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Cosmic structure formation and microwave anisotropies from global field ordering
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Spontaneous breaking of global symmetries and the consequent field ordering provide a mechanism

for the formation of structure in the Universe. We compare the predictions of these theories with the
cosmic microwave background {CMB)anisotropy recently detected by the Cosmic Background Explorer
(COBE) and with recent observations of large-scale structure. In this paper we give a self-contained dis-

cussion of the analytical formalism, and numerical techniques required to simulate the texture, global
monopole, global string, and nontopological texture scenarios. The Universe is assumed to have critical
density and to be dominated by "cold" dark matter. Our main conclusions are that all of these scenarios
are consistent with the reported amplitude, statistical properties, and multipole spectrum of the COBE sig
nal, for a high bias factor b-(2+1)h . The distinctive non-Gaussian character of the CMB anisotro-

pies produced in these theories is investigated, and the prospects for its detection are discussed. We also

compare the theories with the recent data on the large-scale galaxy distribution. Like the "standard"
inflationary scenarios, if 0= 1, 4=0, these theories may have insuScient power on large scales.

PACS number(s): 98.80.Cq, 11.27.+d

I. INTRODUCTION

The dramatic recent discovery by the Cosmic Back-
ground Explorer (COBE) DifFerential Microwave Ra-
diometer (DMR) experiment of anisotropy in the cosmic
microwave background (CMB) [1] has given enormous
stimulus to the search for a theory of structure formation
in the Universe. The finding was originally interpreted as
lending support to the inflationary theory of the origin of
large-scale structure [2], but on closer examination the
case is not so clear. That interpretation rested on three
results: the amplitude, the spectrum of multipoles (or
equivalently the angular correlation function), and the
apparent Gaussian nature of the data. The amplitude,
however, was higher than predicted. The spectrum of
multipoles was consistent with the scale free spectrum
predicted by inflation, but scale invariance is a generic
prediction of essentially all ab initio theories of structure
formation, such as those discussed here. And, finally, be-
sides the fact that the signal-to-noise ratio was less than
unity in the original COBE maps, the large angular
smoothing scale adopted means that the distinctive non-
Gaussian anisotropies predicted in other theories would
not have been visible.

The COBE result has certainly revolutionized modern
cosmology by giving a direct measure of the level of pri-
mordial fluctuations on very large scales () 1000h
Mpc for 0= 1). All current theories leave the amplitude
of the fluctuations as a free parameter; thanks to COBE,
this parameter can now be accurately fixed. In each
theory one can then extrapolate to predict structure on
smaller scales. Before COBE the "standard" inflation
plus cold dark matter (CDM} theory was already in trou-

ble with observations of galaxy clustering —large-scale
surveys found the ratio of fluctuations in galaxy counts
on large scales (-30h ' Mpc) is small scales ( &Sh
Mpc} [3] to be larger than predicted. COBE has provided
strong confirmation that the theory has too little power
on large scales relative to small, for if one normalizes
directly to COBE [4], the theory predicts a rms pairwise
velocity for galaxies on small scales of -1000 km/s,
roughly 3 times the observed value.

Various modifications of the "standard" theory are
possible to boost the power on large scales relative to
small scales —a mixture of hot and cold dark matter [5],
a "tilted" spectrum produced during inflation [6], and ex-
tra power in gravity waves [7], etc. All involve the addi-
tion of new parameters and, as even their advocates
would probably admit, are somewhat contrived.

Even without referring to observations of galaxies at
all, recent microwave anisotropy observations may
rule out the "standard" CDM and hot dark matter
(HDM) models. The recent tight upper limit
(5T/T) & 1.4X 10 by Gaier et al. [8] on the 1' scale is
well below what is expected given the COBE 10 result.
Some doubts have been expressed about this limit because
it was obtained by using results from only the quietest of
four channels in the experiment. Gorski, Stompor, and
Juskiewicz [9] argue that this conflict rules out the
inflationary spectrum of fluctuations with either hot or
cold dark matter at high confidence. If this limit holds
up, the simplest explanation of the apparent suppression
of anisotropy on smaller scales may be that the Universe
was reionized at high redshift, smearing out fluctuations
on scales below a few degrees. But reionization is unlike-
ly in Gaussian theories of adiabatic density fluctuations,
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since it requires the formation of gravitationally bound
objects at high redshifts, and large fluctuations are ex-
ponentially rare.

There is another set of quite different theories of the
origin of structure, also based on a simple physical idea,
that structure was formed through the breaking of funda-
mental symmetries and the subsequent ordering dynamics
of the broken symmetry phase. These theories are in
principle highly predictive, being characterized by a sin-
gle free parameter, the symmetry-breaking scale. The to-
pological defects which occur in these theories produce
large local perturbations at high redshift, making reioni-
zation and the consequent smoothing out of small-scale
CMB anisotropies likely and potentially reconciling the
COBE results and the results of Gaier et al. But their
most intriguing aspect is that they offer highly distinctive
signatures in the pattern of CMB anisotropy. By con-
trast, the simplest inflationary theory predicts a much
more generic signature —namely, random Gaussian noise
with a scale-invariant spectrum. It is well worth explor-
ing the "symmetry-breaking" theories as an alternative if
only because we would learn so much about fundamental

physics if one of them turned out to be correct.
In this paper we report on our attempts to estimate the

predicted cosmological fluctuations and CMB anisotro-
pies produced in these theories. Section II reviews previ-
ous work. Section III describes the equations governing
the evolution of the scalar fields, both in the A,P and non-

linear o model descriptions. We later give results for
both, providing a measure of systematic errors. In Sec.
IV we describe a new formalism for the computation of
the growing mode density perturbations incorporating
stress energy conservation, which avoids the hazards of
using the standard variables in synchronous gauge. In
Sec. V we use this formalism to compute the power spec-
tra of density perturbations in critical density universes
dominated by CDM. Given COBE's normalization of
each theory, we then obtain the CDM fluctuation ampli-
tude on all scales of interest. Comparing this with the
QDOT observations [3] of galaxy clustering, we then
determine the "bias" required (the enhancement of
galaxy clustering relative to dark matter clustering} as a
function of smoothing scale. In Sec. VI we describe a for-
malism for computing microwave fluctuations. We
present a new solution to the linearized Einstein equa-
tions in the presence of sources yielding (5T/T) on scales
greater than the horizon at last scattering in the form of
integrals over the spatial stresses of the source fields. In
Sec. VII we describe the numerical implementation of the
scalar field evolution and our formula for (5T/T}. In
Sec. VIII we present our results far the amplitude of the
CMB anisotropies on the 10' scale and the spectrum of
multipoles, in theories based on the breaking of an O(N}
symmetry, with N=3 (global monopoles), %=4 (tex-
ture), and %=6 ("nontopological" texture). We also
present more approximate results for the case N =2 (glo-
bal strings). Each symmetry-breaking theory leads to a
distinctive pattern of microwave anisotropy, and it is im-
portant to develop statistical tests to discriminate be-
tween these patterns and the random Gaussian noise pre-
dicted by in6ation. Some preliminary ideas on this are

described in Sec. IX. In Sec. X we present our con-
clusions.

The paper also contains several useful results in the
Appendixes. Appendix A contains our conventions. Ap-
pendix B contains a simple derivation of the general
Sachs-Wolfe formula, while Appendix C derives the for-
mula in gauge-invariant form. Appendix D describes our
algorithm for the evolution of linear perturbations, and
Appendix E gives some useful formulas involving spheri-
cal harmonics, which we employ to analyze our CMB an-

isotropy maps.
While this paper focuses on a specific family of models,

the O(N) theories, we argue in Appendix F that there is a
general relation between the magnitude of (5T/T} and
the Newtonian patential 4 in theories involving source-
induced perturbations, generalizing the well-known result
(5T/T) =

—,'4 for primordial adiabatic perturbations.

This quantifies the extent to which saurce-induced per-
turbations are generally associated with larger values of
(5&/&).

The paper is intended to be a more or less entirely self-

contained description of cosmological perturbation
theory as applied to theories of large-scale structure
based on symmetry breaking and ordering dynamics.
Sulcient detail is given to enable all our results to be
readily reproduced. Our code is freely available to those
seeking to check and extend our results.

II. SYMMETRY BREAKING

Symmetry and symmetry breaking are the central and

highly successful ideas in particle theory. The standard
model is based on the gauged symmetry group
SU(3)LCD XSU(2}& XU(1)„,broken by the electroweak

higgs field to SU(3)~DXU(1)aM, as well as possessing
several exact global symmetries (baryon number and the
three lepton numbers} and approximate global sym-
metries such as chiral SU(3). It has long been a belief
that these symmetries lie within a larger symmetry group,
which underwent one or more stages of symmetry break-
ing. The symmetry breaking would have occurred at
several phase transitions in the early Universe, each one
producing a disordered broken symmetry phase.

The earliest theory of cosmic structure formation
based on this idea was that of cosmic strings [10,11],
which can form when either gauge or global symmetries
are braken. More recently, it was realized that the break-
ing of a non-Abelian global symmetry would generally
lead to the formation of an unstable topological defect
called texture [12], which could also seed cosmic struc-
ture. Partial breaking of such a symmetry would result in
the formation of global monapoles or "nontopalagical"
texture. Global symmetries such as these occur in many
simple unified theories of particle physics, such as
theories where a symmetry relating the three families of
elementary particles is invoked [13],SU(3) family symme-

try (which is described by two coupled N =6 models such
as those studied here} being perhaps the best motivated
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[14]. We should also mention that some particle theorists
argue against the existence of fundamental global as op-
posed to gauged symmetries on general grounds —for
further discussion see [15]—but we prefer to adopt the
view that this is a question for experiment.

It was argued [12,16] that this latter mechanism might
lead to a better theory of structure formation than cosmic
strings for two reasons: (i) The scale of ordering of the
fields would be larger, since the defects do not persist for
long beneath the horizon scale; (ii} whereas gauged cos-
mic strings decay mainly into gravity waves and the
present millisecond pulsar bound [17] may already have
ruled out the theory (depending on assumptions [18]),
global defects decay mainly into Goldstone bosons, which
would be much harder to detect.

Over the last two years, two of us (D.N. S. and N.T.)
have with our collaborators pursued the detailed calcula-
tion of the formation of large-scale structure in the global
texture theory, with both cold and hot dark matter
[19—23] and have begun the work of calculating the cos-
mic microwave anisotropy [24,25].

We found that the texture and cold dark matter theory
reproduced many of the "standard" inflation plus CDM
model's successes and appeared to have several significant
bonuses, including the following.

(i) Early object formation —bound objects form at high
redshifts, making the theory consistent with observations
of quasars at high redshifts, an ionized intergalactic
medium (IGM} as indicated by the Gunn-Peterson test
[20,22], and the possibility of reionizing the Universe,
mentioned above. (See Sec. VI F).

(ii) More large-scale power, yielding better agreement
with the recent large-scale redshift surveys [23].

(iii) A unique signature in the CMB anisotropy, name-

ly, a pattern of "hot" and "cold" spots [24] rather than
the more generic Gaussian random noise prediction of
the standard scenarios.

In the present paper, we shall reexamine the question
of large-scale power, in the light of the COBE result. As
a result of the high bias required to fit COBE, we find less
large-scale power, and our conclusion is that the texture
scenario with Q=1 and cold dark rnatter is no better
than the standard CDM theory as far as matching the
QDOT results [3]. Global monopoles and strings appear
even worse. There are still substantial uncertainties in
the observations, but if the central values of the QDOT
results are correct, we conclude that the simplest field-
ordering scenarios are ruled out. The fact that the
discrepancies are small leaves open the possibility that
improved observations, other symmetry-breaking pat-
terns [e.g., the SU(3) family scheme mentioned above], or
assumptions about 0 or A may yet produce a viable
theory.

Bennett and Rhie have in parallel pursued computa-
tions of the evolution of global monopoles [26] and struc-
ture formation in the texture and monopole theories [27].
They have also recently completed calculations of the
CMB anisotropy in the global monopole and texture
theories, which are consistent with our results. We shall
compare our methods with theirs in Sec. VIII.

From a practical point of view, calculations in these

theories are much harder in principle than in theories in-
volving Gaussian primordial perturbations because the
evolution of the source for perturbations is a nonlinear
problem. Nevertheless, these theories have proven
surprisingly computationally tractable, so that precise
predictions can be made. It is of the utmost importance,
however, to develop clean and accurate numerical tech-
niques which make results easily reproducible. Much of
the present paper is devoted to this goal.

Any theory of structure formation is built on several
assumptions: the nature of the dark matter, the values of
Ho, A, and 0, and the mechanism for generating struc-
ture. In the past decade, most research in cosmology has
focused on flat 0=1, A=O universes with adiabatic
scale-invariant fluctuations generated in inflation. In this
paper we have changed one of these assumptions and are
exploring flat 0=1, A=O universes with fluctuations
generated through field ordering. Despite the completely
different physics involved in the generation of fluctua-
tions, these two sets of theories lead to similar qualitative
predictions for many observables (e.g., shape of power
spectrum of density and microwave fluctuations). Many
of the successes of the standard inflationary theory (e.g. ,
the form of the galaxy-galaxy correlation function} that
were previously held to be "compelling" are similarly
matched [21] in a theory with totally different underlying
physics. However, the theories do differ in their detailed
predictions. The goal of this paper is to calculate these
differences.

III. FIELD EVOLUTION

In this paper we investigate a simple class of
symmetry-breaking scalar field theories, the "O(N)"
models, where a global O(N) symmetry group is spon-
taneously broken to O(N —1) by an N-component scalar
field P. These theories include many interesting cases.
For X =1, one produces domain walls. For N =2, there
are global strings, and for X =3, there are global mono-
poles. For N =4, there is texture, and for X & 4, "nonto-
pological" texture. Apart from the usual cosmological
parameters, each of these theories is completely specified
by a single free parameter, the magnitude of the field in
Uacuo, P =go. This makes them highly predictive, and it
is a further attractive feature that when these theories are
fitted to the observed large-scale structure, the value of Po
is found to be close to the scale of grand unification,
$0-10' GeV. Finally, in the limit of large N, the O(N)
theory is exactly solvable [28,29] and becomes Gaussian.
This provides a useful nontrivial check of numerical algo-
rithms.

The dynamical evolution of P is described by the rela-
tivistic "Landau-Ginzberg" equation

V„V"P=,V(P) =&(P—$0) (1)
BP

where the potential V is the unique renormalizable
symmetry-breaking potential. It is quite possible that P is
not a fundamental field at all, but a composite field —a
fermion condensate, for example. This would still be de-
scribed by (1), but with a somewhat different potential.
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One of the simplicities of the field-ordering structure for-
mation scenarios is that the detailed form of the scalar
potential is actually irrelevant.

In this paper we investigate structure formation in a
spatially flat, homogeneous universe with metric

dt —+a(t) dx =a (g)( d—rP+dx ) F.or further con-
ventions see Appendix A. Equation (1) then becomes

/+2 —P —V P= —a
a -' 2- 2BV(p)

(2)
a

where dots denote derivatives with respect to g, the "con-
formal time. "

After symmetry breaking one expects the fields to relax
to the minimal energy field strength ({) =go almost every-
where in space. The subsequent evolution of the field is
driven by spatial gradients in the "orientation" of P,
which act to align the field, combined with the "damp-
ing" term in (2), which causes oscillations to damp away
on subhorizon scales. These two effects cause the field to
order itself on progressively larger scales, the correlation
length being of order of the horizon scale at all times.
Through this ordering dynamics, the scale of disorder in
the P field grows causally from a microscopic subatomic
scale to the scale of the present horizon in the Universe,
perturbing the Universe on all intermediate scales and
generating structure.

As the field gradients become progressively smaller rel-
ative to the Compton wavelength m ' of the massive (ra-
dial} ({) mode, the potential acts simply as a constraint on
the field, forcing it to lie on the P =P& manifold. To a
good approximation, one may write P=Pgk, with g a
unit vector. Imposing the constraint with a Lagrange
multiplier, one finds that the evolution of f is governed
by the no+linear cr model equation

(3)

where all dependence on the symmetry-breaking scale Po
and the parameters in the Higgs potential has disap-
peared. This equation provides an excellent approxima-
tion since the scales of interest for structure generation
are enormous compared to m '. The attractive feature,
as mentioned above, is that the ordering dynamics of P,
described by (3}, are completely independent of the de-
tails of the microphysical potential V. This means that
the pattern of density fluctuations and microwave aniso-
tropies are, in these simple theories, predictions with no
free parameters and makes the theories eminently test-
able.

In our earliest work on textures (N =4), we actually
used (2) rather than (3). The advantage is that (2) is al-
ways nonsingular —in regions constituting the cores of
defects, (t) goes smoothly to zero. Similarly, textures
"unwind" in a completely nonsingular manner. The
disadvantage is that some resolution is sacrificed, since
the defect cores or "unwinding'* regions are several lat-
tice spacings across.

Furthermore, we argued that for textures the a factor
on the right-hand side of (2) could be ignored. We argued
that this should be a reasonable approximation as long as
P lies close to the minimum of the potential through most

of space, since the overall scale of the potential A, be-
comes irrelevant. As we shall mention, this assumption
has been confirmed by our subsequent numerical studies
using a 0. model code. Comparison of the two codes pro-
vides a valuable check of the possible systematic errors in
the results.

