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%'e consider four-dimensional quantum field theories which have a continuous manifold of ine-

quivalent exact ground states —a moduli space of vacua. Classically, the singular points on the moduli

space are associated with extra massless particles. Quantum mechanically these singularities can be

smoothed out. Alternatively, new massless states appear there. These may be the elementary massless

particles or new massless bound states.

PACS number(s): 11.30.Pb, 11.15.Tk

I. INTRODUCTION

Supersymrnetric quantum field theories are easier to
analyze and are more tractable than nonsupersymmetric
theories. The main tool which makes them simple are
the constraints which follow from supersymmetry. In
particular, the holomorphicity of the superpotential when
combined with global symmetries enables one to find
many exact results. For example, recently it has been
shown that both the perturbative nonrenormalization
theorems and a new nonperturbative generalization of
them are simple consequences of these principles [I].
Other exact results about the superpotential which do not
follow trivially from the symmetries will be presented in

[&1
One application of these theories is for dynamical su-

persymmetry (SUSY) breaking. We will have nothing
new to say about it here. Instead, we will focus on anoth-
er application. Since some observables in these theories
are exactly calculable, these theories are interesting are-
nas for the study of dynamical effects in strongly coupled
four-dimensional quantum field theories. For example,
here we will present theories which exhibit surprising
patterns of chiral symmetry breaking and massless bound
states and mill argue that some theories have a nontrivial
critical behavior associated with massless interacting
gluons.

Many of these theories have classical flat directions
and hence the classical theory has a space of inequivalent
ground states. We will refer to this space as the "classi-
cal moduli space. " It is singular at the points where the
number of massless fields is increased. The degeneracy
between these states cannot be lifted perturbatively. In
some cases nonperturbative effects generate a superpoten-
tial on the space which destabilizes these vacua. In other
cases, no superpotential is generated and the vacuum de-
generacy cannot be lifted. Then it is of interest to study
the quantum moduli space. Of particular interest is the
fate of the singUlarities on the classical space.

This situation is analogous to two different problems in
string theory. First, classical string theory has moduli
spaces which can be studied in the a' (large radius) ex-
pansion. It is known that the classical (in the sigma mod-
el sense} moduli space is different than the quantum one.

World sheet instantons modify the space, can change its
topology and can even connect it to a different space.
The second stringy analogue of our moduli spaces are in
the space time interpretation. Some of the string moduli
spaces might be exactly stable in the full quantum string
theory (for example, if there are several unbroken super-
symmetries in space time). Then, it is interesting to know
how the classical moduli space is modified quantum
mechanically. For example, it is known that classically
the dilaton Kahler potential is E=l n(S+S t.}If the
number of space-time supersymmetries is larger than one
the vacuum degeneracy associated with the expectation
value of S might not be removed. What is then the quan-
tum Kahler potential? Can the strong coupling region of
small ReS be absent?

We do not have a complete theory of these moduli
spaces and their nature in many cases is not clear to us.
However, we will discuss here three examples. In the
first, the quantum moduli space is different than the clas-
sical one and the classical singularities are smoothed out.
In the second example, the quantum space is the same as
the classical one but the physical nature of the singulari-
ties is different. In the classical theory the singularities
correspond to massless gluons and in the quantum theory
it is associated with massless bound states. In our third
example the classical and quantum moduli spaces are
identical. Furthermore, both the classical and the quan-
tum theory have massless gluons and quarks at the singu-
lar points. In quantum theory these massless interacting
fields correspond to a nontrivial four-dimensional critical
point.

In Sec. II we review the classical field theory of super-
symmetric @CD and present the classical moduli space of
the massless quark theory. In Sec. III we review some
known results about the quantum theory. For massless
quarks the quantum theory with fewer flavors than colors
has no ground state. When the number of flavors is
larger or equal the number of colors the theory has a
quantum rnoduli space of inequivalent ground states.
Section IV discusses the situation for equal numbers of
flavors and colors where the classical singularities on the
rnoduli space are blown up. On this space me find points
with unusual patterns of chiral symmetry breaking. Sec-
tion V discusses the ease when the number of flavors is
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one plus the number of colors. The quantum rnoduli
space is the same as the classical one but the interpreta-
tion of the singularities is different. At the singular
points there are new massless bound states and some or
even all of the chiral symmetry of the model is unbroken.
Our understanding of the situation with larger number of
flavors is limited. We present it in Sec. VI. We speculate
that the singular points might be associated with massless
interacting gluons. Unfortunately, we can prove that this
is the case only for some range of N, and N&.

