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Multipole radiation from massive fields: Application to binary pulsar systems
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A general multipole expansion for radiation from massive vector and scalar fields is developed for
periodic sources. This formalism is then combined with data on the binary pulsar PSR 1913+16to
set limits on the electric charge of astrophysical bodies, and on the coupling strengths of new weak
forces.
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I. INTRODUCTION

There is at present renewed interest in the possibility
of detecting new intermediate-ranged forces arising from
the exchange of ultralight quanta [1—5]. This interest
has been stimulated by both theoretical and experimen-
tal considerations. Theoretically an extensive body of
literature now exists which suggests that ultralight scalar
and vector bosonic fields arise naturally in many exten-
sions of the standard model [1—5]. The exchange of such
quanta typically leads to a weak force which acts even
over macroscopic distances, and which can thus simulate
in some ways gravitational [6] or electromagnetic [7,8] in-
teractions. The coexistence of such a force and gravita-
tion leads to apparent deviations from the predictions of
Newtonian gravity, and similarly for electromagnetism.

Stimulated by these theoretical ideas and also by the
suggestion of a possible "fifth force" [9], experimentalists
have searched for new forces by looking for deviations
from the inverse-square law of Newtonian gravity, and
also for violations of the weak equivalence principle. Us-

ing a variety of innovative techniques, these experiments
have set stringent constraints on the coupling strength f
and the Compton wavelength 1/p which characterize the
interactions of such new fields [see, for example, Eq. (2.1)
below]. Along with these results has come the recognition
that further significant improvements in sensitivity are
possible, and this has served to motivate continued inter-

est in such gravitational experiments. To date, the possi-
bility of new forces coexisting with electromagnetism has
received much less experimental attention [7,8], largely
because of the widespread (if inaccurate) belief that elec-
tromagnetism has been tested sufBciently to exclude such
forces.

In searching for systems where eKects of putative new
forces might show up most prominently, one is led nat-
urally to examine those where the background gravita-
tional or electromagnetic eKects are suppressed for some
reason. In modern-day Eotvos experiments, for example,
such a suppression can be achieved by arranging for the
two test masses to have similar shapes. Another example
is the detection of new forces by searching for the energy
that the corresponding fields carry oK in radiation. It is
well known that the leading multipole for gravitational
radiation is quadrupole, whereas it is monopole or dipole

for scalar or vector fields, respectively [10]. Since each
successive multipole order is suppressed by a factor of
order d/A, where d is the characteristic dimension of the
system and A is the wavelength of the emitted radia-
tion, emission of scalar or vector radiation may compete
favorably with gravitational radiation in some systems.
One such system may be the Hulse-Taylor pulsar PSR
1913+16,which provides the strongest evidence to date
for the existence of gravitational radiation at the level
predicted by general relativity [11]. Since any discrep-
ancy between theory and experiment could be attributed
to the radiation of some hitherto unknown field, this sys-
tem can provide constraints on new fields which increase
in sensitivity with time as data continue to accumulate.

In this paper we generalize earlier work by various au-
thors dealing with the radiation of scalar and vector fields
of small nonzero mass. The focus of our paper is the for-
mulation of a multipole expansion for the radiation of
massive vector and scalar fields, which is then applied
to the binary pulsar in order to extract the experimen-
tal limits presented in Sec. IV. Our formulation thus
makes it easy to directly compare the constraints on the
coupling strength of new fields that arise from the binary
pulsar to those that emerge from laboratory experiments.
In addition it allows for a systematic refinement in vari-
ous limits as the pulsar data improve.

Previous work on radiation of massive fields has fo-

cused primarily on massive electrodynamics [12—16], and
has dealt with such questions as how Maxwell's equa-
tions are recovered in the limit as the quantum mass
goes to zero. Radiation of massive quanta at a single fre-

quency has been studied by Crandall and Wheeler [14],
van Nieuwenhuizen [15], and by Crone and Sher [16]. For
massive scalar fields, radiation from a point source has
been considered by Cawley and Marx [17]. In the wake
of the "fifth force" hypothesis [9], a number of authors
raised the possibility of setting limits on new fields by
studying the radiation they carry off. Li and RuKni
[18] argued that the gravitational radiation from bina-
ries would dominate over that from massive vector fields.
Bertotti and Sivaram [19] have considered the possibility
of detecting the radiation of quanta from a composition-
dependent fifth force by means of an interferometer using
test masses of different composition. They also discuss,
as we do below, the dependence of the binary radiation
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on the compositions of the pulsar and its companion. Fu-
jii [5] has studied the radiation of a light scalar field in
the context of the "fifth force" hypothesis. He has ob-
served, as we noted above, that scalar radiation could be
important compared to gravitational radiation, because
it enters at a lower multipole.

The outline of our paper is as follows: in Sec. II we re-
view the formalism for massive vector fields, which we
then apply to develop the multipole expansion. The
explicit expressions for the leading multipole contribu-
tions to the time-averaged radiated power are given by
Eqs. (2.71) and (2.72). The analogous forinalisin for
scalar fields is presented in Sec. III, and the corre-
sponding formulas for the radiated power are given in
Eqs. (3.18) and (3.19). In Sec. IV the results of the pre-
ceding sections are applied to the binary pulsar to extract
experimental limits on the radiation of vector and scalar
fields, for various models of the pulsar and its compan-
ion. A summary of our conclusions is presented in Sec.
V.

1 2

P PcxP ~ J Acx + A Ac% (2.1)

where F P = B A~ —B~A, p, = m~c/5, and J (x, t)
is the source current in units of the fundamental charge
fv For massive electrodynamics, fv = e. The inhomo-
geneous field equations for A (x, t), which are obtained
from Eq. (2.1) by use of the Euler-Lagrange equations,
are given by

B F~ + 'A =
C

(2.2)

The homogeneous equations

B~F»+B~F'~+ B'F ~ = 0 (2.3)

follow as an immediate consequence of the definition of
F ~, and have the same form a,s in the massless case. If
the electric and magnetic fields are de6ned as in massless
electrodynamics,

II. MASSIVE VECTOR FIELDS
10A o

c Bt
B=VxA,

(2.4a)

(2.4b)
A. Background and overview

To establish our notation and conventions we begin by
deriving the field equations and energy-momentum ten-
sor for the massive field Rom the appropriate Lagrangian.
We will later follow a similar approach to develop the
formalism for the case of a massive scalar 6eld where
the results are less familiar. Following Li and Ruffini
[18] we restrict our attention to sources J (x, t) that are
periodic in time, noting that our results can be easily
extended to more general situations. After expanding
the sources and fields in Fourier series, we use Green's
function techniques to obtain a general solution for the
vector field A (x, t). From this result we identify the ra-
diation 6elds by examining the asymptotic behavior of
A (x, t) for large ~x~. We find that only modes above a
certain threshold frequency can contribute to radiation,
and show how this can be easily understood in the lan-
guage of photons. We then calculate a general formula
for the time-averaged energy Hux per unit solid angle.
Although this formula is too cumbersome for most appli-
cations, it can be developed in a multipole expansion for
radiation as in conventional massless electromagnetism.
We then explicitly evaluate the time-averaged power ra-
diated for a system as electric dipole, magnetic dipole,
and electric quadrupole radiation, and show that these
results reduce to their familiar forms when the quanta
become massless.