In the scenarios considered here, the stress energy ten-
sor of the defect fields is the source for a11 density and
CMB perturbations. In the conformal coordinates we
work in, g„=a g„„it is given by

8 =-,'({'+,'(a, (t -}',

8 =yap (4)

O' =Q.P'(j P+Q [—P —(Q P) ]

where we ignore the contribution of the scalar potential,
which as we argued should be small (and equal to zero in
the nonlinear cr model where P =({)oidentically).

A valuable check of numerical codes is provided by the
exact analytical solution of the 0 model ordering dynam-
ics in the limit of large N, where these theories become
Gaussian [28]. For example, the energy density in the
scalar fields in the scaling regime in the matter era at
N = ~ is given by

Soo=6.75
$2

Figure 1 shows our computed value for p=8~$o 2g2

as a function of N, obtained using the algorithm given in
Sec. VII. The dashed line shows a fit using the formula

8oo= 6 75+ 2, N&2 .15 (t'o
(6)

N —2

It would be interesting to calculate the leading term in
1/N analytically, using a perturbation expansion in 1/N,
to compare with this result.

The results in Fig. 1 were obtained with the o model
algorithm —the A,P code produces results lower by ap-
proximately 20%, which probably gives a reasonable esti-
mate of possible systematic errors in the field evolution.
As a further test, we calculated the pressure P =

—,'8;; and
found that with the 0 model code the average pressure
~P~ (0.03(p~ once scaling behavior is reached, compared
to the exact result P =0 (in the matter era), with our
"standard" time step kg=0.2'. This is a substantial
improvement over the A,P code [19].

The case of N =2, global strings, is considerably more
difBcult numerically since the string core carries appre-
ciable energy. We have checked that our o model code
evolves singular strings fairly realistically, but with some
evidence of grid anisotropy. An improved version is in
development, which evolves only one angular field vari-
able and uses a higher-order finite-difference scheme.
The energy per unit length of the string is given by
p-ngoin(g/r, ), with g the typical string separation and
r, the core radius, of the order of one grid spacing Ax in
the o model code. The tension also acquires a logarith-
mic correction, and in the limit where the logarithm is
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large it is plausible that the string dynamics tends to a
well-defined limit. So it is not totally unreasonable to
simulate global strings using the cr model, as long as one
can show that the results are independent of resolution.
In the realistic case, the logarithm is large (-50), be-
cause the core radius is set by grand unified theory (GUT)
scale physics, and it varies very slowly with time. But in
our simulations the change in the logarithm is not negli-
gible. We have found that if we correct this by dividing
the string stress energy by ln(rllhx), then choose the ini-
tial horizon scale to be -6—8 correlation lengths (grid
spacings), the code does produce an apparently scaling
string density of approximately Soo-13—16pg, with

p, =mPo. We have computed the normalization of Po and
the predicted (5T/T) by applying this logarithmic
correction to the string stress energy in both calculations.
We caution the reader that we attach substantial uncer-
tainty to the string results, and have not yet performed
very detailed checks on finite-size scaling (as reported for
textures in Fig. 8},pending the development of a higher-
resolution code. Nevertheless, we felt it useful to report
results obtained for N=2 for comparative purposes,
since they were obtained using exactly the same tech-
niques (apart from the logarithmic correction) as the oth-
er cases. The string results do serve to highlight what
looks to be a major problem for both local and global
strings, with hot or cold dark matter, namely, a lack of
large scale power (see Table III}.

FIG. 1. Energy density GOO in the scalar fields in the scaling
regime in the matter era is shown as a function of N for the
O(N) theories studied in this paper, computed using the o. mod-
el algorithm described in Sec. VII. The vertical axis shows
p=—800/0 'r)', with g the conformal time and $0 the vacuum
strength. The exact solution at large N corresponds to a value
6—'. The dashed 1ine shows a fit 64+15/(N —2). At N =2, the
scaling density diverges logarithmically with g (see text).

%e shall deal in this paper with the computationally
simplest case of a critical density universe dominated by
cold dark matter, accepting the constraints from primor-
dial nucleosynthesis calculations that the baryon density
is far below critical, 0.04 ( fL&h &o (0.06. For calculating
the density and metric perturbations, it is an adequate ap-
proximation to treat the matter in the Universe as
comprised of two perfect fluids: radiation (photons and
neutrinos) and pressureless matter (dark matter plus
baryons). The baryons are strongly coupled to the radia-
tion at early times, but this has little effect on the dark
matter clustering since Q~ -0.05 (&1. After recombina-
tion the baryons simply fall into the dark matter potential
wells. The two Auids are assumed to be initially uniform,
but they are perturbed by the defect field source which
"turns on" at a phase transition in the very early
Universe and subsequently evolves in such a way as to
continually develop fluctuations on the horizon scale.
The matter, radiation, and defect fields are assumed to in-
teract purely through gravity, which means that their
stress energy tensors are separately covariantly con-
served.

The most straightforward approach to cosmological
perturbation theory involves the use of synchronous
gauge, in which go„=0[30]. A detailed discussion of the
application to defect-induced perturbation scenarios has
been given by Veeraraghavan and Stebbins [31]. We shall
give a self-contained treatment here and extend their
analysis in several ways.

In synchronous gauge the perturbed Rat Friedmann-
Robertson-Walker (FRW) metric is given by

goo= —a (g), g; =a (g)[5; +h; (ri, x)],
and one assumes

~ h;J ~

(& 1.

A. Source stress energy

The source for perturbations is the stress energy tensor
of the defect fields. The inhomogeneous part is dominat-
ed by comoving wavelengths of order of the horizon scale
g, and the magnitude of the source stress tensor 8„is of
order Jog . Through Einstein's equations this produces
a metric perturbation h; —Ggo (& 1. Perturbations in the
matter and radiation stress energy (with the generic nota-
tion 5) are formally of the same order, 5-h;, -Ggo. It is
assumed that the effect of feeding the metric perturbation
back into the source field equations would produce a
second-order correction to h, , i.e., that the source is
"stifF."

In this approximation scheme, the defect fields are
evolved using the unperturbed background metric as dis-
cussed in the previous section and obey covariant stress
energy conservation,

Ooo o+ ~Ooo+O . ) Oo
a

Q
. +2—O~ . —O~. . . =0.ot, o ot
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The time evolution of the energy density Ooo and the
momentum density 80; are completely determined by the
spatial stresses 8,.-. Note that there is an ordinary con-
servation law for a quantity proportional to the momen-
tum density, c 00;. This is a reflection of the translation
invariance of the background. It imposes an important
constraint on the defect field initial conditions to be used
in computations of structure formation.

B. Matter and radiation Selds

25Gco=h;. ;
——', V h+2 —Ii

2

=6 — (0,5, +0„5„)+ 16nG.80O,a

2560 =h
J J 23h

T

—8 — Q„v„'+16+68,.

(14)

The matter and radiation are described by perfect fluid
stress tensors

T„'=(p+P)u„u"+P5„', (9)

with P =0 for the matter and P =
—,'p for the radiation.

The fluid four-velocity u" obeys u "u = —1, with the un-
P

perturbed value up=(a, O). This implies that to first
order 5u =0. The velocity perturbation U' for each fluid

is defined through 5u'=a 'U'.

For pressureless matter, covariant stress energy conser-
vation V„T," =0 gives

1 . . a5+Vv = ——}'i, v+ —v =0,
C

(10)

where 5, =(5p, /p, ).
The radiation perturbations involve fluctuations in the

density, 5„=(5p„lp„),pressure, 5P, = —,'5p„,and fluid ve-

locity, 5u„'=a 'U„'. Covariant stress energy conservation
yields

5 +—'V v„+—2}'i =0, v„+—,
' V5„=0.

C. Einstein equations and constraints

In terms of these variables, the ten Einstein equations

R„,=gmG(T„, ,'g„,T&) are—m—ost conveniently broken

up into two sets. First, we have the 5ROO equation and
the traceless part of the 5R," equation:

25ROO= —h ——h =+3 — (20„5„+0,5, )

+8~G(Q" +Q" ) (12)

~ ~

Q
2 5R"—

IJ

a+
a

+ Q, Qj + jp, Q 3 ~ jhgl, kJ

= 16~Ge- (13)

where the traceless parts are defined by h,J
—=h;J

—35,Jh
and similarly for R," and 8; . These six equations (12}
and (13) determine the six "accelerations" IIt,j. in terms of
the "coordinates" h, . and "velocities" h,- ~ .

The remaining four Einstein equations are constraints
on the "coordinates" and "velocities, "most conveniently
taken as 560„=8~5TO„:

These constraints are preserved by the evolution equa-
tions (12) as long as the source stress tensor S„„obeysex-
act covariant conservation with respect to the back-
ground metric (8). As we shall discuss, in numerical
work this is a highly nontrivial requirement.

5, +—5,—,5, =0, (16}

with solutions 50-i} and g . Likewise, in the matter
era, with a(i}}~rl, 0,=1, and 0„=0,one finds

~ 2 6
5, +—5,—,5, =0, (17)

with solutions 5, ~ i} and rl . In both eras there is a su-
perhorizon mode growing as g .

In any simulation of field evolution, there are numeri-
cal errors in the source for 5„the quantity 80O+8;;.
These will undoubtedly take the form of white noise,
PI, ~ k, and cause a growing mode in 5, to be set up on
superhorizon scales during the course of the computa-
tion, with the same spectrum, P(5, )» ~ k q . The frac-
tional density perturbation in modes of wave number -k
is given by k P(5, )z o- k g . At horizon crossing where
kg=1, this grows like g. What this means is that the
fluctuation amplitude of these spurious modes grows as
they cross the horizon during the course of the
computation —on long wavelengths one would be
swamped by the effect of "white noise" generated by nu-
merical errors occurring during the earliest phases of
evolution of the defect fields.

What prevents these modes from being set up outside
the horizon is the conservation of stress energy—
intuitively it is clear that rnatter cannot be transported
causally over superhorizon scales to create large-scale
density perturbations. We shall describe this constraint

D. Superhorizon growing modes

The most naive approach to calculating density pertur-
bations would be to use (10)-(12) (after eliminating v,
and v, ) as a closed set of equations to evolve 5„5„5„h,
and h. However, this approach is numerically dangerous.
The problem is that in synchronous gauge there are
growing superhorizon modes kg&&1 which may be
"sourced" by numerical errors. Using (10), with v, =O,
(12) provides an evolution equation for 5, . In the radia-
tion era, with a(il)~g, 0,=1 and 0,=0; using 5„=—', 5,
[from the zero entropy fluctuation condition; see Eq. (19)
below] and ignoring the source term, one finds, for su-
perhorizon modes,
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more precisely below, but it is clear that enforcing it must
depend on exact covariant conservation of the source
stress tensor 8„„[Eq.(8)]. One way out is to have a nu-

merical code which obeys (g) to great accuracy —one
could, for example, dePne 80O and 8O, in terms of 8,, by
integrating (8) up in q during the course of the simula-
tion. However, that is not a good solution, because an
important property of defect field ordering is that the
fields become more uniform as time proceeds and the
source Fourier modes well inside the horizon, kg&)1,
become negligible. This will only happen in the q in-
tegral for 8OO if the integrand is a total derivative, which
numerical errors will in general spoil. So o~'. risks hav-
ing a constant spurious source for modes well inside the
horizon. We will discuss a better way of "building in"
stress energy conservation into a numerical code below.

E. Initial conditions for long-wavelength modes

We want to consider a universe which begins in a hot,
homogeneous state. All perturbation variables are zero,
with the defect fields in thermal equilibrium in the unbro-
ken symmetry phase. There is absolutely no ambiguity in
these initial conditions. There is some remaining gauge
ambiguity within synchronous gauge, but it is completely
fixed by the obvious choice A'j A j 0 Then a phase
transition occurs, and the symmetry-breaking fields leave
thermal equilibrium, entering the process of phase order-
ing. Perturbations on the macroscopic scales of interest
are generated as each scale crosses the horizon, long after
the original phase transition. In principle, one just
evolves the fields and perturbation variables from before
the GUT era to the late epochs of interest, but this is in
practice impossible, requiring a dynamic range of 10 or
so, whereas the biggest simulations currently possible
have a range of at best 100 in comoving scale. Luckily,
as we shall argue, this is quite adequate provided certain
general arguments are accepted and due attention is
given to the setting up of "reasonable" initial conditions,

All source, radiation, and Quid inhomogeneities are
determined by the evolution equations in terms of the
source spatial stresses 8; . Before the phase transition,
the defect fields are assumed to be in thermal equilibrium
with no long-range correlations. The subsequent dynam-
ics of the phase transition and field ordering are com-
pletely causal, and so we know that the correlation func-
tion of the source stresses 8, is strictly zero on superhor-
izon scales. We also know that the distribution should be
isotropic. It follows that the power spectrum of 8,, (the
Fourier transform of the correlation function) takes the
form of white noise, P& ~k for kg(&1. From general
arguments we believe that following the phase transition
the defect field distribution enters "scaling" behavior
fairly rapidly, and so it is only necessary to evolve them
from a "reasonable*' set of suitably chosen initial condi-
tions (i.e., with no correlations on superhorizon scales)
for a few expansion times in order to produce a field dis-
tribution which is realistic on superhorizon scales.

According to the evolution equations, Ooo and a11 of
the perturbation variables h;, 6„6„andtheir time deriva-
tives acquire white noise power spectra, while the

momentum density 80, and the radiation velocity u,
" ac-

quire a k spectrum, having much less power on su-
perhorizon scales. As mentioned above, this is a conse-
quence of "momentum" conservation. This condition on
the 80, implies that one must be careful in a simulation
beginning at some late epoch to use initial conditions
where there is no "white noise" component in 80;—one
way to ensure this is to start the simulations with the field

velocities P set exactly to zero. One should also check
that numerical errors, which are greatest early on when
the field inhomogeneity is greater, do not generate such a
component.

What about the perturbation variables? We cannot set
them to zero at the epoch our computations begin, since
that would violate the constraints (14). We are most in-

terested in the superhorizon modes, since we start our
computations of field evolution with all modes of interest
being outside the horizon. So what are the correct initial
conditions for superhorizon modes? As we shall see, in
general the perturbation variables are given by time in-

tegrals over the entire previous history of the source. But
certain important linear combinations, including the
coeScient of the growing mode in the matter era, which
is the input to calculations of large-scale structure, do not
depend on the early history of the source.

The choice for the dark matter velocity is obvious:
From (10), if it was initially zero, it is always zero. Then
(10) becomes

where we have used the initial conditions 6, =h =0.
Choosing the other variables requires more careful con-
sideration.

The radiation evolution equations (11) are most con-
veniently rewritten by eliminating v„and rewriting the
equation in terms of the fluctuation in the number of pho-
tons per dark matter particle ("entropy Iluctuation"),
s —=

—,'5„—6, . One obtains

s'= —', V (s +5, ), s = —V.v„.
If the entropy Auctuation starts out as zero, as it does in
the simplest cases of dark matter "freeze-out" where the
number of dark matter particles per photon is fixed by
microphysics, it follows from (19) that outside the hor-
izon the power spectra for the entropy fluctuation s and
its time derivative s fall like k . As long as we make sure
the scales of interest are well outside the horizon when
our calculation begins, we can with good accuracy set the
entropy Auctuation to zero.

Proceeding in this manner, setting a11 spatial deriva-
tives to zero and 6„=—', 6, in Eqs. (13) and (14), we obtain

~ a 1 a
6, + — 2 ——0,, 5, = —4mG —Ooo,

a a
{20}

h,- +2—h; =16~60,-
a

These may be integrated fairly straightforwardly, using
the conventions of Appendix A, to give
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5,(g)= ——h(g)
1

&1+a (q)
a'(g)

a '(q'}
q, 4n 68(~(ri'),

(21)

h;, (ri)=, f dq' a'(g')16' GS,i( ri'),
a'(ri)

where a change of variables to the scale factor a is helpful
in order to integrate the first equation. The initial values
of 5, and h;~ are then straightforward to obtain.

The important point is that on superhorizon scales the
defect field stress energy 80o only sources a decaying
mode in the dark matter, 5, ~ a ~ ri in the radiation
era (a «1) and 5, ~a ~ ~ri in the matter era
(a »1). But only the growing mode is relevant for pro-
ducing large-scale structure, and this is sourced only on
horizon scales. We shall find a nice way of building this
into our numerical algorithm below.

F. Stress energy "pseudotensor"
To understand how stress energy conservation con-

strains the growing mode density perturbations, it is use-

ful to rewrite the equations in terms of a stress energy
"pseudotensor" which, as remarked by Veeraraghavan
and Stebbins [31], may be constructed from the con-
straint equations and which obeys ordinary (as opposed to
covariant) conservation. The usual derivation of the
stress energy pseudotensor for gravitational fields and
matter in a Minkowski space background (so
g„=g„+h„„)starts from the Bianchi identity
V"G„,=O. This is true at each order in h„„andin par-
ticular at linear order, where it is an ordinary conserva-
tion law: 8"G„„~,

~

=0 [with 8"=(—BO, B;)]. The Einstein
equations imply that G„~&]=8mGT„—G„[„I~,where

G„&„I]is the sum of terms quadratic and higher in h„„
and so the right-hand side equals 8aG times an ordinarily
conserved tensor, called the stress energy pseudotensor.