After completing this work we received a paper [3]
which partially overlaps with ours.

II. CLASSICAL MODULI SPACES

We will be studying supersymmetric QCD. The theory
is based on an SU(N, ) gauge theory with NI flavors of
quarks, Q' in the N, representation and Q, in the N, rep-
resentation (i,7=1, . . . , N&). The anomaly free global
symmetry is

SU(NJ ) X SU(N/) XU(1)BXU(1)j( (2.1)

where the U(1)j( charge of Q and Q is (NI N, )/N—&.
For N, =2 there are 2N& quarks, Q'. The global symme-

try is

"baryons" 8, 8 )

M,'=Q'Q

1 i i 1V

N +l' v +2, . . . , N N ( (, . . . , 'v
c c '' '' f c' ' '' f

(2.7)

W +l'W +2, . . . ,

detM —BB=0 . (2.8)

For N&
=N, + 1 there are three constraints:

'v
C'

l N

ll

lN
M ' —B B =0

Nf

whose U(1)jj XU(1)j( charges are [0,2(N& N, /—N&)],
[N„N, (N& N,—/NI ) ] and [ N„N—, (N& N, /—NI ) ].
For NI (N, the baryons B and B do not exist and the flat
directions are the space of M's. For N& ~N, flat direc-
tions are the space of M, B, and B subject to the con-
straints following from Bose statistics of the fundamental
quarks. For N& =N, there is only one constraint:

SU(2N/) X U(1)„ (2.2) B;M' =0, (2.9)

and the U(1)„charge of Q is (NI 2)/N&. —
An important property of these theories is the ex-

istence of classical flat directions. For N, =2 the classical
flat directions (up to gauge and global symmetries) are

(2.3)

V)j—Q (Q j (2.4)

The classical moduli space can be described as the space
of Vs subject to

V1 2V3 4

1, . . . , 2%f
(2.5)

(which is meaningful only for N& 2). This constraint
equation can also be understood as a trivial consequence
of the Bose statistics of the underlying quark superfields.

For nonzero V the gauge symmetry is completely bro-
ken and the global symmetry (2.2) is broken to

SU(2) XSU(2N/ —2) XU(1)„, (2.6)

where this U(1)z is a linear combination of the original R
charge and a generator in SU(2N&). The massless com-
ponents in V are in the (2,2N& —2)(jv j)j()v ))+(1,1)()f f
representation of the unbroken global symmetry (2.6).
One of the scalars in (1,1)o represents the inequivalent flat
directions labeled by a and a11 the other scalars are Gold-
stone bosons.

Similarly, for N, ) 2 the flat directions can be labeled
by the gauge invariant combinations ("mesons" M and

They can be described by the gauge-invariant combina-
tions

M~B'=0 .

Various points on the classical moduli spaces exhibit a
different unbroken gauge and global symmetry. The un-
broken global symmetry can easily be identified by exam-
ining the expectation values of the gauge invariant order
parameters (2.4) and (2.7). The generic point on the
moduli space has an unbroken SU(N, N&) gauge s—ym-

metry which is absent for N&&N, —1. Special points
where B=B=0 and M has fewer than N, —1 nonzero ei-
genvalues ( V=o for N, =2) have enhanced gauge sym-
metries. At these points the classical moduli spaces are
singular.

III. THE QUANTUM THEORY

The quantum theory was studied by several groups us-

ing different techniques. The authors of [4] advocated
the use of an effective Lagrangian involving the light
meson fields M and the glueball field S= ( I /32m)W and.
imposed the anomalous Ward identities on the superpo-
tential. On the other hand, Ref. [S] followed the Wilsoni-
an approach and focused only on the light fields. Then,
the anomalous Ward identities should certainly not be
imposed. Since we are interested here in the moduli
space, we should follow the point of view of [5] and keep
only the light fields. In general, a Wilsonian effective ac-
tion with at most two space-time derivatives must include
a11 the massless fields. It may include some of the mas-
sive fields after others have been integrated out. In this
case it reproduces the correct dynamics of the light fields
but might lead to incorrect answers for the massive ones.