then the Maxwell equations for a massive electromagnetic
field become [8,12,13]

V E = 41rfv p —p A,
V.B=0,

1BB
c Bt

47'fv 1 BE
V x B= J+ — —p2A.

c cBt

(2.5a)

(2.5b)

(2.5c)

(2.5d)

Note that the source-independent equations are identical
to those ia the massless case. For p g 0, the potentials
A and A are not arbitrary, in contrast with the massless
case. This can be seen from Eq. (2.5a) by notiag that A
can be expressed in terms of V E and p, both of which
are gauge independent. A similar argument follows for
A startiag f'rom Eq. (2.5d). Returniag to Eq. (2.2) we
6nd

2

fvB J =/ iBA,
47r )

(2.6)

0 A =0. (2 7)

Using this condition, the field equations Eq. (2.2) may
be rewritten as

so that if p g 0 and J is conserved, then A (x, t) must
respect the Lorentz condition

B. Field equations and energy-momentum tensor (CI+p )A = J
c

(2.8)

In this section we establish our notation and review the
conventional formalism for describing a massive vector
field A (x, t) whose quanta have a mass m~. We assume
that A (x, t) is described by the usual Proca Lagrangian
density [20]:

where

(2.9)

We note for later purposes that if the source J (x, t) is
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assumed to be conserved, then it follows from the Lorentz
gauge condition (2.7) that only three of the four compo-
nents of A (x, t) are independent.

To determine the energy and momentum radiated in
the form of massive quanta, we construct the energy-
momentum tensor T ~ for the free vector Belds, from
which the energy density u and energy ffux S (the ana-
log of the Poynting vector in electromagnetism) can be
identified. T ~ can be obtained from [21]

where

s':—c' (t —t') —(x —x') '

is the spacetime interval, 0(z) is the step function

g( )
1 ifx)0,
0 ifx(0,

(2.16)

(2.17)

Tap & free ap gg free y

Og~p
(2.10)

where the explicit expression for the free Beld
Lagrangian Zf„, in terms of the metric tensor

g p = diag(l, —1, —1, —1) is

and gi (ps) is the Bessel function of the first kind. Rather
than solving the full inhomogeneous equation Eq. (2.2),
the problem simpliBes greatly if we follow the method of
Li and Ruffini [18] and consider localized sources J (x, t)
that are periodic in time with period T. The sources and
fields can be expanded in a Fourier series:

2

g gpgF~~I' ( + g~pA—A~. (2.11)
167r 8m

J (x, t) = ) J„(x)e (2.18)

Combining Eqs. (2.10) and (2.11) we find

1 1goPF F&~ + F~ F&~
16~ 4~

2

+—(A A~ —-'g ~A A~).4' (2.12) where

A (x, t) = ) A„(x)e (2.19)

From Eq. (2.12) the energy density u and the ith compo-
nent S' of the energy flux S for the free vector Beld are
given by [12,13]

and

1
J„(x) = — dt J (x, t)e'" ", (2.20)

& = T" = —([&I'+ IBI'+ ~'[(A')'+ I&I']), (2»a)oo

S'—:cT * = —[E x B+p A A]'.
47r

As a check, we see that the expressions for u and S reduce
to the usual electromagnetic results in the limit p ~ 0

2x
(dp =

T
(2.21)

is the characteristic frequency of the system. Since the
source J (x, t) is real, it follows that

[22]. J„'(x) = J „(x). (2.22)

C. General solution for periodic sources

Given a source J (x, t), the resulting fields A (x, t)
are found by solving the inhomogeneous wave equation,
Eq. (2.2). In the limit p —i 0, the general solution to
Eq. (2.2) is easily found, since its retarded Green's func-
tion G+(x, t; x', t') has the simple form [23] (V'+ k„')A„(x) = — ~' J„(x), (2.23)

If the sources are not periodic, one simply replaces the
sums with integrals.

Substituting Eqs. (2.18) and (2.19) into the wave equa-
tion (2.2) yields an equation for each Fourier component:

(2.14) where

When p g 0 the retarded Green's function is given by
[24)

and

(2.24)

pC
Ap

Cdp
{2.2S)

(2.15)

Assuming no bounding surfaces except at infinity, the in-

homogeneous Helmholtz equation (2.23) can be solved by
noting that the Green's function G„(x,x') for an outgo-

ing wave is given by
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where

~ik„/x —x'
/

G„(x,x') =
Ix —«'I ' (2.26) A„(x) = d x'G„(x,x') J„(x')

c
ik„fx—x']

ds (e Ja( I)
C X —X

(2.2s)

(V' + k„)G„(x,x') = —47rb(x —«').

The solution to Eq. (2.23) is then

(2.27) Combining Eqs. (2.19) and (2.28), the general solution for
A (x, t) for a localized periodic source J (x, t) is given

by

(2.29)

where the Fourier component J„(x) is obtained &om
Eq. (2.20). As a check on Eq. (2.29), we note that, for a
point charge fv located at the origin,

haik„r
A„(«) = I.(~, 4) + O

I
—,

Icr " (r2)

can be written in the form

(2.37)

J (x, t) = c fv b(x) (2.30)
where [18]

and hence &om Eq. (2.20),

Jo(x) = c fv b(x) bno. (2.31)
I„(d,d)

—= fy f d z'e ' "'"d„(x'). (2.3s)

Combining Eqs. (2.31) and (2.29) then leads to the fa-
miliar result

We note that I„(e,P) depends only upon the direction of
the observation point and not on r. Also, for real sources,

where r —:I«I.