The generalization to an expanding universe is simple:
The perturbation in the Einstein tensor 56„[Eq.(14)]
equals the Minkowski space expression G„~,] plus
corrections involving derivatives of the scale factor —it
must equal the Minkowski space expression if we set
a =1. If we move the corrections across to the "rnatter"
side of the Einstein equations, it follows that we have a
pseudo-stress-energy tensor, which is ordinarily con-
served. To the order we work at, this is given by

1 1

8m G '" 16aG

1 1G;8~G "'" 16~G

'2
—V' h =800+ — (Q, 5, +Q„5,)—8nG a ' ' ' '

8mG
T

2 1 a
h; ——h; =0 — — 0 U'=—~Os 2 G r r oi

a—h =~00,
a

(22)

2
1 1 a 1 a — 2

Gi '(1) 8i '+5i ' 0,5„— —h" ——h5"8~G '~ 'J '~8~G a ' " 8~G a

The pseudo stress tensor r„obeys ordinary stress energy
conservation by virtue of the Einstein equations

+00,0 +Oi, i & +Oi, p +ij,j (23)

as may be explicitly checked from (12) and (13).
The utility of these equations lies in the fact that they

hold all the way back from the homogeneous era before
the phase transition, right up to the start of our computa-
tions. The kAO modes of all components of r„„rea
strictly zero before the phase transition —integrating (23)
twice in time and assuming from the arguments above
that ~, always has a white noise power spectrum on su-
perhorizon scales, it follows that rpp always has a k
power spectrum on these scales and that 7 p always has a
k power spectrum. Both statements also follow from
the constraints (14), if the h," and h; have white noise
power spectra on superhorizon scales. Arguing as we did
above for the entropy fluctuation, it is then a good ap-
proximation to set v.pp=rp; =0 on scales which are well
outside the horizon when any computation begins.

The main significance of this for structure formation
lies in the fact that wpo is precisely the coefficient of the
growing mode in the matter density perturbation. At any

particular epoch in the early Universe, the power spec-
trum of ~00 is the power spectrum of the growing density
perturbations which "have been generated so far" and
falls off outside the horizon as k . This is, of course, very
different from the situation in inflationary scenarios of
structure formation, in which fluctuations "outside the
horizon" have already been imprinted during a previous
inflationary epoch and the power spectrum of &00 falls
only as k (the Harrison-Zel'dovich spectrum) on su-
perhorizon scales. Nevertheless, the final matter fluctua-
tion spectrum inside the horizon is very similar in the two
scenarios, because the perturbation amplitudes at horizon
crossing are in both cases independent of time and they
evolve similarly inside the horizon.

S,S, 'Tpp k 2

7p. Op. , U,'-k, kg «1 (24)

G. Choosing initial conditions

The constraints we have discussed so far on superhor-
izon modes in any computation beginning at late epochs
may be summarized as



UE-LI PEN, DAVID N. SPERGEL, AND NEIL TUROK

where —k" means the power spectrum vanishes like k ".
A simple way to satisfy these is to impose the exact re-

lations

5 =S =+00=+Oi =80i Ur' =0 (25)

on the initial conditions. The last three conditions
guarantee that the constraint (15) is satisfied: The con-
straint on the source, 00.=0, is most easily satisfied by
setting / =0 in the initial conditions.

The first three conditions do not uniquely determine
the four scalar perturbation variables 5„5„5„,and 5„.
In general, one could choose any combination of 6, and
6, satisfying

Q
6, +

a
1 a

2 ——0 6 = —4mG —8C C 00 '
a

using Q„=1 —Q„while another is (choice 2)

6, = —6, =0,=3 ~ 1 a
6 = ——h= —4~6—8

C
a

00

It is a useful check of our sensitivity to subhorizon modes
that we obtain similar results from the two choices.
These choices are physically diferent and not merely

gauge related, because the condition ~00=0 is not gauge
invariant. With the choice (27), we could gauge 5, to
zero, but that would produce a contribution —k to ~~,
which is certainly allowable according to (24), but
violates (25).

We should emphasize that neither of these choices are
realistic —the exact initial conditions for superhorizon
modes are given in (2.1), which yields "white noise" Auc-

tuations in all these variables, corresponding to dark
matter fluctuations, acoustic waves in the radiation, and
gravity waves generated at earlier times, which we cannot
hope to accurately represent since we do not know the
source at times before our simulation begins. However,
as we have argued, these short-wavelength perturbations
should not greatly a6'ect the growing mode matter per-
turbations on scales initially outside the horizon, which
are our main concern.

It is plausible that the final result for the ~00 modes which
are initially outside the horizon does not depend strongly
on the specific choice made, since, provided the initial
conditions do not include large fluctuations on superhor-
izon scales, the dominant perturbations on any scale will
be set up at horizon crossing.

One simple choice is (choice 1)
2

=3 a Ooo
5, =—5„=—8nG —,5, = ——h=0, (27)c 4 g 4 —0, ' ' 2

lows. Instead of evolving both 6, and 6„onereplaces
the latter with ~00. The complete set of evolution equa-
tions for the density perturbations is then

2

1 a
~ =ao+ n — s00 i Oi 2 6 r

a
5, = 4vrG —[roo —800]

a

a 3 1—+—0 6 +20sr c r (29)

10 I I 1 I I I I I

0.1

0.01

0.001

1 0001 s i i s s i I

s'=
—,
'7' (s+5, ) .

Note that if ~00 is to have the correct k power spectrum
on superhorizon scales at all times, it is vital that the
momentum density 80,. have a k spectrum, enforced by
an ordinary conservation law [see the discussion follow-
ing Eq. (8)]. In numerical calculations accurate momen-
tum conservation is much easier to achieve than energy
conservation, since the algorithms used are exactly in-
variant under discrete lattice translations which approxi-
mate continuous translations, and we show that our code
does indeed produce the correct k spectrum for su-
perhorizon modes in Fig. 2.

We are ultimately interested in the growing mode of
the density perturbation in the dark matter in the
matter-dominated era, which will determine the forma-
tion of structure at later epochs. As we mentioned above,
once a mode is well within the horizon the source term
contribution to ~00 becomes negligible. In the matter era,
we have 6, = A g +By, and it follows from the

H. Evolution scheme
incorporating energy-momentum conservation

Once we have made a reasonable choice for the initial
conditions, we need to evolve the perturbation variables.
As we discussed, it is important to "build in" the conser-
vation of the stress energy pseudotensor into the equa-
tions for the density perturbations. This is done as fol-

FIG. 2. Power spectrum P for the pseudoenergy density ~oo,
the coe%cient of the growing mode in the matter era, computed
in a texture (N =4}simulation using the algorithm of Appendix
C, and the a. model field evolution algorithm in {67) and (68).
The wave number k is given in units of g~ . The solid triangles
and dashed line show the spectrum at g=6; the open squares
and solid line show the spectrum at q= 10 (q is measured in
grid spacings). As the plot shows, our code correctly produces
the k power spectrum for ~00 on superhorizon scales.
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FIG. 3. Comparison of power spectra Pk for r computed
using the algorithm of Appendix C, with scalar fields evolved

using either the n model algorithm of Eqs. (67) and (68) given in

the text (solid triangles) or the A,gs algorithm of Ref. [19] (open
squares). The four pairs of curves, with peaks moving from

right to left, show the evolution of the power spectrum during
the course of the simulation. The two codes produce quite simi-

lar results, with the 0 model code consistently about 20%
higher than the its code. Note also the correct form of the
power spectrum Pk ~ k ' for scales which enter the horizon in

the radiation era and k for superhorizon scales.

Tk —= =—[1+[ak+(bk) +(ck) ]"]

v=1.13, a =6.4h Mpc, (30)

b =3.0h ~ Mpc, c =1.7h 2 Mpc .

de6nition (22) that zoo=(5/2trg) A. (See Fig. 3.)
A simple check of the accuracy of these evolution

equations and our numerical scheme for evolving them
(see Appendix C), is to use them to compute the "transfer
function" for primordial density perturbations in the ab-
sence of a source. This has been done, for example, by
Bond and Efstathiou [32], without making the approxi-
mation we use here of treating the neutrinos as part of
the radiation. This transfer function is relevant for
inilationary scenarios where the initial power spectrum in
superhorizon modes is given, e.g., by P(5, )z cck, s =0,
but the modes must still be followed across the horizon
and into the matter era to determine the coefficient of the
matter growing mode. From our Eqs. (29), the k =0
mode is trivial to solve for, since zoo is constant on su-

perhorizon scales. Given a pure growing mode in the ra-
diation era, one can find the coeScient of the rnatter era
growing mode: Writing 5, = A g in both cases, one finds
A =—', A„.We have compared the result of integrating
(29) numerically mode by mode through horizon crossing
and the radiation-matter transition, with the fitting for-
mula given by Bond and Efstathiou [32] (using our stan-
dard time step b, t) =0.2; see Appendix D),

FIG. 4. Test of the numerical algorithm used to compute the
evolution of linear perturbations given in Appendix C. The
solid line shows the transfer function Tk we compute; the boxes
show the fit (30) given by Bond and Efstathiou [32] for an 0= 1

CDM&ominated universe with Q~ (&1. The comoving wave
number k is given in units of g+, where q+ corresponds to a
comoving scale of 19.38h && Mpc.

The results of the comparison are shown in Fig. 4—our
results are slightly larger, with the maximum deviation
being 7%%ua on scales -2h z Mpc.

V. COMPARISON %ITH THE LARGE-SCALE
DISTRIBUTION OF GALAXIES

The theories we investigate here are all characterized
by a single free parameter e=8tr GtI)0, where tI'to is the
symmetry-breaking scale. This prefactor is chosen be-
cause in the texture theory (% =4) the magnitude of
(5T/T) at the center of the hot and cold spots is =e.

Before COBE it was traditional to normalize theories
of structure formation by the requirement that they
reproduce the observed level of fluctuations in the galaxy
distribution [e.g., by requiring that the standard deviation
in the number of galaxies in a spherical "top hat" of the
radius 8h ' Mpc, Os(gal), be equal to unity]. However,
since the physics of galaxy formation is still only poorly
understood (although there have been advances [33]), all
one can reliably compute is the level of fluctuations in the
CDM. One then introduces an unknown "bias" factor,
being the ratio of rms fluctuations in the galaxy distribu-
tion relative to those in the CDM on each scale of in-
terest. Before COBE this could only be determined in-
directly by measuring the strength of CDM clustering
through its dynamical eff'ects: streaming velocities, clus-
ter velocity dispersions, and so on.

COBE's detection provides a clean measurement of the
level of fluctuations on large scales. Of course, to extra-
polate to small scales one still has to make some assurnp-
tions as to the value of 0, whether the COBE result is
contaminated by a significant background of gravity
waves, what form the dark matter takes, and so on. But
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in the simple 0=1 CDM scenarios explored here, the
COBE detection provides by far the cleanest determina-
tion of e. (Table IV below gives the value of e required in

each theory considered here to fit the COBE 10' result,
and the sections following this one explain the detailed
computation of these results. ) But since the computation
of density fluctuations is simpler and follows straightfor-
wardly from the discussion of the previous section, we
shall deal with this Grst. %'ith the amplitude of primordi-
al fluctuations Axed from COBE, the spectrum of CDM
density fiuctuations is completely determined up to our
knowledge of the Hubble constant. Observations of
galaxy clustering on large scales such as those of [3] can
then be used to determine the "bias" factor required on
each length scale. As we shall see, each of the theories
explored here appears to require large "bias" factors to
match the level of galaxy clustering recently observed on
scales of 20h ' Mpc.

The density perturbations may be computed using Eqs.
(29) with the source provided by the stress energy tensor
given in (4). Following the evolution of (29) well into the
matter era, the value of zoo gives the coe%cient of the
growing mode perturbation in the CDM:
roc=(5l2mG)5, le =const. We have found it necessary
to run the matter and radiation perturbations well into
the matter era to values of q-10', in order that the de-

caying mode be negligible (running shorter tends to
overestimate the amplitude of ~oo). We compute the nu-

merical power spectra in 5, today by fast Fourier trans-

forming, averaging the power in each interval of k, and
multiplying by the appropriate growth factor (see Appen-
dix A for conventions).

One commonly used number which characterizes the
CDM fluctuations on a scale comparable to the galaxy
clustering scale is o s(CDM}, the standard deviation of the
mass in a spherical "top hat" of radius 8h ' Mpc. This
may be computed directly by convolving the density Geld

with the appropriate window function and taking the
variance or by integrating the power spectrum times the
squared Fourier transform of the window function:

d k
crs(CDM)= VI Ps(k)W(kR)

(2~)'

W(kR) =3[sin(kR) —kR cos(kR)]l(kR)
(31)

with R =8h ' Mpc. If the galaxy distribution traced the

mass distribution, this number would be approximately
unity. This condition then determines e. The results of
this normalization, for h =0.5, are shown in Table I for
the different theories studied here. As can be seen, the
values of e obtained this way are substantially larger than
those given from COBE (Table IV). The COBE normali-

zation can be used to calculate the value of o s '(CDM),
given in Table II.

%e have ignored the effects of nonlinear gravitational
clustering which would serve to reduce the required value

of e. This is likely to be a good approximation because as
Table II shows that the only chance of these theories
agreeing with observation is if the bias factor is high. But
in this case perturbations in the mass distribution on the
Sh ' Mpc scale are still close to linear theory, and there

TABLE I. Normalization of theories to 08(CDM). The
values of @=8m 640 is given in units of cr&(CDM}, the variance

in the CDM density field smoothed with a spherical "top hat"

of radius 8h ' Mpc. These values were computed for h =0.5
using the appropriate central value of e given in Table IV in

100 boxes of comoving size (400 Mpc)'. We assign an error of
the order of +20% to the texture and nontopological (NT) tex-

ture results, +30% for the monopoles, and +50% for the string

result. Scaling with h is very similar to that for the 5h Gauss-

ian window results in Table III.

Defect

Strings [51]
Monopoles
Texture
NT texture

Nonlinear o model

3.2X 10
2.3X 10-'
3.7 X 10
5.9X 10-'

A,t}} simulation

2.7X 10-'
4.5 X 10
6.9X 10-'

is no need to use an N-body code to check normaliza-
tions.

In order to compute (31) accurately, it is vital that the
numerical estimate of Ps(k) be reliable over the range of
k contributing substantially to the integral (31). We have
checked this by performing runs of differing physical box
sizes in each theory to see whether the resulting power
spectra match in a smooth curve. The results are shown
in Figs. 5(a}—5(e). The results are actually computed for
h =0.5, but are easily rescaled to other values of h and Q
using the relation

Ps(k)~ V 'g, (l +Z, )qf(kryo, )D(Q)

~ f(kri, )(DQ)'Q 'h (32)

where V is a comoving volume, k the comoving wave
number, and f a dimensionless function. The factor
D(Q} is the ratio of linear growth to that in an Q= 1

universe. The point is that the coeScient of the growing
mode density perturbations depends on only one scale,
the horizon at equal matter-radiation density, related to
rl, . The growing perturbations are obtained from this by
multiplying by the growth factor, proportional (1+Z, )~

for the power. Using (1+Z, ) ~h and the comoving
scale ri, ~ Q 'h, we find (32). For reasonable values of

20
50
60
70
80
90

100

11.0
5.0
4.4
4.1

3.8
3.6
3.5

8.5
3.7
3.3
3.0
2.7
2.6
2.4

9.5—13.8
3.8-5.3
3.2—4.4
2.8—3.9
2.5 —3.5
2.3—3.2
2.2—2.9

10.1
4. 1

3.5
3.1

2.9
2.7
2.5

TABLE II. The value of 08 '(CDM) for each model normal-

ized to COBE (Table IV). 08(CDM) is the rms deviation of the

CDM mass in a spherical "top hat" of radius Sh Mpc for

each model. The results given for textures include our estimates

of the systematic errors in the calculation. The results shown

are for the central value of the COBE result —a 2e error in the

COBE variance would contribute a multiplicative factor of

0.76-1.44 to the deduced cr 8 '(CDM).

Ho Strings [51] Mouopoles Texture NT texture
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0, all wavelengths of observational interest entered the

horizon when 0 was very close to unity, and so open or
closed model power spectra are also obtainable by simple

rescaling of Bat universe power spectra.
The results given in Table I were obtained with (400

Mpc) boxes, with 100 grid points. We compute using

h =0.5 and then rescale the results using (32). We have

checked that very similar values of mrs(CDM) are ob-
tained by performing the integral (31) directly on the
fitting functions shown in the figures.

