
the lowest order in lattice spacing, my algorithm cannot
successfully compete with nonunitary though more eK-
cient and flexible numerical methods of solving the Dirac
equation (such as those described, for example, in Refs.
[42] and [43]). The results presented here do indicate,
however, what challenges are to be met in a construction
of a fundamental theory with discretized space and time
in order to satisfy the requirements of locality and uni-
tarity. These requirements impose severe restrictions on
the theory; in particular, they allow only for some lattice
structures. It came as a surprise to me to find that the
simplest lattice form with 6 nearest neighbors, that has
become a standard choice in all lattice gauge theories, is
ruled out by the unitarity conditions.

I have confined the discussion to free propagation, but
the inclusion of interaction with external fields does not
present any new problems. For nongauge couplings one
may simply introduce at each evolution step in the Lie-
Trotter formula an additional local and unitary factor
describing the interaction. The simplest choice for this
factor will be, of course, the exponential function of the
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interaction Hamiltonian. This is quite analogous to the
treatment of the mass term in Sec. V. In the case of
a coupling to a gauge field, the problem is a bit more
complicated since the interaction term cannot be fully
separated from the free evolution lest we violate gauge in-
variance. A possible way to proceed can be inferred from

the formula (15) in which in the presence of a gauge field
one may replace all ordinary derivatives by appropriate
covariant derivatives. As a result of this replacement, the
updated values of the wave functions will be modified, as
compared to the field-free formula (2), by the presence of
the standard unitary gauge factors U,

P(r, t + At) = ) U(r, r+h„)U(r+h„, r+h„+h„)U(r+h„+h„, r+h„+h„+h, )W(h) P(r + h, t)
h

(54)

The factor U(ri, rz) represents the element of the
Abelian or non-Abelian gauge group associated with the
link connecting the points rq and r~. The three vectors
h„, hz, and h, are the components of the vector h point-
ing in the direction of one of the links,

h: h~ + hy + hg ~ (55)
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Note that there are three factors U(ri, rz) in each term
in the formula (54). Thus, one must use three links to
connect each pair of neighboring lattice sites instead of
just one link needed in the standard formulation on a
cubic lattice. This proliferation of links is due to the use
of the Lie-Trotter formula, and that is the price to be
paid for preserving strictly the unitarity at each step of
the discretized time evolution.

In the present paper I have restricted myself entirely
to the study of a discretized time evolution of relativistic
wave functions. In this study the preservation of unitar-
ity at each evolution step was important. I have made
no attempt to extend this approach to quantized fields.
I do not know to what extent the unitary discretization
algorithm described here may be useful for applications
in quantum field theory, in particular, for the evaluation
of the partition function. However, the connection be-
tween the time-evolution operator and the transfer ma-
trix of statistical physics, often used in lattice field the-
ories [44—46j, may perhaps provide a link between these
two problems.

I

conditions in this case lead to 2 x 19 equations for the
matrices TV,

) W,'W, =1, (Al)

and

w,'w, =o,
W,tw~+Wt, w, =0, (i jj),

) WW,'=1,

(A2)

(A3)

(A4)

w, w', =o,
W, wt+ W, wt, = 0, (i g j).

(A5)

(A6)

In order to prove that representations of these relations
in the form of 2 x 2 matrices do not exist, I first observe
that, as in the case of a body-centered lattice [cf. Eq.
(30)], all products Q(h) can be simultaneously diagonal-
ized, and each has one eigenvalue equal to 0. Thus, three
matrices Q, say Qi, Q2, and Qs, have the form

&n, 0&
0 0 (A7)

and the remaining three have the form

t'0 oi
(A8)

In the representation in which the formulas (A7) and

(A8) hold, each matrix W can be parametrized by two

complex numbers,

I would like to thank Ted 3acobson, 3erzy Kijowski,
and 3oachim Reinhardt for discussions and Walter
Greiner for his hospitality at the University of Frankfurt.

(a, o

(6, or'
fo c~l)
&0 " r'

i=12 3

k =4, 5, 6.

(A9)

(A10)

APPENDIX

In the case of a simple cubic lattice there are 6 matrices
TV, , and I shall denote them by W; where the subscript
i takes on the values +x, +y, and +z. The unitarity

The unitarity conditions (A3) imply that all three vec-
tors (a, , b, ) [and also the three vectors (ci, di, )] must be
mutually orthogonal. This completes the proof, for there
exist at most two mutually orthogonal vectors in two di-

mensions.
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