&
—p,r

Ao(x, t) = fv (2.32)

Summing over all modes, we find, &om Eq. (2.37),

(2.39)

D. Radiation Qelds

From the general solution for A (x, t) in Eq. (2.29) we
wish to identify the radiation fields A, &(x, t) associated
with &eely propagating waves by examining the behavior
of the fields far &om the source. If the radiation fields
are traveling freely, then their energy Bux per unit solid
angle given by

ei(le„v —ra~ot) ( 1 l
A (x, t) = ) I„(8,$) +0

I

—
I

cp

(2.40)

Although the sum over n (which can be chosen to be pos-
itive) includes all harmonics, there are no contributions
&om those with n ( no in Eq. (2.24). This follows by
noting &om Eq. (2.24) that when n ( no, k„= iIk

I

so
that

= r2(r" S), (2.33)
haik„r q

—Ik I

(2.41)

is nonzero infinitely far from the source:

lim r (r S,~s) g 0.
r-+oo

(2.34)

which vanishes in the limit r ~ oo. The radiation fields

A, &(x, t) are thus determined by the nonzero modes in
the limit r m oo:

From Eq. (2.13b) we note that since S is proportional to
(A ), Eq. (2.34) is satisfied if

~i(k„r—n~pt)
A, d(x, t) = ) I„(9,$)

fn/)np

(2.42)

1
lim Araa fx

r-+oo 7'
(2.35)

The radiation fields can then be obtained by examining
the general solution for A (x, t) in the limit r -+ oo, and
then identifying the fields which fall of as 1/r. Return-
ing to Eq. (2.28), we note that if d is the characteristic
dimension of the system and r )) d, then

~„=c gk'+))d' (2.43)

which yields [16]

which have the form of spherical waves propagating out-
ward from the source. It is interesting to note that the
group velocity v„= du„/dk„ is different for each mode.
Combining Eqs. (2.25) and (2.24) we have

X —X' r —r" - X', (2.36)

where r = x/r It follows tha.t far from the source A„(x)
n 2

v„= ck„(k„'+y, ') ' ' = c
n

(2.44)
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We see that the large n (high energy) modes travel at
nearly the speed of light, but the small n (low energy)
modes may travel much more slowly. This dispersion
helps to explain why the radiation problem for massive
fields simplifies by Fourier decomposing the fields and
sources. While each mode behaves simply, the dispersion
described by Eq. (2.44) makes the superposition of all
harmonics complicated. For massless fields (in vacuum),
all harmonics travel at the speed of light so the Fourier
decomposition is unnecessary.

The fact that not all modes contribute in the mas-
sive case can be understood by noting that the energyE„= n~p of the nth mode must be greater than the
rest energy m~c of the quantum for a massive photon
to be emitted. This implies the condition

m~c pc2

n& np&
Rdp (dp

(2.45)

so that for a given photon mass m~ there is a minimum
frequency

m~c 2

min = pc— (2.46)

of radiation. A source will radiate only weakly if its char-
acteristic &equency ~p is such that ~p (( u);„, since
the dominant (small n) modes will not appear. The fi-

nite mass of the photon also leads to the dispersion of
the group velocities found in Eq. (2.44).

Returning to Eq. (2.42) we note that by virtue of the
Lorentz condition only three of the components of A are
independent. If we separate the time and space compo-
nents of the radiation fields in Eq. (2.42) by writing

and apply the Lorentz condition Eq. (2.7) in the form

10AP
C Ot

(2.48)

we find

I„=k„(r I„)+O~ —~.
c j (2.49)

Hence to O(l/r),

n 2I„= 1 — — r I„, (2.50)

npE, e= Q ([(rxt„)xr]+{—) (r I )r)
fnf)np

i(k„r—n~pt)
c p

(2.51a)

) ( x I )
i(lt r nwot)—

CT
In))np

(2.51b)

from which if follows that all results for the radiation
fields can be expressed in terms of In.

Returning to the expressions for A, & and A, ~ given

by Eqs. (2.47a) and (2.47b) we can calculate E, s and
B, ~ for the radiation fields using Eqs. (2.4a) and (2.4b).
Retaining only terms O(1/r) we find

ei(k r —ncup t)
A, (x, t) = ) I„(8,y)

in')np

ei(k„r —nwp t)
Araa(x, t) = ) I ((I), P)

fn/)np

(2.47a)

(2.47b)

Note the appearance in E, g of a term proportional to
r (i.e. , a longitudinal component), which does not occur
in electromagnetism. If the expressions for A, g, A, &,
E, g, and B, s are substituted into the energy flux S
given by Eq. (2.13b), we find, for the instantaneous en-

ergy flux carried by the radiation fields,

S.~ 47rcr2
tn(, (mJ)n,

~ ~

npe't""" " "Ie'I" " "I —k [(r x („) (r x I )]r i — (r I )[r x (r x t )])C n

+k„— r In I (2.52)

U»ng Eq. (2.33), the instantaneous energy flux per unit solid angle is then

In/, Im) )np

~ ~ ~
~

npk(r x I„) (—r x I ) + k„— (r. I„)(r".I )
C n

(2.53)

The quantity of physical interest is the time-averaged
energy lux defined by

I

we find, for the time-averaged energy Bow per unit solid
angle,

dE 1 dE
(2.54)

Inserting Eq. (2.53) into Eq. (2.54) and using n 2
x ]r x 1„]r X- {—) [r I„]' (2.56)

(k r — pt) i(k —m t)e m, —n) (2.55)
The result given by Eq. (2.56) is exact, but is too cumber-
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some for all but the simplest sources. In the next section
we develop a multipole expansion valid in the long wave-

length limit from which a general formula for the total
radiated power can be derived.

E. Multipole expansion of radiation Be1ds

The radiation problem in conventional electrodynam-
ics is greatly simplified by using a multipole expansion,
since typically only the lowest multipoles contribute sig-
ni6cantly to the total radiated energy. In this section we
derive the analogous multipole expansion for the mas-
sive case, and examine the difFerences from the usual
massless electrodynamics. We then explicitly evaluate
the power radiated as electric dipole, magnetic dipole,
and quadrupole radiation in the long wavelength limit,
and show that the results reduce to those for the electro-
magnetic case in the limit p —+ 0.

As we have seen in the previous section, the Lorentz
condition implies that the radiation 6elds and total radia-
tion flux can be written in terms of the quantity I„(8,P)
defined in Eq. (2.38). Although I„(8,$) is difficult to
evaluate in general, it may be simplified by expanding
the exponential in powers of k„d where d is the charac-
teristic size of the source:

In the long wavelength limit, k„d (& 1 and hence to
good approximation we need retain only j:„and I„
in Eq. (2.57). This approximation is useful in describing
nonrelativistic systems. If mod v where v is a character-
istic velocity of the radiating system, then when v/c « 1,
from Eq. (2.24) k„d & (nurod)/c (nv)/c « 1

for sufBciently small n. As in ordinary electrodynamics,
the long wavelength approximation is valid only when
the harmonics close to the fundamental frequency uo are
dominant.

It is then straightforward to show that, as in the
usual massless electrodynamics, I~ is proportional to
the Fourier component p„of the dipole moment:

It t(8, ti) = inwof—v f d z'x'p (x) = —inwtp„. (2.59)

Hence in the dipole approximation,

~r" x I„(8,$)~ ~r" x I„~ = n (dorp„~ sin 8, (2.60a)

[r. I„(8,4)( = ]r I„] = n ru, ]p„] cos'0, (2.60b)

where sinO = r" x p. Combining Eqs. (2.60a), (2.60b),
and (2.56) the dipole approximation for the time-
averaged energy flux per unit solid angle is given by

(2.57)

I (8, 8) = fv f d z'(I —ik„r x')J„(x') + O[(k„d) ]

= I~' + I~'l + O[(k„d)'],
~ 2 Ao 2

x sin 0+ — cos 0 (2.61)

where

Ii i(8, 8) —= fv f dtz'J (x'),

Ii t(8, 8) = ik fv f d —z'(r„x')J„(x').