In our earlier work [22], we used too small a box (120
Mpc at h =0.5), in which the dominant modes of wave-
length -60 Mpc were under represented, and this led to

10
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G. 5. Linear theory power spectrum of CDM density fluctuations Pz(k) l(2~)' at the present epoch is shown for each th o „of
s ~~~mal~~~d to the COBE 10' result (

h =0.5 is assumed —the spectra for different values of h and 0 are obtainable by simple scaling as explained in Sec. V. (a) shows the
results for strings (N =2), (b) for monopoles (N =3), (c) and (d) for textures (N =4), (e) for nontopological textures (N =6). The
string, monopole, and texture runs used 100 boxes of comoving size 800, 400, 200, and 50 Mpc. For these runs the open squares
show the 800 Mpc box, pentagonal stars the 400 Mpc box, solid squares the 200 Mpc box, and open triangles the 50 Mpc box. The
curves show analytic fits which were used to compute the values of bias required shown in Table IV. (c) shows the texture runs with
symbols as follows. Crosses show a 100 run of box size 50 Mpc, solid squares a 100' run of size 200 Mpc, pentagonal stars a 200 run
of size 800 Mpc, open squares a 100' run of size 800 Mpc, and solid pentagons a 200 run of size 1600 Mpc. In (d), covering the re-
gion of k of most interest for comparison with the large-scale QDOT data, the same symbols are used and another two 200' runs are
shown, the solid and open triangles. These are identical to the pentagonal stars and solid pentagon runs, but had different random
number seeds and began integration of density perturbations from the beginning of the run, where in all other runs the integration be-
gan at q=4hx.
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a normalization for e almost twice as large as the value
given here . Previous to that [20,23], we had obtained a
similar value using Newtonian theory with the A,P code,
both of which tend to underestimate the amplitude of in-
duced perturbations by 20—30%. This overestimate of e
also led to an overestimate of the fluctuations in the
galaxy distribution on large scales, which we shall discuss
further below.

Figures 5(a) and 5(b) show that the power spectra for
N =2 and 3 do not match very well between boxes of
varying size. For N=4 the match is better, and for
N=6 better sti11. The reason for this improvement is
that the approach to scaling is faster at larger ¹ Our

simulations start with the initial conditions /=0, but the
source for CDM density perturbations is proportional to

So the initial source is zero instead of the correct
scaling value. In matter era runs, for large N the average

value of P reaches scaling (6) after q =35,x, whereas at
N =3 it has only reached four-fifths of its Gnal scaling
value by g=10hx, and the approach is slower still at
X =2. This means that dynamic range is an increasingly
important problem at smaller ¹

We do ensure that the average density and pressure are
close to their scaling values throughout the runs by ad-
justing the starting time g, so that Eq. (6) is satisfied. In
the initial conditions, P is uncorrelated at neighboring
grid points, which means that the average field energy
density is 800=3$0bx, independent of N. From (6) it
follows that one should start at g; close to hx at large N,
g;=2.3hx for textures, g;=2.9hx for monopoles, and
g;=6hx for strings. These initial conditions yield a
white noise (flat) power spectrum in the density perturba-
tions on subhorizon scales. In the radiation era, this
represents an excess of scale power over the scaling solu-
tion, in which equal-amplitude density fluctuations are
set up in each logarithmic interval in k and the growth
factor increases only logarithmically, and so Pk ~k
In the matter there is instead a deceit of small-scale
power, since fluctuations grow as g after horizon cross-
ing, leading to a final subhorizon power spectrum
P~ ~k (r1lq&) ~k with g&

—k ' the conformal time
at horizon crossing. These effects are clearly visible in
Figs. 5(a) —5(e).

The fact that the power spectra we obtain for strings
(X =2) differ between runs with differing box size at the
level of at least a factor of 2 lead us to believe that the
normalizations for e given in Table I is uncertain to at
least 50%. We know of no simple way to improve on
these uncertainties except increasing the box size, and it
is likely that one will need substantially larger boxes for a
significant improvement. We have performed a 150 run
of similar physical grid spacing to the pentagonal stars in
Fig. 5(a); the results are almost indistinguishable.

We have attempted to estimate possible systematic er-
rors in the field evolution by comparing two independent
algorithms. In one set of simulations, we used the non-
linear o model code described in Sec. VII. In another set
we used the scalar field evolution code described by Press,
Spergel, and Ryden [34], as used in our earlier work
[19,21,22,23]. The results of the two sets of simulations

are shown in Table I. The normalizations agree to better
than 20%. This is probably a reasonable estimate of the
systematic errors associated with the scalar Geld evolu-
tion. We also find a 10% uncertainty associated with sta-
tistical run-to-run fluctuations in o.

8 for 100 boxes. Tak-
ing all this into account, we assign errors of the order of
20% to the normalizations of the N =4 and 6 cases, 30%
for X =3, and a possible 50% error for the case N =2
(see also the discussion at end of Sec. III).

We have concentrated our efforts at improving the ac-
curacy of the calculations on %=4, because there ap-
pears a better chance of obtaining quite accurate results
with the grid sizes currently feasible. We have checked,
for X =4, the importance of the early, nonscaling regime
by (a) starting with a smaller value of the conformal time,

g; =hx, which increases the normalization of e to
3.9X10, and (b) by turning on the source for density
perturbations only after some time, g =4M. This further
increased the normalization to 4. 1X10 . So we are
somewhat sensitive to the nonscaling region, but only at
the 5 —10 k level. Decreasing the time step by a factor of
2 (from b,g=0.2hx, our standard value) changed the tex-
ture normalization by less than 1%.

We have also performed larger, 200 texture runs to
check for finite-size effects, grid cutoff effects, and the
effects of the early, nonscaling epoch of field evolution.
Figure 5(c) shows the results of five different runs, togeth-
er with curves showing our upper and lower estimates of
the true power spectrum. The crosses and solid and open
boxes are all 100 runs of grid spacing 0.5, 2, and 8 Mpc
(with h =0.5). Integration of the density perturbations
began at the starting time, g=2hx, in all these runs. The
white noise present in the initial conditions produced the
upward curving tails at large k, clearly visible in the
figure. For comparison, the solid pentagons are a 200
run with 8 Mpc grid spacing, but with integration of den-
sity perturbations started at q=46x. As can be seen,
there are systematic differences between these two runs at
k & 0. 1 or so, corresponding to wavelengths of the order
of 8 grid spacings. They do converge at smaller k, with
jaggedness due to statistical fluctuations becoming ap-
parent at k (0.02, one-third the box size in the smaller
run, and similarly for the bigger run. The most notice-
able systematic difference between runs occurs as one
varies the physical grid spacing —the pentagonal stars
are the results from a 200 box with 4 Mpc grid spacing,
which are systematically higher than the previous runs
on scales of 30—80 Mpc, 8 —20 grid spacings. Statistical
errors are very small on these scales, and this result indi-
cates that the short-wavelength field modes (1—2 grid
spacings) do have a significant effect on larger scales
(10—20 grid spacings). However, around k =0.05, corre-
sponding to 30 grid spacings in the higher-resolution box,
the power spectrum has converged with the previous two.
We conclude that the case N =4 is fairly insensitive to
finite-size-effect spacing as far as computing the power in
wavelengths from about 30 grid spacings up to a third of
the box size.

Figure 5(d) shows an enlargement of the region most
important for comparison with the QDOT results. The
main comparison made here is between the previously
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P(k)=
[1+(ak)+(bk)' ]

(33)

with a =890, a = 14 Mpc, and b =11 Mpc for the upper
curve and a =500, a = 12 Mpc, and b = 13 Mpc for the
lower curve. We emphasize that these fits are only likely
to be valid over the range of wave numbers shown —in
particular, we expect logarithmic departures from the
usual "folklore" P(k) ~ k for scales entering in the ra-
diation era. Over the range we have simulated, a k
large-k tail provides an adequate fit.

Now we turn to a comparison with the observations.
In the QDOT redshift survey, Saunders et al. [3] adopted
a Gaussian smoothing window

gr(kR )
—e

—(kR) /2 (34)

and determined the variance in the APM galaxy density
field after smoothing with R =5h ', 10h ', and 20h
Mpc to be 0.436+0.091, 0. 184+0.05, and 0.0669+0.019,
respectively. From these numbers, inserting (34) into
(31), and using our fits to the power spectra, we have
determined the required bias in QDOT galaxies as a func-
tion of scale.

Table III shows the bias o (gal)/o (CDM) as a function
of scale. The values given are for the central COBE and
QDOT values. The fractional lo error in the COBE 10'
variance is quoted at (+36%—31%) [1] and for QDOT
at +21%, +27/c, and +28% in the variances on 5h
10h ', and 20h ' Mpc, respectively [3]. From the rela-
tion b ~ (QDOT/COBE), the ratio of the two variances,
the fractional error in b is obtained by adding the frac-
tional variances for COBE and QDOT. The inferred 2o
error on b is then around 50%. This error is, of course,
in addition to the statistical and systematic errors in our
calculations.

If one accepts the COBE and QDOT central values,

discussed 200 runs (solid pentagons and pentagonal
stars) of difFering resolution and with runs identical to
them (open and solid triangles, respectively) except in-
sofar as the integration of perturbations started right at
the beginning of the run, and different random number
seeds were used. As can be seen, the effect of including
the early nonscaling power is small on these wavelengths.

As another test of finite-size effects, in some runs we
turned off the field source after the horizon reached two-
thirds of the box size, while continuing the perturbation
evolution until q=10g~, to pick out the growing mode.
These runs do show a systematic difFerence at low k and
may be distinguished in the figures from the oscillatory
shape of the power spectra at the lowest three values of k.
For example, for the open triangles run in Fig. 5(d) the
source was not turned off, whereas for the solid pentagon
run it was. The differences these runs show for the mass
variances used to obtain the results in Table III are com-
pletely negligible, leading us to believe that we are not
sensitive to the behavior of the source fields at late times,
when one might worry about finite box effects.

The two curves shown represent what we consider to
be reasonable upper and lower limits to the power spec-
trum from textures. Both curves are given by the formu-
la

Ho
(km/s Mpc) 5h ' Mpc

Required bias b

10h Mpc 20h ' Mpc

20
50
60
70
80
90

100

9.5
4.8
4.3
4.1

3.9
3.7
3.6

Strings [51]

14.1
9.4
9.0
8.7
8.5
8.4
8.3

24.3
20.0
19.6
19.4
19.2
19.1
19.0

20
50
60
70
80
90

100

20
50
60
70
80
90

100

7.4
3.5
3.1

2.9
2.7
2.6
2.4

8.1-11.6
3.4-4.7
2.9-4.0
2.6—3.6
2.4-3.2
2.2-3.0
2.1-2.8

Monopoles

10.7
6.3
5.9
5.6
5.4
5.2
5.1

Textures

10.7-14.9
5.3-7.2
4.8—6.4
4.4-5.9
4.1-5.5
3.9-5.2
3.7-4.9

16.9
12.3
11.8
11.5
11.2
11.1
10.9

14.9—20.2
9.0-11.9
8.4-11.1
7.9—10.5
7.6—10.1

7.4-9.7
7.2-9.5

Nontopological textures

20
50
60
70
80
90

100

20
40
50
60
80

100

8.6
3.8
3.3
3.0
2.7
2.5
2.4

2.4
1.1
0.9
0.7
0.6
0.5

11.6
6.3
5.7
5.4
5.1

4.9
4.7

Inflation plus CDM

2.8
1.5
1.2
1.1
0.9
0.8

17.1
11.3
10.8
10.3
10.0
9.8
9.6

3.6
2.2
1.9
1.7
1.5
1.4

TABLE III. Comparison with QDOT observations. This table com-

pares the level of fluctuations in the galaxy distribution detected in the

@DOT survey [3] with the predicted level of dark matter perturbations

predicted in each theory explore here when normalized to COBE. The
table shows the bias b, defined as the ratio of the rms fluctuations in the

galaxy number density after smoothing with a Gaussian windows of
5h ', 10h and 20h ' Mpc to the rms fluctuations in the dark matter

density on the same scale. The results shown are for the central values

of the COBE and QDOT results. The fractional 1' errors in the COBE
10' variance are (+36%,—31%) and in the QDOT variances +21%,
+27%%uo, and +28%%uo in the variances on 5h, 10h ', and 20h Mpc,
respectively. The fractional error in b is obtained by adding the frac-

tional variances for COBE and QDOT. The inferred 2cr error on b is

then around 50%. This error is, of course, in addition to the systematic

errors in our calculations. The range in the texture table includes our

estimate of the systematic uncertainties estimated in the text. The er-

rors in our results for the string, monopole, and nontopological (NT)
texture results are estimated at a level of +50%, 30%, and 20%, respec-

tively (see [51]). These calculations assume cold dark matter, but on the

most problematic 20h ' Mpc scale, the results would be very similar

for hot dark matter.
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the most striking thing about our results is the large
biases required. On the smallest scale, one may obtain
acceptable biases of the order of 2—3 by taking h &0.S.
One must then worry about the age of the Universe—
requiring it to be greater than 10' years, stretching the
age estimates of globular clusters to their limits [35], one
must have h &0.65. However, for any value of the Hub
ble constant, to f'it the 20h ' Mpc result one requires a bias

of at least 4. This is a disconcertingly large value, and the
required increase of bias with scale is also implausible-
in hydrodynamical simulations the bias is found rather to
decrease with scale [33]. The case of %=6 appears to
have a very similar power spectrum, and N =3 or 2 is
distinctly worse, since the peak in the power spectrum is
shifted to smaller scales.

As mentioned above, there is still room for error in our
calculations of the density perturbation spectrum, and a
definitive conclusion should not yet be drawn. However,
if our numerical results are taken at face value, they do
indicate all the theories investigated here have some
dif5culty in matching both COBE detection and the Auc-

tuations in the galaxy distribution determined by the
@DOT survey. In Sec. X we discuss possible alternative
theories that might rectify this failure.

VI. CALCULATION OF CMB ANISOTROPIES

A. Sachs-Wolfe formula

In their classic paper on synchronous gauge perturba-
tion theory, Sachs and Wolfe derived a general formula
for the cosmic microwave background anisotropy associ-
ated with metric and matter perturbations [36].

For a perturbed flat FRW metric, g„„=a(rt)(rt„,
+h, }. If each photon we see was emitted at cosmic
time g, and is received by us at time gf, the general for-
mula for the temperature fluctuation 5T in each direction
n on the sky is

inated by physics on a scale k given by k go- I, where qo
is the present conformal time. Assuming standard
recombination and no reionization, the integrand of the
CMB autocorrelation function has a peak at kg„,-2n. ,
corresponding to the Doppler effect on scales comparable
to the thickness of the surface of last scatter. The Comp-
ton drag on the baryons results in their lagging the dark
matter particles. This leads to a peak in the multipole
sPectrum at i -2m(rio/il„, ) =2m(1+Z„,)'~ -200, as
indeed they find. With reionization the surface of last
scattering is moved forward, 1+ZIS-100 with the pa-
rameters we use here, and by the same argument we ex-
pect a Doppler effect peak in the multipole spectrum at
I -60, corresponding to an angular scale of around
180'/1-3'. COBE is only sensitive to multipoles I ~20
(see Fig. 9), and so we have not included the Doppler
term in our computations reported here. We intend to
calculate it in future work.

The two terms which are relevant to the large-
angular-scale anisotropy measured by COBE are the
path-dependent redshift term, which we sha11 call the
Sachs-Wolfe integral, (5T/T)~sw, and the "intrinsic"
term (5T/T) ~;„,:

6T 6T 6T
sw T int

6T 1
dgh; o(n g)n'nj,

T
,'s~ 2 1

(36)

6T 1
5, (n —n;) .

int

The "intrinsic" term is easy to calculate for angular
scales greater than the horizon at last scattering. Using
s =0 and Eq. (21), we find that, in the matter era
(a =

—,'i) /ri, ; see Appendix A),

gT 1 1 ILs, q'4=—5, = —— dg' 2m68oo,T ~;„, 3
' 3 0

(37)

+ [hoo]f—+[v n]f .I
(35)

Here x~z~(q)=n ri is the unperturbed photon geodesic,
with n =(1,—n), and n = l. In general, there are four
contributions: a path-dependent redshift produced by a
time-varying metric, a "Newtonian potential" redshift
term, a Doppler term [v is the local peculiar velocity
(dx/dry) of the photon fluid with respect to the back-
ground cosmic rest frame], and an "intrinsic" tempera-
ture fluctuation (6T/T)(i) on the initial surface of last
scattering, equal to —„'6„li).We give a simple self-

contained derivation in Appendix B.
In the synchronous gauge and in the approximation

that the baryons track the dark matter particles exactly,
there is no "Doppler" term and no "Newtonian poten-
tial" term. The approximation that the velocity term is
small is likely to be valid on angular scales much larger
than the thickness of the surface of last scattering and the
horizon at last scattering. Bond and Efstathiou [37] esti-
mate that measurements of the lth rnultipole are dom-

if we assume that all the photons we see were emitted at
some fixed epoch gis, the conformal time at last scatter-
ing. It is a reasonable approximation to ignore the radia-
tion era contribution if gzs»g„as is the case in the
reionized, Q=1 scenarios we discuss here. In either the
matter or radiation epochs, 800~g, and so the integral
is dominated by g'- MLS.