(2.58a)

(2.58b)

We see Rom Eq. (2.61) that for massive electrodynamics

(p g 0), both the magnitude and angular distribution of
(dE/dO) are difFerent &om what they are in the mass-

less case. The contribution to (dE/dA) from I~ l(8, $)
in Eq. (2.57) can be obtained in the usual way [25] by
writing

d z'((r x')J„(x') + [r J„(x')]x'+ [x' x J„(x')]x r}~ ~

= —ick„m„x r — d z'(r x') x' p„(x')
2c

(2.62)

where I„ is the Fourier component of the magnetic
dipole moment I de6ned by

I

For our purposes, it is also convenient to de6ne the mean-
square-charge radius (R2):

m(t) = d'2. " x' x J(x', t).
2c

(2.63) (R ) = (2.66)

tJ;, (t) = I» f d z (3z'z, —r'* ')p8( ,
'
t)x, (2.64)

and the vector Q; defined by contracting one of its indices
with x*/r:

Q; = Q;.~J/r. (2.65)

The expression for I~ l in Eq. (2.62) can be expressed in
terms of the (traceless) quadrupole moment tensor Q;J,

where Q is the total charge

q=fvtd z p(x ,t)'' (2.67)

With these definitions, I~ ) (8, Itt) may be written as

I( )(8, p) = —ick m„x r — (Q + Q(R )~r)

(2.68)
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nu)pk„—inoiop x r —ick„(m„x r) x r — Q„»n 6) (n'~0 )2(no)'
2' c ( c )n)np

where Q and (B2) are the Fourier components of Q and (R ).
The time-averaged energy flux per unit solid angle can be obtained by combining Eq. (2.56) with the expressions

for I( ) in Eq. (2.59) and I~ )((I), P) in Eq. (2.68). We find, to order (k„d),
2

np 2 „ n(dpkn 2+ — ---.p. '- — (Q. '+ ~(~ )-) (2.69)

The total time-averaged power radiated (E) = f (dE/dO)dA can be obtained from Eq. (2.69) by using the identities

4x
z,z, dQ = —b...

4x
z,z, z),zidA = (b,,b—i,(+ b, A, b, i + b, ib, ),).

15

(2.70a)

(2.70b)

We can express (E) in terms of the dominant electric and magnetic multipoles tl, Ml, and E2 as

( ) = ( )si+ (E)~i+ (E)s2+ O[( - )'] (2.71)

where

(E)si = (2.72a)

n)np
2- 3/2 2

( )'~ =
~O, 5 ) "'"' ' —

(
—„) I(&' )-~I'+ (

—
) ~~I(&')-~I'+ i~o'~I(&')-~I'

n)np

(2.72b)

(2.72c)

(E)si = —
—,, ).n'~alp. l'

n=1

(E)~i ————) n (uolm„l,
n=1

(E)E2 =,) .n'~ol(&v)-I'
n=1

(2.73a)

(2.73b)

(2.73c)

One can then show that

(lpf') = 2).n'~olp. l',
n=l

(fmf ) = 2) n cuofm„l',
n=l

(I&', I') = 2) n'~ol(&*~)-I'
n=l

(2.74a)

(2.74b)

(2.74c)

Hence the total time-averaged power radiated in the limit

We thus see that for massive vector fields the E'2 contri-
bution to (E) cannot be calculated from a knowledge of
the traceless quadrupole moment tensor Q;~ alone as in
the massless case.

We conclude this section by verifying that the preced-
ing results reduce to their electromagnetic counterparts
when the photon is massless. Setting np ——0, the power
radiated for each multipole becomes

I

p ~ Ois

3 c 3 c 180 c

which agrees with the usual electromagnetic results [26].

III. MULTIPOLE RADIATION FOR MASSIVE
SCALAR FIELDS

In this section we develop the formalism to describe ra-
diation of massive scalar fields in a manner analogous to
that for the vector field case considered previously. An
elementary account of the properties of classical scalar
fields has been given by Kahana and Coish [27], and the
radiation problem for a scalar point source has been in-
vestigated previously by Cawley and Marx [17]. However,
our approach will closely follow the method previously
applied to the massive vector field.

We begin with the Lagrangian density l. for a scalar
field 4(x, t) of mass m~ interacting with a source p (in
units of fs),

1
)(: = —(& @'(9 @ —p'@') + fs pC'—:&r-. + fsP~',

87t

(3.1)

where p = m~c/h as before. Our scalar Lagrangian den-
sity Eq. (3.1), which differs from conventional treatments
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by a factor of 1/4tr, facilitates a comparison with the mas-
sive vector field results derived in the previous sections.
From Eq. (3.1) the field equation for C is

C(x, t) = ) 4„(x)e '" ", (3 5.)

4' + )(t 4) = 47r fs p, (3.2) p(x, t) = ) p„(x)e *" ", (3.5b)

and the energy-momentum tensor T ~ obtained from
Eq. (2.10) is

T ~ = —(9 Cc)~4 — g—~(B~C B~C —p'42). (3.3)4' Sx

The energy density u and the ith component S' of the
energy flux S are then given by

2

u =—T = ——
l

+ (VC) +)(t C, (3.4a)pp 1 1 P(941 2 2 2

8' c2 ( Bt)
1 /BC) 84

4tr ( Bt ) (9z*

We note that the expression for S' in Eq. (3.4b) is in-
dependent of p so it has the same form as the mass-
less case. However, S' depends on p implicitly through
C(x, t). This contrasts with the case of the massive vec-
tor field where S' given by Eq. (2.13b) depends explicitly
on p.

Returning to the field equation for C(x, t) in Eq. (3.2),
we expand both the field C(x, t) and the source p(x, t) in
a Fourier series:

where pdp = 27r/T is the characteristic frequency of the
system, and

T
p„(x) = — dt p(x, t)e*" ".

T p

(3.6)

Combining Eqs. (3.2), (3.5a), and (3.5b) we see that each
Fourier component satisfies

(V +k„)4n(x) = 4xfs—p (x), (3.7)

—= fs f d'*'G (xx')S ("-'), (3 8)

Combining Eqs. (3.8) and Eq. (3.5a), the solution for

C(x, t) can be written as

where k„and np are given by Eqs. (2.24) and (2.25).
Equation (3.7) is identical in form to Eq. (2.23), and
hence its general solution can be written as

~iA:„/x-x'
(

(x) fsf d s=, p (x')
lx —x'l

4(xt)=fs $ fds

W

I

exp in(up 1—
p„(x').

lx —x'l

We can use Eq. (3.9) to identify the radiation fields by
examining the behavior at distances far &om the source.
Combining Eqs. (2.36) and (3.9) we find that, when r is
much greater than the characteristic size of the radiating
system,

Since k„ in Eqs. (3.10) and (3.11) has the same form
as in the massive case, it follows that, as before, only
modes with n ) np will contribute to radiation. We then
identify the radiation field 4, g(x, t) as

~i(A:„v —n~pt)
C(x, t) = ) I„(8,$) +ol —,

l
(310)

(1l
~i(I(.„v —n~p t)

4', g(x, t) = ) I„(8,$)
fnf &np

(3.12)

where

1„(d,d) = f,f d'x's '" '* s (x')--'„(3.11)

which has the form of an outwardly propagating spherical
wave.

To calculate the instantaneous energy Aux S we com-
bine Eqs. (3.12) and (3.4b) and retain only terms
O(1/"):

Srad
1 ( k I I ") s(kns' nsssot) s(knss' —snufPt)—

(n(, Jm()np

(3.13)

From Eq. (3.13), the instantaneous energy fiux per unit solid angle dE/dO is given by

dE „12(" S ) + ( k I I )
i(k s nsdot) i(k s s—nwot)—

rad —
4 z 0 m n m

]nf, am))np

Averaging the expression in Eq. (3.14) over time we find

(3.14)
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(3.15)

As in the case of the massive vector field, we can carry out
a multipole expansion of I (8, P) in the long wavelength
limit. A new feature of scalar fields is the appearance
of monopole radiation which arises because the radiat-
ing charge is not necessarily conserved; for a conserved
charge the leading multipole is the dipole. Expanding
the exponent in the integrand of Eq. (3.11) in powers of
k„d, where d is the size of the source, we find

k2
I„(8,$) = fs d z' 1 —ik„r" x' ——"(r x') p„(x')

2

+O[(k„d)']
2

= Q„—ik„p„.r ——" Q„r + (q(R ))

x Q„—ik„p„r ——" Q„r+ (Q(R ))
k2-

2

(3.17)

This may be integrated in the same manner as for the
massive vector field giving for the total-averaged power
radiated:

(E) = (E)so + (&)si + (E)s2 (3.18)

In Eq. (3.16), p„and Q are the Fourier components of
the electric dipole moment and the electric quadrupole
moment vector defined in Eqs. (2.59) and (2.65), respec-
tively and Q is Fourier component of the total charge.
Since Q may also be a function of time, the Fourier com-
ponent of Q(t)(R ) has been written as (Q(R ))„. The
time-averaged energy Hux per unit solid. angle is obtained
by combining Eqs. (3.15) and (3.16) to yield

+O[(k„d)s]. (3.16)
I

where

n 2

(E)~p = —) n'~0' 1 —
(
—

) ~Q

n)np

2 3j2

(E)e, =, ) n'~o 1 —(—) (~~p„~~'
—Re q'„(Q(R')) j,

n)np

np
- 5/2

n)np

(3.19a)

(3.19b)

(3.19c)

Since the total charge Q may be time dependent, there
is a new contribution to the f1 power in addition to the
usual dipole term.

It is instructive to consider the power radiated by each
multipole in the limit p ~ 0. We have

I

One can show that

(IQI') = 2).n'~'lQ-I'
n=l

(3.2la)

(E)).p ———) n u)olQ„I,
n)np

(E)si —— ) n'cu, (lp„l' —Re Q„'(Q(R'))„),

(3.20a)

n)np

n)np
(3.20c)

I

(3.20b)

(@)&2 ——135, ) n'~', Il(&,,)„l'+ Vl(Q(R'))„I' .

d3-
d, , Q(t)(R ) = 2 ) n (uo (Q(R') )„

n=l
(3.2lc)

which along with Eqs. (2.74a) and (2.74c) leads to

Q —Q(t)(B') )
= 2) n'~20Be Q„'(q(B'))„

n=l
(3.21b)

(Q) = + (lp(t)l ) — Q —[Q(t)(R )I
d3 2

. IQ(t)(R )j (322)

As noted earlier, if the total charge Q of a system is con-
served, and hence is time independent, then no monopole
radiation will be emitted and the dipole term reduces to
its familiar form. In addition, even for massless scalar ra-
diation, the quadrupole radiation may not be completely
described by a traceless quadrupole moment tensor as in
electromagnetism.

IV. APPLICATION TO BINARY PULSAR
SYSTEMS

A. Overview

In the preceding sections we have developed a for-
malism for describing the radiation of massive vector
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TABLE I. Some of the measured orbital parameters of PSR 1913+16.The uncertainties in the
last digits are quoted in parentheses.

Parameter
Orbital period Pq (s)
Eccentricity e

Advance of periastron ir (degrees jyr)
Time dilation p (ms)
Orbital period derivative Pq (10 s s )
Pulsar mass m~ (solar masses)
Companion mass m, (solar masses)

Value
27906.9807804(6)

0.6171308(4)
4.226621(11)
4.295(2)

—2.422(6)
1.442(3)
1.386(3)

Reference

[33]
[33]
[33]
[33]
[33]
[11]
[11]

and scalar fields which parallels that for electromag-
netism. In principle, any system carrying charges as-
sociated with these fields would radiate when acceler-
ated, just as in electromagnetism. However, present lim-
its on new intermediate-range interactions indicate that
should they exist, their coupling strength will be much
smaller than for gravity. Hence, the only existing sys-
terns in which observable effects of radiation damping
due to new forces might be detected are binary pulsar
systems, where evidence for gravitational radiation has
been seen [5,18,19]. Although the new forces may be
inherently weaker than gravity, the leading multipole ra-
diated is monopole or dipole, whereas the lowest multi-
pole for gravitational radiation is quadrupole. Hence the
weakness of the new interaction may be at least partially
compensated by the fact that the radiation is dominated
by a lower multipole than gravity. It is this circumstance
which allows us to set interesting limits on possible new
fields by studying the radiation from macroscopic bodies.

Presently, the binary pulsar system PSR 1913+16has
become the premier astrophysical laboratory for testing
relativistic gravity [11,28]. Since its discovery nearly 30
years ago, timing models fitting the observed pulses have
allowed the accurate measurement of most of the system's
parameters (see Table I). These measurements have pro-
vided a clean test of general relativity in a moderately rel-
ativistic system, and the gradual decrease in the system's
orbital period is the first clear evidence for gravitational
radiation. Recent measurements have become sufficiently
accurate to detect the effects of galactic rotation on the
time derivative of the orbital period as measured by an
Earth observer (Table II) [32,33].