The intrinsic and Sachs-Wolfe terms have different
multipole spectra: From our arguments in Sec. IV, it fol-
lows that Goo has a white noise power spectrum, and
therefore the intrinsic pattern of temperature anisotropy
(37) has a similar white noise character (i.e., no long-
range correlations). The spectrum of multipole ampli-
tudes, CI being the average magnitude squared of the Ith
multipole moments (see Appendix E), should therefore be
independent of l. However, the Sachs-Wolfe term re-
ceives equal contributions along the photon path from
each logarithmic interval in g on an angular scale 6I pro-
portional to g. Contributions to Auctuations on a scale 0
come from multipoles I ( l, —a/9, and using
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(5T/T) (0)-g&' 2Ct(21+1), one sees that this corre-
sponds to a scale-invariant spectrum of multipoles,
CI ~ l . At large angular scales, i.e., low l, the Sachs-
Wolfe term dominates.

In most of the calculations reported here, we assume
reionization occurs, with an optical depth of order unity
at a redshift Z —100. An approximate treatment using a
visibility function provides a clean way to "turn on" the
photon integration, so that we can be sure that the
Sachs-Wolfe integral is not affected by the early nonscal-
ing part of the field evolution. But the COBE scale re-
sults actually depend very weakly on the epoch of last
scattering or, indeed, whether reionization happened at
all, as we will quantify below.

Whether or not the Universe is reionized is crucial for

the CMB anisotropy on scales below 10', and in particu-
lar for the question of whether the theories are compati-
ble with both the COBE result and the result of Gaier
et al. [8] on 1. We give a preliminary discussion of the
likelihood of reionization in Sec. IV F.

B. Approximate treatment of a reionixed universe

If the Universe was reionized, the surface of last
scattering would be moved forward to redshifts of
20-100. The surface of last scattering in a reionized
universe is actually quite "thick, " and so we need to in-
tegrate across it. A reasonable approximation is to use a
"visibility" function e ~"), being the probability that a
photon is not scattered after rl, with r(rl) the optical
depth, given by

'o 0 ~H0
tr rn, dt =

r
'

4m 6m~
1 — Qq [(1+Z) —1]

'3

=00390,h
"' =- ""'
7l '9

Z»1

~=1 at Z=100 0 05

0 h
h 2/3

B 50

(38)

with mN the nucleon mass and where the subscript 0
refers to today. The Sachs-Wolfe integral (36) is then
modified to

5T 1 f g)drte "h,, o(n rl)n'n',
sw 2 i

and the intrinsic contribution in (37) ts replaced by

(39)

5T 2n 6 "fd dr
int 0 7l 0

(40)

with r(rl ) = (rtLs/rl ) . A rough estimate of this integral is
obtained by setting Ooo-cporl', with c given by (6}.
This gives (5T/T)-ec/(36m. ). A similar estimate of the
path-dependent scalar term (see Appendix F) gives
-ec 1n(rtf/its)/(15~). So the Sachs-Wolfe integral is
larger, having equal contributions for each logarithmic
interval along the line of sight. As argued above, the in-
trinsic term may well be important at smaller angular
scales.

While the above treatment of reionization provides us
with a clean way to "turn on" the photon integration,
making it clear that the Sachs-Wolfe integral is not
affected by the early nonscaling part of the field evolu-
tion, we have found that the final results for the rms fluc-
tuations after 10 smoothing are very insensitive to the
actual value of rlLs used, yielding a result 6% higher (for
the case N =4) if we assume no reionization and set r=0
throughout. This is because COBE is only sensitive to
fluctuations on scales larger than 10', and at redshifts

) 100 the horizon-scale field-ordering processes subtend
an angle substantially smaller than this. This confirms
the expectation voiced above, that the anisotropy on
COBE scales is quite insensitive to reionization.

C. Mode decomposition

For calculating the CMB anisotropy induced by the
defect fields, we need to calculate all components of the
metric perturbations. But we need only calculate in the
matter era —in the defect scenarios we consider, we are
assuming that the Universe was reionized, so that last
scattering occurs well after matter-radiation equality.
We shall see that in this case most of the computation
can be done analytically. Throughout this section we set
0,=0.

The decomposition of perturbation variables into sca-
lar, vector, and tensor modes greatly simplifies the evolu-
tion equations (12) and the constraints (14). The evolu-
tion and constraint equations are linear and invariant un-
der spatial rotations. Every tensor is first decomposed
into irreducible components under the rotation group
O(3}—for example, the symmetric tensor h,j into a scalar
trace part h and a five-component traceless part &;-.
Then, in Fourier space, for every momentum vector k
one further decomposes these parts into irreducible com-
ponents under the O(2) group of rotations about the vec-
tor k.

For example, any vector quantity V may be Fourier
transformed and each mode written as a part parallel to k
(the "scalar" part V ) plus a part perpendicular to k (the
"vector" part V ):
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V,(x)=g V;(k)e'"'*, k, =k'/~k~,
k

h, +2—h, =16nGO,-

V;(k) =k; V (k)+ V; (k), (41) h +2—h +k h =16~G8lj /J V lj

V (k)k—:0 V =Vk V =V —kk V

T,.)(k) =
—,'5, T+(k;k ——', 5,, )T

+(k, T, +k T; )+T}~,

T k—:k. T =T"k =—T =0
(42)

Each piece is given by a linear projection acting on the
full tensor:

Ts 3kk Tl J lj

T; = T,( k( —k, ( k,. T (kI ),

T;, =T,)+—,'(k.;k —5,) )T+ —,'(k;k)+5, )k(T( k

(43)

—k,. T IkI —k. T,I k

and (42) is the statement that these projections are com-
plete. The same projections may be performed on each of
the linearized Einstein equations, breaking them up into
scalar, traceless scalar, vector, and tensor parts.

D. Solution in the rnatter era

We would like to calculate the metric perturbations in

the matter era. We begin by eliminating 5, from the

5ROO equation (12) and the 5Goo scalar constraint (14).
This has the pleasant effect of removing the 8OO term as
well. After Fourier transforming (8;~ik; ), we find

Similarly, a symmetric tensor T, with six degrees of free-
dom is decomposed as a trace part T and traceless scalar,
with one degree of freedom each, and vector and tensor
parts with two degrees of freedom each:

T„(x)=gT;,(k)e'" ",
k

Note that the time evolution of the metric perturbations
is now completely determined in terms of the spatial
stresses in the source 8; alone. The 5GOO and 6GO; con-
straints (14) decompose into

'2
2 2 Q—k h =6 — 5 2 h—+—16mG8 =16nGrQ

3 Q Q
00 00 ~

ik—h = 16m GP, ikh; = 16mGP;",
2

(48)

80; Pk, +—P—;

h =—I+J,
I+2—I =16mG8

Q
s

J+2—J= ——k h
Q 1

Q 3

(49)

I is the decaying mode and J the growing mode, J ~ g for
h =const. Note that the source for J is proportional to
k h, which from (48} is proportional to roo. So outside

the horizon the power spectra of J and J vanish as k .
We now insert (49) into the Sachs-Wolfe integral (36),
considering the contribution from a single Fourier mode
k

h, . on'n'= —,'h 0 +h s (k n)~,

(50)

which "tie" each component of the metric perturbations
to the source, except for the two tensor modes. Of
course, this is as expected —the later represent gravity
waves.

Now we are ready to calculate the h, o needed in the
Sachs-Wolfe line integral (36). We are interested here in
the large-angular-scale anisotropy, on scales larger than
the horizon at last scattering. First, we separate h 0 into
two parts, one sourced by 8s and the other by h

h+2 —h+ —k h = —8~G8,a ~ 1

a 3
(44) T scalar

where we define h = h —h . Then, substituting the
decomposition of h; [Eq. (42}j into the 5R," equation in

(12) and equating the scalar parts, we get

= ——1 drie'"'"" —h +(I +j)(k n)
2 1 3

h +2—h +—kh =16 GO
Q 3

Subtracting these equations, we get

h +2—h = —8nG(0+20 ) . .
Q

(46)

Similarly, the vector and tensor parts of the 5R;- equa-
tion give

dye' "" —h —k J+I(k.n)
2 3

where we have inserted x(ri)=nq in the Fourier trans-
form, so that partial time derivatives may be replaced by
total time derivatives: for example h o =h . The last
line is obtained by integrating by parts —the surface
terms are zero for modes initially outside the horizon, be-
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d J
dn'

d J
dn'

——k h —4
3 d 'g 'g

1 2" 4 k 24 d J3'" +3 ~" +
~ d. ~

(51)

cause, as argued above, J and J vanish on superhorizon
scales. To combine the J and h terms, note that (49)
implies (using a cc ri ) that

Thus, if we consider the combination arising in the path-
dependent redshift integral, K —=—,'h —k J, it obeys

T

E+—K =—h +—h = — (8+28 ) . (52)
6 2 - 4 16m6
7l 3 9 3

Equations (49) and (52) may now be trivially integrated to
obtain I and E—this gives for the final temperature an-
isotropy in a direction —n on the sky the final result

5T 1 i j —rtt)) h h scalar +h vector +h tensor
ij,0

sw
~ 4

8'(~ 1)=-', k,.k, 8 —
—,'O-

P

I I

h~~(ri x)= —16m 6 + e'" *f 'dpi' —5; ~ (8+28~)(rl' &)—~ ~ ~ O (rl', &)ij,0
k 0 6" E J (53}

[where we have included the "visibility" factor as in (39}]. In Appendix C we give derivation of this result in terms of
gauge-invariant perturbation theory, which to some extent simplifies the choice of the linear combinations of metric
perturbations necessary to obtain this solution. The vector and tensor mode contributions may be calculated simply
from (36), (42), and (47), using the appropriate Green's functions for (47):

'4
I

h,",'0"'(g, x)=16nG f dri' ~ 8;,(ri', x),
(54)

h 't)'"(g, x)=16m 6f dpi'
G, (g')G~(ri) —G~(q')G, (ri)

8;,(ri', x)
7l

cos(kg) sin(kg)
(kri) (kri)

(55)

~ 1W(q)=G, G2 —G26, =
k'~'

We have thus reduced the entire (5T/T) ~sw calculation
to an analytic expression where the only unknown is the
spatial stress tensor 8,". This will mean that the only er-
rors in the calculation come from the scalar field evolu-
tion, plus errors due to machine accuracy (rounding) and
interpolation. There are no new errors introduced by
evolving finite-di8'erenced gravitational perturbation
equations. Note in particular that in deriving the scalar
part of the formula (53) we integrated by parts to elimi-
nate a total divergence involving the growing mode. This
very delicate cancellation would be difficult to reproduce
numerica11y —any numerical errors in the photon line in-
tegral would result in imperfect cancellation and a spuri-
ous contribution to the final result. Also, the fact that
the final formula only involves the spatial stresses 0;J
means that there are no further constraints to be satisfied
coming from stress energy conservation —we can dePne
Oo„from the constraints (14) and (15), and the resultant
stress tensor is then identically covariantly conserved.

where the two homogeneous solutions to the tensor equa-
tion, G& and G2, and their Wronskian 8' are given by

cos(kri) sin(kg)
G) g =

(kri) (kri)

The "intrinsic" contribution to (5T/T) given by (40)
must be added to the Sachs-Wolfe integral (53} to obtain
the full anisotropy. Our strategy for calculating these in-
tegrals numerically for each n will be explained in the
next section, but these formulas have several useful ana-
lytic applications too. In the following section, we will
show how the temperature anisotropy produced by a sin-
gle texture emerges in a much simpler way than in the
original derivation [24], and in Appendix F we will derive
a general formula relating (5T/T) to the Newtonian po-
tential 4 produced in any source-induced perturbation
scenarios. This quantifies the extent to which (5T/T) is
larger in source-induced scenarios than in "primordial"
perturbation scenarios such as those based on inflation.

E. Application: A single texture

One application is in computing the temperature an-
isotropy produced by a single texture. %e make the ap-
proximation that the texture knot is well inside the hor-
izon, replace (g'/ri) terms in (53) by unity, and assume
that in comoving coordinates and conformal time the
fields follow the Minkowski spacetime analytic scaling
solution discussed in the previous section [24,38].

It is also convenient to choose coordinates so that the
texture "unwinds" at r =0 and q=0. For this solution it
is straightforward to verify that the stress tensor is "pure
trace" 0 J 35 JO, with

2 —2

8—6y2 9
o( 2+ 2)z
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Since 8 =0 and inserting (56) into (53), we obtain

= 16~Gy' f dq f "d~' " '"'
[r (q)+g' ]

(57)

=16~GPOf dg
r (g)+rI

= 16aGPO d g
f

2q2 —2qg, +g, +b

This integral is logarithmically divergent at g~+ ~, but
the divergences cancel. Using cutofFs at large positive
and negative g, the integration is straightforward to per-
forrn, giving

where r is the distance of the photon from the origin at
time g: r(ri)=Q(ri g—, ) +b, with b the distance of
closest approach and g, the time at closest approach.
Performing the g' integration, we obtain

x
v, = ——e 1—

r
r r(g,-, U =0, r ~g, ,
9l

where g, is the conformal time of unwinding and r the ra-
dius in comoving coordinates. From the continuity equa-
tion, it follows that the initial conditions for the CDM
density perturbation are

~ 6 3r
6, =0, 6, =2— 1—

r 2g,
(61)

from which one can staightforwardly solve the perturba-
tion equations using the growing and decaying mode
solutions given in [30] in the Newtonian approximation
(good for r «g) and treating the background radiation
as uniform. In the limit where the texture unwinds well
before matter-radiation equality, g; «q, (see Appendix
A for notation), one finds that the growing mode density
perturbation is given by

bT 8„~G—P~
T Q&2+2b 2

(59)
6, =3@a ln

9l I0
(62)

in agreement with the result of Turok and Spergel [24].
The photon gets redshifted if g, is negative, so that it
"climbs out" of the texture while collapse is still occur-
ring, and blueshifted if g, is positive, so that it 'falls into"
the expanding outgoing cloud of Goldstone bosons after
the texture has unwound. Note that for zero impact
parameter —at the center of the "spot" on the sky —the
magnitude of the temperature is fixed at e —=8m. Ggo, but

the sign is determined by that of g, . So we should see
"hot" and "cold" spots on the sky of similar peak tem-
perature deviation.

F. Reionization

As originally argued by Gooding, Spergel, and Turok
in the global texture theory [20], a substantial fraction (of
the order of 1%o) of the matter in the Universe could have
undergone gravitational collapse and therefore star for-
mation at redshifts greater than 50. The radiation
released by these stars would reionize the Universe,
smearing out CMB anisotropies on scales less than a few
degrees. This observation is particularly interesting in
the light of the recent tight upper limit set by Gaier et al.
on the degree scale [8]. As we shall discuss below, the
distinctive non-Gaussian nature in these theories appears
strongly visible only on sub-10 scales, and so calculating
the anisotropy on these scales is an important problem.
In this section we shall make some preliminary remarks
on the likelihood and extent of reionization, which a fu11

calculation would have to accurately take into account.
%e shall concentrate on the texture theory.

The metric around an unwinding spherical texture
scaling solution (Sec. VII 8 below) was calculated in [24],
where it was shown that the texture imparts an inward
velocity kick v =@=8m Ggo to the surrounding matter.
In numerical simulations it was shown that the effect of
the causal horizon cuts this off to a form approximated
by a "ramp" [23]:

'3
V 4~ 3 3

n d9; 4 3 0' 168691 ll

34' 3 3 3 4

3 1.686
(63)

where we used for the number density of textures
unwinding (dn /d g ) =vol, with v =0.04 from [19].
This diverges logarithmically, and so all of the CDM in

the Universe has actually been accreted onto microscopic
textures. However, what we are interested in for star for-
mation is the baryons, and for these the Jeans mass after
recombination of —10 solar masses provides a lower
limit. CDM lumps above this mass will collapse baryons
onto them. Such lumps were produced (recalling
r-O. lri;) at g;=10(MJ/M„)'~ g =10 71„where M,
is the horizon mass at equal density, —10' solar masses.
The scale factor a of interest is given by the redshift of
matter-radiation equality Zeq 2 4X 10 QrA divided by
the redshift of last scattering, given by setting the optical
depth ~ given below equal to unity. Putting this together,
we find

In the spherical collapse model [30], a spherical shell of
matter collapses to r =0 when the density perturbation
calculated in linear theory reaches 1.686, and so we can
determine the initial cornoving radius r of the collapsed
matter from (62) by setting 5, to this value. We shall be
interested in values of a of order 10, e of order 10 ", 6 of
order unity, and values of the logarithm of order 10; so
r-0. 1g;, and it is a good approximation to ignore the
last term.

The fractional volume of the Universe that has col-
lapsed around textures produced from the time q, on-

wards is given at scale factor a (recall a =1 at matter-
radiation equality) by
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f„s=0.005
3 '4

Qqh

0.65 0.015

Note that we have made the approximation of spherical

symmetry —the result could be somewhat altered if the

texture centers are moving relativistically at unwinding.

Simulations do not seem to indicate this behavior, giving

a good fit to (61) [23],but the issue deserves further inves-

tigation. Note also the strong h dependence.
If we assume that the first generation of stars is similar

to stars that we observe today, then we can estimate the

number of ionizing photons produced per hydrogen atom

turned into stars. Most of the ionizing radiation is pro-

duced by massive stars on the main sequence. A 30Mo
star burns 7Mo of hydrogen releasing 0.05Moe of ener-

gy. Roughly —,
' of this energy is emitted as ionizing radia-

tion [39]. Since these massive stars account for approxi-
mately —, of the initial mass function, there is star forma-

tion releasing —100 keV in ionizing radiation per pro-
cessed baryon. For an 0 star spectrum, for a typical ion-
ization, roughly 13.6 eV goes to ionize hydrogen and an
additional 4 eV goes into photoelectric heating. Thus
there are -5000 ionizing photons emitted per processed
baryon.

These ionizing photons will create a Stromgren sphere
of ionized material around each collapsed region. The
mass of this Stromgren sphere will be determined by the
balance between ionization and a' ', the recombination
rate to energy levels above the ground state [40].
(Recombination to the ground state does not destroy a
photon. ) The number of ionizing photons needed per hy-

drogen atom to keep the gas mostly ionized at redshift z
is, therefore, t(z)/(n, (z)a' '). The recombination rate
depends on the gas temperature. We can estimate the gas
temperature by equating the Compton cooling rate to the
heating rate due to photoionization. This yields a gas
temperature of 4000 K and a recombination rate of
a' '=1.8X10 ' cm s '. Hence the number of ionizing
photons needed to keep the Universe ionized at a given
redshift is 8.7X10 h '(1+z) ~ (Q&h /0. 015). Recall
that the optical depth of the universe is
7X 10 h '(1+z) (Q&h /0. 015). Thus the number of
photons needed to reionize the Universe and produce an
optical depth r is (a' '/o rc)r=20r Thus approx. imately
0.3% of the Universe needs to be in bound objects by red-
shift 96(Qqh/0. 015) ~ for the optical depth of the
Universe to exceed —', .

%e can estimate the epoch of reionization and the opti-
cal depth of the Universe as a function of normalization.
Equating the number of ionizing photons per baryon pro-
duced by star formation, 5000f, (z), to the number of
photons needed, 20r(z), yields the redshift at which the
Universe is ionized and the optical depth of the Universe
back to that epoch:

Reionization suppresses fluctuations on angular scales of
(1+z),„',~;„-6'by a factor of exp( —r) This partial ion-
ization should reduce but not eliminate fluctuations on
sma11 angular scales. A much higher reionization rate
would be predicted if we assumed that most of the mass
went into forming massive black holes. Studies of the
growth of fluctuations in the z &200 Compton-drag-
dominated regime suggest that black hole formation may
be very efficient at these epochs [41].

The recent very strong limits on microwave anisotro-
pies on angular scales of —1' [8] contradict many models
of galaxy formation. Gorski, Stompor, and Juskiewicz
[9] argue that any model with a Harrison-Zel'dovich
spectrum of Gaussian fluctuations normalized to the
COBE result is ruled out at greater than the 95%
confidence level by the result of Gaier et al. If the limit
of Gaier et al. is correct, it would appear to rule out both
the "standard" hot dark matter and cold dark matter
models.

The power spectrum produced by the theories investi-
gated here, such as texture, is of a similar form to that
produced by inflation. We suspect that if the universe is
not reionized, the limit of Gaier et al. on the 1' angular
scale mould likely rule out these models too. This needs
to be checked by further calcu)ation. The discrepancy is
likely to be most problematic for nontopological texture,
since it is difficult to see how this model would lead to
significant formation of bound objects at high redshift.
However, as we argued, some reionization is likely in a
texture-seeded galaxy formation scenario. As to the oth-
er theories considered here, strings would almost certain-
ly be more efficient at reionizing the Universe, and with
global monopoles, the situation is likely to be similar to
textures.

VII. NUMERICAL IMPLEMENTATION

In this section we describe our numerical implementa-
tion of the scalar field and gravitational perturbation
equations in sufficient detail such that all our numerical
results should be exactly reproducible. Our source code
is available by anonymous ftp from astro. princeton. edu in
directory /u/upen/StiffSources. See the README file for
information.

The program development and execution were all per-
formed on a Convex C-220 running ConvexOS 10.0.2,
Convex FORTRAN compiler FC 7.0 Convex vectorizing C
compiler, V4.3.2.0 and GNU gcc-2.2 for C++ sections.
Unfortunately, we have found the convex parallelization
software to be unreliable, and so all compilation was per-
formed at optimization —02. Convex veclib routines
were used for the fast Fourier transforms. All calcula-
tions were in double precision.

A. Discretixation schemes: Scalar fields

&=1.3 h

0.65

4/3

10-4
A simple second-order accurate numerical algorithm

for evolving the scalar Selds is obtained by discretizing
the action for the nonlinear o. model:
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S= fdic fd xa (g) —,'[ —P +(Vg) +A(g —1)], (65)

where A, is the Lagrange multiplier field: Varying with
respect to it enforces the constraint f =1. We discretize2

on a cubic spacetime grid, denoting each lattice

point (2)„,x;,y, zk}=(ndrtihxjbx, kAx) by n, i j,k
and defining 1t/"

+ ' =—P{(2) + 1 )hrt, i bxj hx, k bx ) ), f, +,= p—{nbrt, (i +1)hx,j b,x, kb,x) and so on. The action
(65) becomes

5 hx n+1 2 (
— )2—(a )"+' +a + +A(g) —1) (66)

I

the central cell does not unwind when it should, but in-

stead remains in a counteraligned state, as the remainder
of the texture reexpands, only to collapse again and
unwind some time later. To alleviate this problem, we
calculate the scalaryroduct of 1)/J. at each grid point with

the average of the f values at the six neighboring points.
If this is negative, we select the negatiue root in Eq. (68)
so that the texture knots unwind as soon as gradients
beyond our resolution scale appear. However, if this
"spin-flipping" procedure is applied near the beginning of
a run with random initial conditions, where the correla-
tion length is small, it leads to a numerical instability.
Therefore we wait some time (usually until g=5b,x) be-
fore switching on the spin-flipping procedure. The evolu-
tion prior to this time is not very accurate anyway be-
cause of large spatial gradients. We have also checked
that our results are in any case very insensitive to wheth-
er we employ the spin-flipping procedure or not —the
textures always unwind, with a small extra delay in the
absence of spin fiipping. For runs with NA4, we always
use the positive root in (68).

A simple check of the evolution algorithm is that it
should conserve energy and momentum in flat spacetime.
We have found that with our standard time step the algo-

even with random initial conditions over
st 1000hx, and the energy is conserved in
ew percent over this time interval. Note

most stringent for small boxes, since in
errors in energy conservation tend to can-

where the ellipses denotes spatial derivatives in the y and
z directions included in the obvious way. The use of cen-
tered derivatives and values of the scale factor taken at
appropriate half-step points means that the action in-
tegral is accurate up to a fractional error of order hg,
and the resulting equations of motion thus provide a
second-order accurate scheme.

To obtain the discretized equations of motion, one
varies (66}with respect to g,

=0 Q"+'=5/+Kg,
(67)

(& 2)n —1/2

(&2 n)+1 2/~

a2 2 —+

2 2 +1/2(& +1+& —1+ ' ' ' } '
hx (a )"

where the ellipses includes the analogous y and z terms as
before. The quantity A, is a constant related to A, , deter-
mined by imposing the constraint (g"+ ) = 1. This gives
a quadratic equation, whose solution is

$5/+'t/—1 —(5$) +(f 5$) (68)

B. Comparison with exact scaling solution

As a check of the algorithm given in (67) and (68), we

have evolved a spherically symmetric texture in Min-
kowski spacetime for which the exact analytic scaling
solution is known. This solution is spherically sym-
metric:

As long as the field P is smooth, the positiue root should rithm is stable
be taken because 5$ is small in the limit of a small time times of at lea
step and X close to unity. Equations (67) and (68) provide 4 boxes to a f
a simple second-order evolution algorithm for the o mod- that the test is
el. To integrate, one stores the scalar field values at the large volumes
current and previous time steps, from which one can
compute the field values at the next time step.

In the case of N =4 (textures), a singular situation can
occur. Texture knots evolve by collapsing radially. They
always reach a scale where the winding radius is smaller
than the grid spacing. At this point the numerical grid
obviously becomes important since 5f is no longer small,
and the knot may not unwind properly. In test runs us-

ing the exact collapsing texture solution, one finds that

P(r)=(sing(r, t)sin0cosg, sing(r, t}sinOsing, sing(r, t)cos6, cosy(r, t)) .

For a texture of winding number unity, y, runs from 0 at
r =0 to m. at r = ~. Such a configuration evolves by col-

lapsing inwards, the field gradients growing until they are
large enough to pull P over the hump of the potential and
"unwind" the texture. In the o. model description, the
unwinding is a singular process and has to be done "by
prescription": y(0) jumps discontinuously from 0 to vr at
the instant of "spin-fiipping. " The analytic solution is

r
y(r, t)=2arctan, t &0—t

=~+2 arctan t&0, r)t .

r=~+2arctan —,t &0, r (t
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where 0~$, z(1.

K. Analytic solution using lattice Fourier transform

into Eqs. (12)—(15). The important point is that, as was
the case for the continuum equations, the discretized
equations are still exactly solvable.

Numerically, we are free to choose our units and it is
convenient to use Ax=1 and the speed of light c =1.
The discrete coordinates run from x, =0, 1, . . . , L —1,
~here L is the box size. Periodic boundary conditions
are used throughout. We Fourier transform on the box
of length L using

8(k):—g exp( —ink xlL)8(x)

I8(x)=,g exp(in. k x/L)8(k) . (75)

In Fourier space the difference and shift operators be-
come

d =2& srnz L

~k
5 =cos (76)

etc (we us. e units where b,x =1) and we define the opera-
tors

(77)

etc., using (71). These operators are, of course, neither
local nor analytic, but as emphasized above, the nonlocal
decomposition is merely a convenience for solving the
discretized Einstein equations.

The exact solution to the discretized linear Einstein
equations is then identical to the continuum solutions
(53)—(55), with the substitutions

The discretized synchronous gauge equations are ob-
tained by the substitution

(74)

components and then check divergencelessness during
the course of the simulation. Similarly, all six tensor
components are actually integrated, and we check for
transverse tracelessness.

We store the energy-momentum tensor at the two end
points and the center of each gravity time slice. A parab-
ola is then fit to the three numerical points, which is
analytically integrated along the time step. The sole er-
ror in this procedure is the uncertainty in the numerical
energy-momentum tensor between time steps. Note that
causality is fully preserved, since the parabolic fit is linear
and commutes with the projection operators. The only
possible source of noncausal error stems from arithmetic
rounding and cancellation error, which we will discuss
below.

F. Smoothing

The gravity field is much more costly to integrate, both
in memory and computation requirements, than the sca-
lar field. Since COBE's beam has a full width at half
maximum (FWHM) of 7', a 64 box provides sufficient
angular resolution if the photon integrals are sufBciently
accurate. The scalar field, on the other hand, takes some
time to settle into the scaling solution, and information
on scales smaller than the horizon scale at that time is
essentially lost. It thus makes sense to integrate the sca-
lar field at higher resolution than the gravity field.

Since the discrete gravitational perturbation equations
are linear, their integration commutes with linear
smoothing operators. The result of first smoothing 8;
and integrating the perturbation equations is the same as
integrating the full resolution 0", and then smoothing the
gravitational fields, but requires much less storage and
computation time. We actually use the gravity grid as
the global coordinate system and introduce a new param-
eter NRED, the smoothing scale, with the scalar field
grid being L X NRED points on a side while the gravity
grid is L points on a side. A second parameter is Ag, the
time step used for computing the gravity integrals, which
may be taken to be either smaller or larger than hx, and
the numerical integration is clearly stable and converges
to the continuum limit for any ratio of Aq/bx.

The nonlocal projection operators used in constructing
the irreducible components of the energy-momentum ten-
sor [see (43)] involve up to four derivatives. The half grid
cell projections used above circumvent an eight-pixel
dim'erencing scheme, yielding higher resolution and locali-
ty. In each update, a grid point is influenced by points up
to two grid cells away. This couples diagonal modes to
lateral ones. As before, since the solution does not in-
volve the time components of the source stress energy
tensor 0„0,we have implicitly satisfied the constraint
equations (14) and (15), and built in stress energy conser-
vation.

We need to track the independent Green's function in-
tegrals for the two scalar modes, the two vector modes,
and the two tensor modes. To avoid systematic grid an-
isotropies, we actually store and integrate all three vector

G. Photon tracing

A spherical shell of approximately 64000 photons is
propagated from a sphere of radius L /2 at the beginning
of the simulation to its center (the "observer") at the end
of the simulation. %e place eight "observers" in the box
at the vertices of a cube of side I./2. This means we get
eight "sky maps" for every run. While the maps are not
completely independent, they may be used to get a
reasonable estimate of the cosmic sky variance. This
costs very little in computation time or storage, since
photons only require O(X ) storage and O(N ) computa-
tions compared to O(N ) and O(E ) for the fields. At
every step the photons are stepped forward and integrat-
ed over the metric fluctuation h, o by the trapezoidal
rule. The h, - value at a given photon location is linearly
interpolated from the nearest eight gravity lattice points
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h (x,y, z) = w ( w [w h +(1—w, )h +]+(1—w )[w, h + +(1—w, )h ++]J
+(1—w )(w [w h[, + +(1—w, )h+ +]+(1—w )[w,h++ +(1—w )h+++"

where h+++ =h(x+,y+,x+), etc., x+,x are the
nearest lattice points greater and less than x,
u„=x—x, and similarly for y and z. 0.15—

t= —4.6, ~7T &/~=1, nred=2, dt. =06, p dt, =p 2

H. Test of the full code: Exact texture

The exact scaling solution lends itself ideally to a
rigorous test of the full code. In this case the metric per-
turbation is pure trace and may be obtained analytically
as in (57) and (58) above. If we begin integrating the per-
turbation equations at conformal time q;, then at g the
metric perturbation is given by

01

0.05

(80)h;1
= —5,"32@6/

vj +r (rl) rl, +r (q)

(for a texture unwinding at time g=0}. We compared
t is to a simulation using a 50 grid, where the texture
has an initial radius of 10 grid units [i.e., is described by
the scaling solution (69) and (70), with rj=r = —10]. The
Universe remained expanding (to comprehensively test
the full production code) but with rl, =4000. After step-
ping 7.8 grid units in time (c =1), we compared the in-
tegrated result to the corresponding change in the exact
metric, obtained by setting g, = —10 in (80). After sub-
tracting a global ofFset, the obtained match is shown in
Fig. 7.

0.4

—20 —10
} I I I t

0 10 20
r

t.= —2.2, 87T~ GO~=1, YRED=Z, dt. =0.6, P.dt. =0.2
I I

(
I I

I. Initial conditions 0.3

he scalar field is initialized with 1( zero [to satisfy the
choice (25)] and P chosen randomly on an (N —1)-
dimensional sphere, i.e., a unit vector with random orien-
tation. For S. For S, a convenient parametrization is

fo=&R cos8o, t(, =&R sin8o,
(81)

1 —R cos8„$3=&1—R sin8, ,

where the random variables R, 80,8& have a uniform dis-
tribution on the interval [0,1) for R and [—~, n) for 8
and 8. For S2S, as used in monopole simulations, the

0 80

simple parametrization

Po=+1—R cos8&,

0.2

0. 1

0

I

—20 —10

~ ~
Ã R

I I I I I I I I I I I I I

0 10 20

f, =+I —R sin8o,

2=R,
(82}

with R uniform on [—1, 1] and Oo as above, suffices For

discarded any outside a unit ball within the cube, and
project points inside it onto its surface to yield the
desired uniform distribution on th S ' he sphere. The
drawback with this method is that it does not vectorize
easily and is generally less efBcient.

FIG. 7. &a T. ( ) est of the full cr model plus gravity code for the
case of a single texture, collapsing according to the scaling solu-
tion, with unwinding occurring at =0. Crosses s ow the
quantity h» calculated in the code as a function of radius x at a
time g= —4.6, i.e., just before "unwinding. " Solid line shows
the analytic result for a texture started at the same time
q= —10) s the simulation [Eq. (80)]. Deviations at x ) 10 are

caused by the propagation of boundary effects inward from the
edges of the box. h» is given in units of E=gm GP~~ (b) same as
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J. Arithmetic rounding errors: Self-consistency

We can measure the deviation from transverseness and
divergencelessness at the end of the run. In single pre-
cision such deviations are nontrivial and diverge for the
spherical texture test simulations described in Sec. VII H
at g=4000hx. In double precision, however, there are
no such problems; the deviations are negligible at the end
of each run. The arithmetic errors are easily checked by
comparing single-precision against double-precision runs.
We find that for identical initial conditions in a 64 grid
the temperature maps di6'er by approximately 5% per
pixel, with the lower precision runs yielding somewhat
more extreme temperature fluctuations.

Stress energy conservation and the gauge conditions
are all exactly satisfied and thus not subject to analysis.
We have tried two different random number generators,
the convex veclib RANv as well as RANMAR by Marsaglia
and Zaman t42j. They claim to have periods of 2" and
2', respectively, and we find no systematic differences in
the simulations based on either.

K. Convergence

The effect of the smoothing operation can be checked
by tracing photons through the identical field evolutions
at various reduction factors NRED. The absolute tem-
perature maps agree to about 4% between NRED=1
and NRED=2 at constant field box size. The difference
is due to the photon integrator alone. For the gravity
time steps involved (Ay=0. 8), halving the gravity time
step changed maps locally by less than 1%, and so we
consider ourselves to be in the quartic convergence re-
gime. We have also considered the scaling of the stan-
dard deviation of the smoothed maps (using a Gaussian

Texture convergence, 8~i'GP =1
0. 14

0. 1 I—

1-

O. QB

beam of FWHM 10') as a function of the gravity code
box size. This is shown in Fig. 8 for the case of texture
(N=4), with NRED=2 and double precision in all
cases.