It has also been realized that this system might be used
to constrain putative new forces [5,18,19,29,30]. We now

apply the radiation formalism developed in previous sec-
tions to quantitatively determine the effects of radiation
damping on the time derivative of the orbital period for

the binary system. Comparison of these results with ob-
servation then leads to radiation limits on the coupling
strengths of these new forces.

B. Radiatien damping and the orbital period
derivative

If the pulsar and its companion carry charges Qz and

Q which are the sources of a massive vector or scalar
field, then the binary system would radiate energy in
addition to the usual gravitational radiation. This radia-
tion manifests itself as a secular decrease in the system's
orbital period Pg. The rate at which the orbital period
changes Pg (averaged over one orbital period) is related
to the total time-averaged power (E«) radiated by the
system by [31]

3 (E...)
P~ 2 E, ~' (4.1)

where Et,t is the total energy of the system. However, we

noted earlier that galactic rotation will affect PP5' mea-
sured by an observer on the Earth. To isolate the efFects
due purely to radiation damping we rewrite Eq. (4.1) as

P'obs —gal
5

Pg

3 (E...) (4.2)

(Et t) = (EGR)+(EX), (4.3)

where (EGR) is given by [11,36]

where P&
' s is obtained by subtracting nonradiative

effects due to the galactic rotation &om the observed or-
bital period derivative.

The total time-averaged radiated power can be ex-
pressed as the sum of the power radiated by gravitational
radiation (EGR), and that radiated by other fields (Ex):

TABLE II. The orbital period derivative for PSR 1913+16:Observation versus theory [33]. The
uncertainties in the last digits are quoted in parentheses.

Parameter

Observed value P&

Galactic contribution P&
'

Intrinsic orbital period decay P ' = P ' —P
General relativistic prediction P&
pobs —gal g pQR

/ b

Value (10 ' s s ')
—2.4225(56)
—0.0124(64)
—2.4101(85)
—2.4025(1)

1.0032(35)
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1+ (73/24)e2 + (37/96)e4
gCR(~) = (,)„], (4.5)

Using Eq. (4.2), the ratio of the change in the orbital pe-
riod due to these other sources of energy loss P&, to the
total period change Pb is (to first order in (E~)/(EGR))

192m /2vrGi
(EGR) = —

~

mim2(mi + m2) gGR(e).
E&&)

(4.4)

Here e is the orbital eccentricity and

so as to not substantially affect the purely gravitational
orbital trajectory. The time-averaged power radiated can
then be found by inserting Eq. (4.10) into Eqs. (2.72a)
and (3.19b), respectively:

(4.11a)

(4.11b)
Px PGR (E )

P Pobs —gal (g
(4.6) where

1 —~
gv(p, e) = ).2n Z„(ne)+ ~, ~

Z„(ne)
P~ 3 (E~)
Pg 2 Et t

(4 7)

PGR
b )

——0.9968 + 0.0035.
6

(4 8)

After effects due to the relative motion between the so-
lar system and pulsar are included, present observations
indicate that gravitational radiation accounts for nearly
all of the effects on the orbital period derivative (Table
II) [33]:

n)np

x 1 — — 1 + — —
, 4 12a

(4.12b)

and

1 —e
gs(y, , e)—:) 2n J„' (ne) +

~
g„(n~)

2 3/2

x 1—

Hence from Eq. (4.6) we have

(&x) = 0.0032 + 0.0035.
(E.R)

(4.9)

cd
Ao

2~%
(4.13)

Since the total energy Et t is given to lowest order by
it usual Newtonian form

C. Radiation limits on new weak forces
Gmpmctot-

2a
(4.14)

mpmc
P mp+ mc

(Q„Q,) a

(m& m ) A

Using the results Erom the previous sections we can cal-
culate the contribution to the total radiation of our puta-
tive massive vector and scalar fields. Since the character-
istic speeds in the pulsar system are of order v/c 10
the long wavelength approximation is valid. If we assume
that the total charge of the system is constant, so that the
lowest radiated multipole is dipole, then the total power
is given by Eq. (2.72a) for massive vector fields, and by
Eq. (3.19b) for massive scalar fields. Both of these for-
mulas depend on the Fourier component p„of the dipole
moment for a system of two bodies orbiting under the
influence of an inverse square force law [34]:

~ ~ 32mpmc

G(m„+ m. )'

S 16m,„mc
G(m„+ m. )'

gv p, &

(4.15a)

f ) Q„ Q, )
P')g P ~' ')

(4.15b)

where we have used eo ——2m/Pb.
Before continuing, we discuss some of the general fea-

tures of these results. First, for dipole radiation, the
difference of the charge-to-mass ratios,

then the orbital period derivative due the radiation of
vector or scalar fields is found by combining Eqs. (4.14)
and (4.7) with Eq. (4.lla) or Eq. (4.11b):

x g„'(ne)x+ i
1 —e2

g„(ne)y (4.10) Qp Q.
m mp mc

(4.16)

Here m„and m, are the masses of the pulsar and its
companion, a is the semimajor axis of the relative orbit,
e is the orbital eccentricity, Q„(z) is the nth order Bessel
function, and the prime on the Bessel function denotes
differentiation with respect to its argument. In deriving
Eq. (4.10) it is assumed that the interaction between the
two bodies via this new field is much weaker than gravity,

appears. It follows that in highly symmetric binary sys-

tems, where A(Q/m) can be very small, dipole radiation
would be suppressed and the dominant radiation multi-

pole would be electric quadrupole (magnetic dipole radi-
ation vanishes for a system containing only two bodies

[26]). Secondly significant radiation will occur only if
no = m~e /Ruo + 1 or, using Eq. (4.13), if the range A
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of the new interaction satisfies A = 1/IIl + cps/2m. For
the binary pulsar PSR 1913+16,pb = 27907 s so it will
radiate significantly for A & 10i2 m 10 a. More gener-
ally, a binary system will produce substantial radiation
for massive fields only if the range of the interaction is
much larger than the characteristic size of the system.