In summary, the current discretization scheme solves
the synchronous gauge equations to second-order accura-
cy in space and exactly in time up to the piecewise para-
bolic energy-momentum tensor. Energy-momentum con-
servation and gauge conditions are explicitly satisfied,
while discrete causality is always maintained. Accuracy
for comparison with COBE data is easily achieved.

VIII. RESULTS: COMPARISON WITH COBE

The calculations reported here are considerably more
complicated than those for theories of Gaussian initial
perturbations. Inevitably, therefore, the results are more
approximate, and our errors are still larger than one
would 1ike. The dominant errors are undoubtedly the
systematic errors, which we estimate to be of the order of
20% for N) 3, 30% for N=3, and 50% for N =2.
These will be reduced when larger field simulations be-
come possible. The statistical fluctuations from run to
run are only of the order of 10% in both the normaliza-
tion and (5T/T) calculations, and we do not believe it to
be worthwhile to study them in detail at this stage.

Our results for the normalizations to small scale struc-
ture are given in Table I and for normalizations to the
COBE result for (5T/T) in Table IV. From these we
deduce the values of os '(CDM) required, which are
given in Table II. The deduced bias is certainly high, but
for an 0=1 universe, that would seem essential anyway.
For a Hubble constant -60 kms ' and the 2 0. upper
limit for the COBE result, the texture theory is consistent
with a bias of 2.4.

Our results for the spectra of multipole amplitudes are
shown in Fig. 9. The quantity C& being the expectation
value of the squared amplitudes of the 1th multipole mo-
ments is plotted against l. The multiplicative factor
1(1+1)is chosen so that the predicted result for adiabat-
ic fiuctuations with a scale-invariant spectrum would be
constant. As the figures show, all these theories produce
spectra consistent with the scale-invariant result.

Examples of our final CMB sky maps for global string,
monopoles, texture, and nontopological texture are
shown in Figs. 10—13. The most obvious feature is that
the X =2 map has the most small-scale structure, as one
would expect. This is also shown in Fig. 9: For %=2,

0.06 !—

40 60
box size L

80 100

TABLE IV. Normalization of theory to COBE 10 rms. The
value of the symmetry-breaking scale Po requied to match the

amplitude of temperature Auctuations on the 10' scale detected
by COBE (6T/T)=1. 10+0.18X10 . The string results corre-
spond to a string tension p, given by Gp=1-3X10

FIG. 8. Convergence of results for rms (6T/T) on the 10
scale as measured by COBE is shown in the texture theory
(%=4) as a function of lattice size. The size given is that for
the gravity code —the field code uses a grid twice as large
(NRED=2) in each case. Error bars show the lo. deviations as
determined from eight observers in the box (see text).

Defect

Strings [51]
Monopoles
Textures
NT textures

@=8m Ggo

6.6+3.3 X 10
5.9+1.1 X 10
1.0+0.2 X 10
1.6+0.3 X 10
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Cl&(I + ] ) shows a clear rise with I in the unsmoothed

data, and there is a similar but smaller e6'ect for X =3.
In particular, the quadrupo1e result is consistently lower
than the scale-invariant prediction.

e have calculated the "intrinsic" contribution (40)
separately for X =4 and found that, after 10 smoothing,
its amplitude is less than 3% of the Sachs-%'olfe integral.
It has a di8'erent spectrum of multipole moments:

C, l /+I) rises as l(l+1), as one would expect for a
"white noise" pattern. So while it is negligible on COBE
scales, it may we11 be important on smaller angular scales.

f
e also calculated the tensor contribution separat 1 dra e yan

ound that in the texture and monopole cases its ampli-
tude is roughly 30% of the full result.

While this work was being completed, we received a
paper from Bennett and Rhie [43] which calculates the
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log eta string 1--=50 100
I ~ I I I, 1

I
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eeig t

ashed curves show predicted central value and +1
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Note tha
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result for a texture run with X=4 on grids of 100 and 200 .
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'
and 200, respectively, and (c) shows the

ri so an 200. (d) shows the results for%=6on grids of 64 and 128
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-8 . 188E-81 1.1'55E+88

-3e

e

FIG. 10. Map of CMB anisotropy produced by global strings (N =2), smoothed with a 10' FWHM Gaussian. (6T/T) is given in

units of e = 8ir'Gito multiplied by a logarithmic factor explained in Sec. III.

predicted CMB anisotropies for the cases %=3 and 4
discussed here. Their algorithms for evolving the scalar
fields and for solving the linearized Einstein equations are
completely di6'erent from those employed here. To
evolve the scalar density perturbations, they use the sim-

plest version of the perturbation equation (I2). The prob-
lem with this, as we have explained in Sec. IV, is that it
relies very heavily on exact covariant conservation of the
source stress energy (8), if one is to avoid sourcing spuri-
ous superhorizon-growing modes. As they comment, to

P8

-L8

3

Sy

eg

FIG. 11. Map of CMB anisotropy produced by global monopoles (X =3), smoothed with a 10' FWHM Gaussian. (6T/T) is given
in units of @=8m GPO.
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-4 . 188E-81

FIG. 12. Map of CMB anisotropy produced by texture (N =4), smoothed with a 10' FWHM Gaussian. Units as in Fig. 11.

avoid this problem they must use extremely small time
steps b y=0.012!x. In particular, modes which enter the
horizon in the matter era might be heavily affected by
white noise fluctuations in their initial conditions. Our
technique for determining the growing mode density per-

turbations avoids this problem. We have checked that
our code produces the correct k spectrum for growing
modes outside the horizon even in the matter era. Our
results are insensitive to time step and produce similar re-
sults for a time step as large as kg =0.4hx.

-2. 358E-8i

+8+

+1B,I
K"

gk

'/i ( 4~)I

-iB

p~CSK 1 (~p,
~~.i

+/~Pl

FIG- 13. Map of CMB anisotropy produced by nontopological texture (X=6), smoothed with a 10 FWHM Gaussian. Units as in
Fig. 11.
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To solve the linearized Einstein equations, they use the
constraint equations (14) and (15) to remove the mixed
partial derivative terms in (13), which render it numeri-
cally unstable, and solve the discretized linear equations
numerically. As we have shown, with the help of Fourier
transforms the linearized Einstein equations are exactly
solvable, yielding an analytic expression for (5T/T) given
in Eqs. (53)—(55), which again implicitly builds in source
stress energy conservation and avoids propagating unsta-
ble "gauge modes. " Our exact solution to the discretized
equations means that the only errors which enter are
those made in representing the source stress energy.

Having said all this, our results are quite consistent
with theirs. For textures, normalizing to crs(CDM)=1,
and with h =0.5, they give a value of a=3.6X10 com-
pared to our value of 3.7X10, and for global mono-
poles their value is 1.97X 10 compared to ours,
2.3X10 4. Similarly, from normalizing to (5T/T), they
give for textures O. SS+0.18X10 compared to our
value of 1.0+0.2 X 10 and for monopoles
4.88+0.97 X 10 compared to our value of
5.9+1.1X10 . It is quite reassuring that the two very
di6'erent techniques agree.

IX. NON-GAUSSIAN SIGNATURES

As mentioned in the Introduction, the most interesting
aspect of the scenarios studied here is the unique signa-
tures they o6'er in the CMB anisotropy —for textures one
gets hot and cold spots [28], for strings, linelike discon-
tinuities [44]. It is an intriguing question whether the
rather noisy data so far gathered by COBE can be used to
test for the non-Gaussian nature of the theories studied
here. We have investigated various tests, some of which

may be applied to COBE data as it now stands. With the
simple tests we have used so far, our conclusion is

negative —the non-Gaussian nature is certainly there, but
tends to be removed by the rather large 10 COBE
smoothing scale, even in the absence of instrument noise.

The crudest test one can apply is to plot a histogram of
the number of pixels at each (5T/T). After smoothing
with a 10' beam, most of the time the theories investigat-
ed here produce a very Gaussian histogram (Fig. 14).
Note that a smoothed sky map always produces a trun-
cated histogram, because there is some absolute upper
and lower limit to the temperature, and no matter how
finely sampled no pixel above or below those limits will
be found. This might be termed "oversampling, "because
it is only noticeable when the number of pixels per
smoothing area exceeds unity. However, it is a real e6ect
and would be seen even in a Gaussian theory. Of course,
adding Gaussian instrument noise (which in the current
COBE data is at a level comparable to the signal [45])
makes the histogram even more Gaussian. While a de-
tailed comparison has yet to be made, it seems highly un-
likely that the reported Gaussian nature of the COBE
data [1] tells us anything about whether or not the pri-
mordial fluctuations were Gaussian (see also the general
discussion of [46]).

It is of great importance therefore to develop more de-
tailed statistical tests to pick out the distinctive non-

Gaussian nature in these theories. In the large monopole
simulation we ran, a noticeable skewness appears before
the maps are smoothed with the 10 beam. But even after
this COBE convolution, one of the eight observers mea-
sured strong positive skewness [Figs. 14(a) and 14(b)]. In
general, .one might expect a hot spot such as occurs here
to be produced when a monopole-antimonopole annihila-
tion occurs in a direction along the line of sight. If the
photon follow's one of them into the collapse, it is blue-
shifted as it falls into the outgoing cloud of Goldstone bo-
son radiation. However, if it precedes one of them, it
passes through the potential well of the other and prob-
ably receives a much smaller redshift. Thus on might ex-

pect monopole maps to occasionally show very hot spots.
If we are lucky and monopoles indeed seeded structure
formation, we have a small chance of observing a
monopole-antimonopole annihilation once the COBE
noise goes down. By contrast, in the case of texture, hot
and cold spots are produced in more symmetrical cir-
cumstances.

For the case of texture, the hot and cold spots are ex-

pected to be roughly symmetrical and have the profile
given by (59): A single texture produces a hot or cold

spot with 5T/T cc(g, /+g, +2r ), scaling as 1/r for
large r. Durrer, Howard, and Zhou [25] have modeled
texture sky maps by randomly throwing this pattern
along photon paths. We can try to apply the reverse pro-
cess to our ab initio simulation. The process of laying
down rc/r spots is a convolution integral over the distri-
bution of the sources. Given a distribution of sources
p(r), a sum of 5 functions, we have

——(r)= fp(r')G(~r' —r~)dr',6T

which can be inverted in Fourier space to give

p(k) = (k)/6 (k)
6T
T

(where r denotes the coordinate on the sky S' and k la-

bels the spherical harmonics). If textures had perfect 1/r
profiles, upon Fourier transforming back the deduced
p(r) would be a set of 5 functions. Since texture spots de-

viate from the 1/r scaling for r (g„we expect this
deconvolution to focus them into spots of similar heigh'
and of this characteristic radius. For a truly Gaussian

map, on the other hand, the deconvolution is just a linear
sum over independent Gaussian variables and merely
produces another Gaussian map. Figure 14(c) shows the
histogram for a raw texture map, and Figure 9(d) shows
that for a deconvolved map, without smoothing on the
COBE 10 scale, strong non-Gaussian tails are produced.
In this map we found 12 of the 64000 pixels at greater
than 5 standard deviations from the mean. This is hard
to quantify precisely, since our maps are certainly "over-
sampled" by approximately a factor of 100 (there being
roughly 600 independent regions on the sky for a FWHM
equal to 10'). But even a single 5cr result from 600 is a
highly significant result.
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Unfortunately, the non-Gaussian tails become much
weaker after smoothing, since most texture spots are of
order Tits in radius or smaller, subtending an angular ra-
dius of 8-(riLs/go)=(1+ZLs) ' -6', smaller than the
COBE smoothing scale. The histogram after smoothing,

shown in Fig. 14(f) is quite Gaussian. As a check that the
deconvolution procedure was really working as intended,
we applied exactly the same procedure to the nontopolog-
ical texture map. As is shown in Figs. 14(g) and 14(h), no
non-Gaussian tails were produced.
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FIG. 14. Histograms showing the number of pixels at each value of (5T/T), in units of e=8~26$o2, in each theory For mono-.

poles, all unsmoothed maps show significant positive skewness. After smoothing the maps with COBE s 10 beam, this skewness
disappeared in seven of the eight maps. One of these smoothed monopole maps is shown in (a). (b) shows results for the raw mono-
pole map that retains its large positive skewness (c) even after smoothing. An explanation for the positive skewness on small angular
scales is offered in the text. (d) shows a raw texture map, with a very Gaussian histogram. (e) shows the same raw map after deconvo-
lution to pick out spots with a 1/r profile —a large positive skewness is produced. However, (f) shows the COBE-smoothed map and

(g) shows that when the same deconvolution is applied to the smoothed map the skewness disappears. (h) shows the very Gaussian
histogram of a raw nontopological texture (X=6) map, and (i) shows the histogram after the same 1/r deconvolution used to pick
out spots in the temperature map. As expected, the histogram remains very Gaussian. In the smoothed maps, the pixels are correlat-
ed and the histograms show the effects of "oversampling" —in any particular smoothed sky map, there is a fixed maximum and
minimum. No matter how many pixels are added, the distribution function must cut off at these values.
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The second test we have tried is to plot the tempera-
ture fluctuation (5T/T) against its gradient on the sky

~
V'(5T/T) ~. For any stationary random process,

(83)

since ((5T/T)(r) ) is independent of r. For a Gaussian

probability distribution, the two-point correlation func-
tion completely determines the probability distribution,
and so (83) implies that the temperature and its gradient
on the sky at the same point are completely uncorrelated
(see, e.g., [47]). A plot of (5T/T)(r) versus ~V(5T/T)(r)

~

calculated at each pixel, with both normalized to have
the same standard deviation, should show no correlation.
However, if one is dealing with a distribution of identical
nonoverlapping positive and negative round spots, all

points would lie on a one-dimensional line on this plot
since if the temperature is known the spot profile unique-

ly fixes the gradient. The greatest hazard with this
method is that one has to take gradients of noisy data,
which means that some degree of smoothing is certainly
needed. On the other hand, it is a more general tech-
nique than the deconvolution method described above,
and it would be very interesting to know what the pre-
dicted plots looked like for strings, monopoles, and tex-
tures. We intend to explore this technique in future work
[48].

X. CONCLUSIONS

Symmetry-breaking theories predict a similar spectrum
of multipole amplitudes to that produced by inflation.
But for a given amplitude of large-scale microwave an-
isotropy, a smaller level of mass fluctuations is produced.
%'e find that

COBE+ "standard" inflation =o's '(CDM )& qo = 1 0
(84}

COBE+field ordering=os '(CDM)&q0=4 0

in an Q=1, A=O universe dominated by cold dark
matter (see Table III). The factor of 4 difference between
the two theories is at least approximately explained by
the analytic treatment given in Appendix F.

There are significant sources of error in Eq. (84). The
possible systematic errors for the field-ordering theories
are much larger than in the inflationary case because the.
calculation involves nonlinear field evolution. Our esti-
mates of the errors involved (of order +20% for textures)

have been obtained by varying evolution algorithms, grid
spacing, box size, and so on, but as we have emphasized
the density fluctuation calculations are not as resolution
independent as one would like, and there is still room for
improvement.

It also seems prudent at this point to adopt 2o. obser-
vational errors on the COBE variance, which translate
into an error of ( —24%,+44%) in o s '(CDM) (Table II).
With the lower value (i.e., if the COBE result were 2o too

low) and a Hubble constant of 65 km s ' Mpc ' textures
would be viable for us '(CDM)=2. 3. With the same
values, the bias in the Infrared Astronomy Satellite
(IRAS) galaxies could be as low as 1.5 (Table III). A
more accurate determination of the sky variance would
be very significant in terms of distinguishing the two
types of theory. If the result goes up, the field-ordering
theories will begin to look more attractive. In the reverse
case, they could be forced to ridiculously high biases.

A high bias is consistent with the fact that dynamical
estimates of cluster masses persistently yield estimates of
Q-0. 1-0.3, whereas the global value of 0 is by jiat uni-
ty. This agrees with recent calculations of cluster veloci-
ty dispersions in the 0=1 texture plus CDM theory,
which show that a high bias —3 is required. It may,
however, put the theories in conflict with measurements
of large-scale streaming velocities, which seem to require
bias less than 2. Equation (84} means that the simplest
inflationary theory has precisely the inverse problems—
inconsistency with the dynamical estimates on cluster
scales and inconsistency with the recent higher values of
the Hubble constant [49]. Both sets of theories have
difficulty explaining the amplitude of galaxy fluctuations
found on the 20h ' Mpc scale in the QDOT survey (see
Table III). If these observations and our calculations are
correct, they require biases of at least 4 (in the IRAS
galaxies) in the simplest field-ordering scenarios investi-
gated here.