To obtain practical expressions that can be used to
constrain the parameters of new forces, we return to
Eq. (4.6) where the ratio (Ex)/(EGR) appears. By com-
bining Eq. (4.4) with Eqs. (4.11a) and (4.11b) we obtain
the ratios

in units of the mass of a hydrogen atom. Combining

Eq. (4.21) with Eqs. (4.19a) and (4.19b) gives

(Ev) Ger gv(p, e) (Np N, &

(Eca) 8 ~GR+sgca(e)(1 —e ) (Pp $4)
(4.22a)

pc )
(4.22b)

(Ev)
(E.R)

5 c gv(p, , e) Pb

48 GgcR(e) 2n.G(mp + m, ) (mp mc)

(4.17a)

where (v and Q are the dimensionless coupling strengths
for vector and scalar fields. The dependence upon ( and
N; in Eqs. (4.22a) and (4.22b) can be isolated and, using
Eq. (4.6), takes the form

N„ N, l
E&p

(EGR)

5 c gs(jl, e) Pb

96 Ggca(e) 2xG(mp + m, ) (mp mc j
(4.17b)

8 gcR(e) ( Pb
( —")5' gv(P, e) ( P~' ' s )

(4.23a)

t'Np N )
sl

(Pp I c)

where Kepler's third Law has been used to eliminate the
dependence upon a. Equations (4.17a) and (4.17b) can
be simplified even further by first noting that the rate of
periastron advance ~GR predicted by general relativity
can be written as

16 ~ gca. ( )ldCRpb—(l —e ) 1—
5' .g (v, )

PGR

pobs —sal
~b

(4.23b)

6x
c2P,(1,2)

67rG(mp + m. )
c2Pba(1 e2)

2mG(mp + m. )
Pg

(4.18) gv(p = 0 e) = gs(ll = o e) = gx(e) (4.24)

where the inequality has been introduced to accommo-
date the possibility that more than one force contributes
to the radiated power. For infinite-ranged fields (IIi = 0),

Combining Eq. (4.18) with Eqs. (4.17a) and (4.17b) we
find

(Ev) 57I' gv(p, e)

(EGR) 8 G~GRPbgGR(&)(1 & )

(Es) 5m gs (p, e)

(Eca) 16 G~GRpbgGR(e)(1 —e )

&Qp Q. &
'

gamp

mc p

(4.19a)

&Qp Q. &
'

(mp mc)
(4.19b)

It is convenient to rewrite the charge-to-mass ratio
Q;/m, in terms of dimensionless quantities. Using the
dimensionless interaction strength (, defined by

Gm02
(4.20)

(4.21)

» Eq. (4.21) N; = Q,/f and p; = m;/. mH is the mass

where f is the coupling strength of the new force and
mII = m(iH ) = 1.00782519(8)u is the mass of hydro-
gen, one obtains

where [36]

OO
1 —e2

gx(e)= ).2n' Z„"(ne) + l, l
Z„'(rid)

)
2 +

2(1 e2)~/2
' (4.25)

jyGR

i
= 1 —h = 1 —(0.0032 + 0.0035).

b

(4.26)

The constraints imposed on new weak forces for the bi-
nary pulsar PSR 1913+16can be expressed in the form

These results are applicable to any binary system. If
we now restrict our attention to PSR 1913+16, then us-

ing the results &om Table I we have a = 8.42 x 10
rad/s, Pb = 27, 907 s, e = 0.6171, gca(e) = 11.9,
pp 1 71 x 10 aIld p: 1 65 x 10 Since the eKects
of new forces on the periastron advance are expected to
be small, it is sufhcient for the accuracy needed to set

Finally, we have seen in the previous section
that Pb /P&

' s is roughly unity within present un-
certainties, and hence, it is convenient to write
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(N~ N, & 2.45 x 10

E pn pc ) gv(p, ~ = 0.6171)

(X„N,b 4.90 x 10

( p,„p,) g s(p, e = 0.6171)

(4.27a)

(4.27b)

For massless fields, Eq. (4.25) gives g~(s) = 3.95 which
leads to the constraints

A m oo:

Amoo:

&620 x10 b,
(' N„X,

~)
& 1.24 x 10 8.

(N~ N,

~)

(4.28a)

(4.28b)

The numerical values for pp and p, have not been in-
serted, since in certain applications the ratio X;/p„ is
more easily calculated than ¹ or p, alone. We now ap-
ply these results to several interesting cases.

D. Electromagnetic radiation from the binary pulsar

If the pulsar and/or its companion have a net electric
charge, then the binary system could be a source of elec-
tromagnetic (as well as gravitational) radiation. Since
the observed rate of energy loss agrees well with that
predicted by general relativity, we can use the results in
Eqs. (4.8) and (4.9) to set limits on the charge carried
by the pulsar and its companion. In the electromagnetic
case, the range of the force is infinite and the fundamen-
tal unit of charge is the electronic charge fi = e (in
Gaussian units), so the dimensionless coupling constant
(EM is known:

efFect implies

Z &10" (4.33)

eZq
,' &( (4.34)

where q is the charge of a typical particle in the interstel-
lar medium and m is its mass. For an electron, the parti-
cle with the largest charge-to-mass ratio q/m, Eq. (4.34)
leads to the constraint [39]

Z « 5 2 x 10,7(MI
Mo

(4.35)

which is somewhat more restrictive than our radiation
constraint Eq. (4.32). There is, however, a constraint
which is more stringent than either (4.32) or (4.33). This
follows from the observation that a charged astrophysi-
cal body cannot possess a substantial electric charge for
a long period of time since it would accrete oppositely
charged matter from the surrounding plasma [38]. To
obtain an estimate of the limits on Z implied by this argu-
ment, consider an object of mass M and charge Q = eZ
surrounded by a plasma containing positive and negative
charges. If Z is too large, so that the net electrostatic
force dominates over gravity, the star will selectively ac-
crete particles of opposite charge, thereby neutralizing
itself. If, on the other hand, the gravitational force is
dominant, then the matter accreted would be nearly neu-

tral since gravity attracts positive and negative charges
equally. For gravity to dominate over Coulomb forces,
and thus prevent the star from neutralizing itself, we

must have

e2
(EM =

z
——1.23 x 10

Gm~2
(4.29)

For PSR 1913+16this gives

Z& 10", (4.36)

The unknown quantities are the numbers of charges,
%p Zp and X, = Z„on the pulsar and its compan-
ion. Let us consider, for example, a scenario in which the
pulsar and companion carry equal and opposite charges,

Z=—Zp=-z. (4.30)

Z&59x10 b / (4.31)

Using the present value of b given by Eq. (4.26) we find

so that the net charge of the binary system is zero. Since
electrodynamics is a vector interaction, Eqs. (4.29) and
(4.30) can be combined with the infinite-range vector
constraint Eq. (4.28a) and the numerical values for p~
and p to obtain the radiation constraint on Z:

which is substantially more stringent than the other
constraints. It should be emphasized, however, that
Eqs. (4.33) and (4.36) are theoretical bounds, while

Eq. (4.32) results from direct observations. Finally, the
constraint given by Eq. (4.32) can be shown to be con-

sistent with the assumption that the orbital motion does
not deviate significantly &om that determined by gravity
alone.

While the radiation limit obtained by Eq. (4.32) is not
as restrictive as the others described, this value will con-
tinually improve with observation time. Furthermore,
PSR 1913+16is only the first binary pulsar system to be
observed long enough to obtain useful limits. It is not
diKcult to envision other binary systems whose orbital
parameters would allow which much tighter limits can be
set.