Recent measurements of a higher Hubble constant
favor the theories discussed here over standard CDM.
But in an 0=1, A=O universe, a Hubble constant of 65
kms 'Mpc ' gives an age for the Universe of barely
10' years, which conflicts with many astronomical esti-
mates. Of course, there is still the possibility that other
symmetry-breaking patterns [e.g., the SU(3) family
scheme mentioned above] or assumptions about 0 or A
may yet produce a viable theory. While the simplest
cosmology Q=1, A=O has been considered here, the
theories of field ordering are not confined to these values
and would be equally predictive in any background
cosmology. We intend to extend the methods developed
here to the cases 0%1 and AAO in future work.

On smaller scales the CMB anisotropy predicted by the
theories investigated here has yet to be determined and
may provide a key test if as we expect that it is highly
non-Gaussian. We have mentioned the Doppler term,
which is negligible on the angular scales to which COBE
is sensitive, but may be important on smaller scales
l-60. It would certainly be of interest to calculate this
in detail. Finally, on scales of 1, l -200, if the new limit
obtained by Gaier et ol. [8] is confirmed, we shall have
strong evidence that the Universe was reionized. As ar-
gued by Gorski, Stompor, and Juskiewicz, this would
seem to rule out ahl theories involving gaussian Auctua-
tions with a scale-invariant spectrum and would strongly
favor the non-Gaussian theories with topological defects
such as those considered here for X =2, 3, or 4. It is, of
course, essential that detailed calculations on these angu-
lar scales be made for these theories, which will require
an accurate computation of the extent and effects of
reionization.
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The specific non-Gaussian pattern of temperature an-
isotropy promises to provide the cleanest signature of the
string, monopole, or texture theories. In Sec. IX we
showed how in principle there is at least one clean test,
involving deconvolution, which can distinguish the
texture-induced pattern of anisotropy from Gaussian
noise. Certainly, much remains to be done, and we can
look forward to the prospect of these theories being con-
clusively ruled out or confirmed in the not too distant fu-
ture.
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The causal horizon, the distance traveled by light, is in
comoving coordinates simply given by g, the conformal
time. Note that we are not assuming an earlier period of
inflation; we assume a standard hot big band starting at
g=0.

The scale factor a is determined by the unperturbed
Einstein equations
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2

(A3)

It is also useful to define
0„=—p„/(p,+p„),given by

n, = ', 0,='
1+a ' 1+a

fl, =p, /(p, +p„),

(A4)

where V is an arbitrary volume factor which is useful for
dimensional arguments but which we shall frequently ig-
nore.

APPENDIX B: SACHS-WOLFE FORMULA

In this appendix we give a simple derivation of the gen-
eral Sachs-Wolfe formula. We calculate the shift in the
energy of a photon as defined in the reference frame of a
fluid moving at some velocity relative to the background
spacetime. Being a physically measurable quantity, this
is automatically gauge invariant.

Since the expansion of the Universe only changes the
metric by a conformal factor, g„„=a(ri„,+h„,), the
photon geodesics x (A, ) are the same as those in the per-
turbed Minkowski metric g„,=g„,+h„,with null geo-
desics x (A, ), but with aSne parameters related by
dA, =a A, . [This may be seen by considering the action
for a geodesic, 5= fdkg„,( x,(A, ))(dx" d/k)(d x"/dA, ). ]
The perturbed photon four-momentum is given by

k"=E
dk

E dx" E „d6x"n" +
a2 dAM a2 dgM

(B1)

where E is a parameter determining the (redshifting) pho-
ton energy and the unperturbed trajectory is x"=n "k
with n"=( l, n) the direction four-vector (we choose coor-
dinates in which the observer, at the end of the photon
world line nf, is at I=O). The "reference" fiuid has a
four-velocity u" obeying the "mass shell" condition
g„u"u = —1. The perturbed four-velocity is then given
by

Throughout the paper we define the spatial Fourier trans-
forms and power spectra of perturbed variables as usual
[30] by

f (x )=g f (k)e'"'"= Vf 3 f (k)e'" ",d 1c.

k (2n )
(A5)

8mG
94 3 Pc eq~ eq 1

(A2)
u =—[(1,0)+5v"], 5v =

—,'hoo,
1

a
(B2)

where a, =—1 is the scale factor at equal density of matter
and radiation when the matter density is p, , We ignore
the contribution of the uniform component of the defect
field stress energy, which is always much smaller than

p, +p„.The scale factor today is a0=2.4X10 h, where
as usual h =(Ho/100 km s ' Mpc '); q~ is a convenient
length scale, with the corresponding comoving length
scale today being aog„=19.38h Mpc. Equation (A2)
is solved to yield

E = —g„u"k

E 1 d6x0
1 —h n"+—h —6v n+

QJM 2 00 dXM
(B33

where the second line follows from the first-order pertur-
bation of the mass shell condition. The photon energy
E~ as "measured" in the frame of the reference fluid is,
to linear order in the perturbations, making use of (B2),
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0
+—[h ]/ —[v n]/+1 d5x'

00 i
I

The last term is found by integrating the perturbed Min-
kowski metric geodesic equation, which reads, to first or-
der in perturbed quantities,

d d5x'
dA, diP

L

1=—(2h~ —h, o)(n X )n "n

d5x' f

dA,
h „0(rt,ng)n "n1

+ [hn "]I, (B5)

where we used A,M=g. The integral involves the first-
order metric perturbation evaluated on the unperturbed
geodesic. Putting (B4) and (B5) together and changing
the sign of n, we find the formula (35) given in the text.

The first term gives the familiar cosmological redshift.
At the initial reference point, we set the mean photon en-

ergy equal to Eo[1+(5T/T);], where Eo is the unper-
turbed mean energy and (5T/T), the "intrinsic" fiuctua-
tion in temperature due to density perturbations in the
photon fiuid: In the mean, (5E/Eo) =(5T/T), . = 45—„(i)

Differencing between final and initial points, we find

aIE~(f) a;E—o
T aE0

r

—[ho n "]/

%=8+—k H+ H— —k H
a 1 —1

a
I. 3 T T

A=gmG ——a pI ——a pII =4nG k'kj—8,a l 2 1 2 a

a 2 3 a

k%+2 k9+k A—= —a~8nGpil
a

= —4m G [8—3k'k'8" ] .

(C5)

As we did in synchronous gauge, we divide 9 into pieces
sourced by p II (the decaying mode 2)) and A (the grow-
ing mode 9}:

kS= 0+S,

In the matter era, with a ~ g and in synchronous gauge,
these are equal to

r

A= ——h ++h
4 3

(C3)
k%= —'(h +—'k qh ) .

The source stress tensor is similarly divided into two
gauge-invariant pieces, namely, the "isotropic stress"
perturbation pI and the "anisotropic stress" perturba-
tion pII:

a pI =
—,'8,

(C4)
a p il =—'( Q~

—3k 'k JQ~ . . )= —Q~

The evolution of the gauge-invariant variables A,S is
governed by the equations (KS, Sec. II.4.6)

APPENDIX C:
GAUGE-INUARIANT SACHS-WOLFE INTEGRAL a2)+2—S=—8mGa pII,

a
(C6)

In the text we have employed a synchronous gauge in
deriving the formula for (5T/T). A more elegant treat-
ment of perturbation theory is provided by the gauge-
invariant formulation, comprehensively reviewed by Ko-
dama and Sasaki [50] (KS}. We shall relate the two for-
mulations in this appendix. It is only necessary to de-
scribe the scalar perturbations: The vector and tensor
parts are gauge invariant, as is any quantity that is zero
to zeroth order.

In the gauge-invariant formalism, one allows the most
general scalar metric perturbation: For each Fourier
mode, we set (KS, Sec. II.2.1)

goo
= —a ( I+2Ae'" *),

g .=+a Bik e'

g, =+a~[5,. +2HL 5; e'" *+2Hz( ,'5 J
—k. , kj')e'" *] . —.

2)= —,'I, 0=
—,
' J+ —,', gk h (C7)

From the general Sachs-Wolfe formula (35},it is straight-
forward to derive the formula describing the contribution
to (5T/T) from each Fourier mode of the scalar pertur-
bations in the gauge-invariant formalism:

S

= I e '"'""dq( ql —4)
~l

+ e' "" —6, +O' — V+ik nV
1 A.

4 ' kg

0+2—0+k~A=O.
a

In synchronous gauge these are given, in the notation of
the text, by

Then the following linear combinations may be shown to
be invariant under coordinate transformations (KS, Secs.
III.3.4 and III.3.5):

%=A+ %+—,= 2 = 2

kg
'

kg k
(C8)

A=A —a
dn

1
HL +—H~

3
(C2)

6 H~6 =5 + (u —%) V=u-r r '9

where we use the standard gauge-invariant variables @,
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O', 5„,and V, and v is the scalar part of the radiation
fluid velocity. Ignoring the surface term, this is

APPENDIX D: ALGORITHM
FOR EVOLUTION OF LINEAR PERTURBATIONS

—y f d ik nq(~ + I
—zg)

SW
(C9)

=g f d e'""" (k n) 2) — 2—k
T S~ k d Yj' 0

(C10)

Integrating by parts and again ignoring surface terms,
one finds

In this appendix we give the detailed algorithm for

solving Eqs. (29) in the main text. We keep the variables

S~, So,. „and s on half time steps, and happ, s and 5, on

full timesteps. A11 scalar perturbation variables and the

source variables are defined on spatial grid points. We

define dimensionless variables as

In the matter era, 2) and 9 are easily obtained from (C6).
Inserting these into (Clo), one recovers the formula (53)
in the text. To complete the argument, one must show
that the ignored surface terms are zero for modes initially
outside the horizon at last scattering, as we did in the
synchronous gauge.

S„,=O„„Pp 2
&op=(('o roo

. "Ie .

5, =e5„s=e's, e=gm~G(t(z~,

and evolve the dimensionless variables using

(D 1)

s(rI+bg/2)=s(g —hg/2)+ V [s(g)+5,(g)],2

5,(g+brI) =5,(g)
a rI+bq)

1 pp( rl +67) ) =1 pp( fl ) + EY/'roc& rpp = ( 8& Sp& +4'(lh Q&s )( 'g+ kY//2 )
' (3/2+0„/2) (3/2+ 0, /2)

a (q+b, g/2)+dg
a (g+hg)

(D2)

1 1
X ' rpp

— Ar(r'op Sp—p( rl+ b, r—j/2 )
2mb g+b, g/2

—2h (7)+ b,q/2)Q„s (r) )+ s(r(+ b, rl/2)
bq.

s (g+ b,g) = s (g) +hqs (q+ b,g/2),

where everything is implicitly careted, V is the usual
second-order accurate lattice Laplacian, and h =(a/a).
These equations provide a second-order evolution algo-
rithm for linear density perturbations. As mentioned in
the text, we have compared this algorithm with calcula-
tions of the CDM transfer function by Bond and Efs-
tathiou [32] (see Fig. 1). To do so, we set S„,=O and use
initial conditions appropriate for a pure growing mode
outside the horizon in the radiation era:

(E1)

Thus the temperature map can be expanded in spherical
harmonics:

m=1

lation functions and for convolving maps with smoothing
functions, which serves to define our notation.

Recall that the spherical harmonics Y( (0,$) are a
complete set of orthonormal basis functions on S:
f (t(f d o 0 (' (0,P) ( (0,(t()=5((5

s =s =0, 6, = A „g w00= 8,vr A,2 (D3) T(0,(t)= g g A( 7( (0,$) .
1=0 m= —

1

{again for careted, dimensionless quantities). We then
evolve each Fourier mode separately, setting V = —k
above, from a time both well before matter radiation
equality and when it is well outside the horizon to a time
when it is both well inside the horizon and well into the
matter era.

APPENDIX E: USEFUL FORMULAS
FOR SPHERICAL HARMONICS

In this appendix we review some of the properties of
spherical harmonics that are useful for computing corre-

In order to simulate the COBE angular response func-
tion, the temperature maps generated in the simulation
are convolved with a response function
R (y)= Aoexp( —y /yp), where yo=(10'/2) /ln(2):

Tc(0, (t() = f d cos(0')d(t('T(0', (t(')R (y) . (E3)

Here y is the angle between (0,$) and (O', P'):

cos(y ) =cos(0)cos(0')+ sin(0)sin(0')cos((I) —p'),
and we have normalized the response function:
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f d cos(y)dP'R (y)=1 . (E4)
m=/

Pi(cosy )= g Y,
* (O', P') Y, (8,$) .

2l +1 m= —1

(E6)

This convolution can be simplified by expanding out

the response function in Legendre polynomials,
Combining Eqs. (El)—(E6) yields

R(y)= X ~,P, (cosy),
1=0

(E5)

m=1 4
Tc(8&4)= g g Ai Y( (8,P)

1=0 m= —1

and making use of the spherical harmonic addition
theorem:

Similarly, the angular correlation function of the con-
volved and unconvolved maps can be computed directly
from the spherical harmonics:

C(cosy}= fd cos8dgd cos8'dP' T(8,$)T(8',P')5(cosy(8, $,8', P') cosy—)
1

g Ci Pi (cosy )(21 + 1 ),1

1
—2

C, (cosy)= f d cos8dgd cos8'dP' Tc(8,$)Tc(8', P')5(cosy(8, $, 8', P') cosy)—1

16m.
'2

4ma1
Ci Pi ( cosy )(2l + 1 ),

I 2

(ES)

(E9)

where

1
m=1

I 2I+1 g Im Im
m= —1

is the average of the squared amplitudes of the I'th mul-
tipole moments. Note that the monopole and dipole
terms are not included in the last two equations.

APPENDIX F: GENERAL RELATION
BETWEEN (5T/T) AND NEWTONIAN POTENTIAL 4
A general application of the formalism of Sec. VI is to

derive a formula relating the temperature anisotropy
5T/T to the Newtonian potential 4 produced by the sca-
lar trace part of the source 8; for any scenario involving
source-induced perturbations. The standard Sachs-Wolfe
result for adiabatic perturbations is

mode, roc, is given from (29) and (8): In the matter era,
these become

&oo,0=o"o,

8 +—8 ——Ve4 1
Oi, to Os, t

(F3)

roo=, 7 4=4mGpb5, a = 5, .
2m.oq

These equations combine to give

(F4)

'4

&00= dg g' —V 8 g', X
1

0 0 'g 3

As discussed above, for the matter era growing mode 5„
we have

T 1

SW
(Fl)

4

4(x)= f drl f drj' ~ 8(il'x) .
5 0 0

(F5)

where 4 is the Newtonian potential on the surface of last
scattering. %'e shall derive an analogous formula for
source-induced perturbations which shows that the tem-
perature fluctuations can be substantially larger.

The temperature fluctuations in our case are produced
along the path of the photon to us. Under the assump-
tion that the scalar trace part of the perturbation dorn-
inates, as for the spherical texture, we can set
0;~.=—,'5;J8, and (53) becomes

(n) = f drl f dq' ~ 8(r)' n'i)) . (F2)T 3 0 0 'g

5T 8~6
T 15 0

(n) = f di)' g'O(ri', x),

4(x)= f dr)' rI'8(ri' x)
4mG

15

(F6)

Equations (F2) and (F5) look quite similar. If we consider
long-wavelength modes of 0, kg «1, we can ignore the
x dependence of 8 in (F2). Exchanging the orders of in-
tegration (so g runs from ri' to qf, i)' from 0 to i)f ) and
performing the ri integral (dropping the term from the
upper limit qf, since when a mode is well inside the hor-
izon, the source term is small}, we find

But the coe%cient of the matter perturbation growing which imply that
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6T
SW

(F7)

bT/T = 4„f(a)
[

i i i
)

i ' &

]
i i '

}

2

which is the analog of the formula (Fl) for the case of
source-induced perturbations.

To compare (F2) and (F5) for wavelengths of the order
of the horizon scale and below, we need to assume a par-
ticular form for 8k(q). Assuming that 8 has a white
noise power spectrum outside the horizon and decays
rapidly inside the horizon, we take

(F8)

where 0 is the Heaviside function and we are assuming
that the scale characterizing the correlations of the
source 8 is k '=ri/a, with a a parameter of order uni-
ty. The g

' dependence arises because we require that

&8(q, x)') fd'k& ~8„~')

the scaling form.
Using (F8) in (F2) and (F5), we find that

I & i i I i i & [

0 2 4

I I I [ I I I I 1 I

FIG. 15. Ratio f of (5T/T) to the Newtonian potential 4 in

theories with source-induced perturbations is plotted against a,
where the source stress tensor is assumed to have a white noise

spectrum for wave numbers k & ag '. See Appendix F.

const
&

a
1/2

T
Tk

—3/2 +d slllx + s P d
stnxa x, a J x

13 x a
(F9)

where we averaged over the direction of k, using
&e'"'")=(sinks/kvl). The ratio of (5T/T)k to 4„is
plotted against a in Fig. 15. For a-2, which we expect
at large E from the results of [28], we find

(5T/T)k —
—,4k, around 4 times the familiar adiabatic re-

sult.
To summarize, two main conclusions follow from this

calculation. First, if the fluctuation spectrum is normal-
ized to the observed amplitude of large-scale structure
and motions, related directly to 4, source-induced per-
turbations can lead to microwave background fluctua-
tions which are larger than those in primordial adiabatic
perturbation scenarios by up to a factor of 6. Second,
this factor is reduced by reducing the correlation length
of the field stresses. Physically, this is due to cancella-
tions occurring along the photon geodesic.
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