Z & 10". (4.32)

We note that Eq. (4.32) is consistent with other con-
straints on the electric charge carried by astrophysical
bodies. If the charge were too large, the resulting elec-
tric field could produce enough electron-positron pairs to
neutralize the object even in a vacuum. Hanni [37] has
found that for neutron stars, this vacuum polarization

E. Radiation from vector and scalar fields coupled
to baryon number

Another interaction that can be constrained by the bi-

nary pulsar is that of a vector Geld coupled to baryon
number B. Such a force with inGnite range was first pro-
posed by I ee and Yang [40], while a short-ranged ( 10—
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10s m) baryonic interaction (the "fifth force") has been
considered recently by a number of authors [1—3,5,9], In
Eqs. (4.27a)—(4.28b) let Nz ——Bz and N, = B, be the
baryon numbers of the pulsar and its companion, and
we wish to constrain the dimensionless coupling constant
(s associated with this interaction. Although the binary
pulsar is not useful in setting limits on interactions such
as the proposed "6fth force" which have short ranges,
we will investigate the constraints for ranges much larger
than the dimensions of the pulsar system as in the origi-
nal Lee-Yang theory.

For astrophysical bodies, it is convenient to define the
baryon mass M~ by

Mg —=Bm~ (4.37)

which is simply the mass of the constituent particles. M&
is related to the "gravitational mass" M of the body (the
actual mass determined by a gravitational measurement)
by

M blDd 1Ilg
A

Q2 ) (4.38)

where Eb;„d;„s is the absolute value of the binding energy
of the object. In terms of M~ we have

B Mg/mrf Mg

p M/mls M ' (4.39)

which then allows one to express the difference in charge-
to-mass ratios of the pulsar and companion as

(B) (Bp ) f B,) f Mg~ l Mg, &

E&) E&p) && ) & p) km )
(4.40)

Eb;„s;„s 1.5 x 10
~ ~

ergs.
i Mo)

(4.41)

Combining Eqs (4.38), (4.40), and (4.41) we find

Although one cannot determine M~/M precisely for the
pulsar or its companion, existing models yield equations
of state that can give reasonable estimates. For example,
interpolating the values of M~ for most of the models
given by Arnett and Bowers [41],one finds for the binary
pulsar system that typically B/p 1.1 (i.e., the binding
energy is about 10% of the total mass), and that b, (B/p)
lies in the range 0.004—0.008. Lattimer and Yahil [42]
have found for the neutron star models they consider,
that for M ) Mo, the binding energy is related to the
mass by

tios can be relatively small, which reduces the radiated
power &om such sources and hence their sensitivity to
new forces. By contrast, the difference in charge-to-mass
ratios would be significantly larger if the companion were
a white dwarf or a black hole. In the former case, its grav-
itational binding energy would be negligible (B,/p, 1),
which gives b (B/y) 0.1, a factor of 20 larger than for
a neutron star companion. If the companion were a black
hole, then the implication of various "no hair" theorems
[43,44] is that B, = 0, and hence 6(B/IJ, ) 1.1 for a
long- (but finite-) range field coupled to baryon number.
Since the limits on the coupling strength (v (or (8) in
Eq. (4.27a) are proportional to [b,(B/p)], the sensitiv-
ity of a binary system increases dramatically when the
pulsar and its companion are more dissimilar, as we see
&om Table III.

To obtain numerical limits on the dimensionless cou-
pling strength (s we apply Eqs. (4.27a) and (4.28a)
using the above results for E(B/p). However, since

gv (p, E) & gv'(p = 0, e), the most stringent limits come
from the massless, in6nite-range interaction, and hence
these are the constraints that are tabulated in Table III
for three possible pulsar companions. The radiation lim-
its for an infinite-range force coupled to baryon number
are still much weaker than those obtained by other meth-
ods. For example, torsion balance experiments by Adel-
berger et at. [45] using the Earth as a source have found

(s + 10, while Braginskii and Panov [46] performing
a similar experiment using the Sun as the source found

10 [45]. If the range of the interaction is finite,
then the radiation limits obtained by the pulsar will be
weaker still than those obtained by more conventional
experiments.

The results for the vector field case can be taken over
to set limits on the dimensionless coupling Q of a scalar
field coupling (approximately) to baryon number. In the
limit p -+ oo, we have seen in Eq. (4.24) that g& gs, so
it follows &om Eqs. (4.27a) and (4.27b) that the limits
on a scalar coupling to baryon number difFer &om the
vector coupling by a factor of 2 (Table III).

V. CONCLUSIONS AND OUTLOOK

In this paper a formalism for computing multipole ra-
diation for massive vector and scalar fields has been de-
veloped. In addition to con6rming some results of earlier
workers, we have developed for the 6rst time relatively
simple formulas for monopole, dipole, and quadrupole
radiation. As we have shown, one application of this for-
malism is to obtain constraints on new weak forces from

0.084
( [

—
( /

= 0.005, (4.42)
/Bit (m~ ~ I'm

I p) i M~) gMo)

which is consistent with the results obtained from Arnett
and Bowers.

Equation (4.42) highlights an important feature of bi-
nary systems such as PSR 1913+16, where the pulsar
and its companion may be similar in mass and compo-
sition. In such cases the difference in charge-to-mass ra-

Companion

Neutron star
White dwarf
Black hole

&(&i~)
0.005
0.1
1.1

(5 m~x (vector)
25 x 10
62x10
51x10

(scalar)
1.3 x 10
3.1 x 10
26x10

TABLE III. The constraints on the massless baryon cou-
pling constant gs for vector and scalar couplings of the
three possible companion objects have been calculated using
Eq. (4.28) and the present 2a' value h 10
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radiation by binary pulsar systems. Unfortunately the
best known binary system, PSR 1913+16, has limited
sensitivity to new forces if the companion is also a neu-
tron star. At the same time our results also demonstrate
that for less symmetric binary systems (e.g. , neutron
star-black hole) very stringent limits can be obtained. We
have also emphasized that the binary systems will pro-
vide ever-refined limits on new forces as data accumulate
over time. It is also worth noting that we can invert the
line of reasoning we have been pursuing to infer from Ta-
ble III that the radiation rate expected from new forces
cannot upset the existing agreement between observed
and expected rates for gravitational radiation. This fol-
lows by observing that the limits for various new fields
that are obtained from laboratory experiments [I—5] are
more stringent then those appearing in Table III. Hence
if we were to combine these results with our formalism,
the rate of energy loss via new fields would be smaller

then the present uncertainties in the comparision of the-
ory and experiment for gravitational radiation.

As new binary systems are discovered, and data on ex-

isting binaries accumulate, the radiation losses into pos-
sible new fields will provide an ever more refined tool for

setting limits on the couplings of new forces. Eventually
these could complement those obtained from laboratory
experiments in a significant way or, perhaps, even exceed
them.
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