Dynamical calculations in these theories were per-
formed using instanton methods. Reference [6] studied
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these theories along the flat directions and performed the
instanton calculations in the Higgs picture. The CERN
group [7) applied the instanton method of [8] and con-
sidered the theory near the origin in field space Q=O.
For Nf &N, —1 the two approaches lead to qualitatively
consistent answers (Ref. [9] claims that the details are not
consistent}. For Nf ~N, the authors of [7] did not agree
with the conclusions of [6].

To control the theory along the flat directions we can
add mass terms to the superpotential m,'Q'g . Later we
will also add terms of the form bB+ bB for Nf ~ N, .

For detm@0 all the flat directions are lifted and classi-
cally M =8=8=0. Quantum mechanically the expecta-
tion values are different. Expectation values of lower
components of chiral superfields are holomorphic in m
and must respect selection rules under the global symme-
try (2.1) of the massless theory [7]. This leads to

massless theory. By taking m to zero we should find a
point on that space. It is enough to diagonalize m (for
N, =2 bring m to a block diagonal form with every block
proportional to cr ) with eigenvalues m;. One way to see
that a nontrivial quantum moduli space exists is to note
that the limit m,.—+0 is not smooth and the limit of the
expectation values depends on the way it is taken. Below
we analyze this problem for different values of Nf.

IV. THE QUANTUM MODULI SPACE FOR NJ =N,

It is easy to see using (3.3) that the classical constraint
(2.8) [or (2.5) for N, =2] is modified quantum mechani-
cally to

M'=(Q'Q )-A ' J '(detm)'7 7 Pl
(3.1}B=B=0 .

2N
detM —BB=A

PfV=A for N, =2 .
(4.1)

If we also add bB+bB the expectation values of B and B
do not vanish. The phases. from the fractional power
1/N, correspond to N, different ground states —exactly
as predicted by the Witten index. For N, =2 with the
mass term m; Q'g J these become

EJ

V'J =
& g'g J &J-A J (Pfm )'"—

m
(3.2)

M'(g'g ) =A ' '(detm }
7 m

EJ

V'J= (Q'QJ) =A (Pfm )'J
(3.3)

It is crucial that these expectation values are exact and
are not just approximate.

For Nf &N, the light fields can be represented by M.
Its expectation value (3.3) can be obtained from the
effective Lagrangian [5]

Explicit calculations [6,7] show that the coefficients of
order one in these relations do not vanish. Therefore, we
can redefine A such that

This modification is due to a one instanton effect. As
mentioned above, the classical constraint follows from
Bose statistics of the quark superfields. However, such a
condition does not necessarily apply quantum mechani-
cally. Note that these relations are true for every m and
not only in the limit m ~0.

We therefore conclude that the classical moduli space
which was defined by (2.5} and (2.8} is modified quantum
mechanically to the space defined by (4.1). Far from the
singular points of the classical moduli space where semi-
classical analysis is reliable the quantum space is very
similar to the classical one. However, the quantum
modification is crucial as it "blows up" the singularities;
the singular points 8 =8=0 with at least two vanishing
eigenvalues of M( V=O for N, =2) are not on the quan-
tum moduli space.

It is amusing to note that since the quantum moduli
space is different than the classical one, the low energy
effective Lagrangian may have solitons. Such states can-
not be understood as solitons on the classical moduli
space.

Some of the points on the manifold (4.1) have an
enhanced global symmetry.

(1) For N, =2 the points related to

(3Nc Nf )/(Nc Nf )

Wd„„—(N, Nf ) . .
—

. +mM .
(detM )

(3.4)
cr2

V=A (4.2)

Again, we should stress that this expression for the super-
potential is exact [1].

For Nf N, an effective Lagrangian description is
more subtle. It is easy to see that using the constrained
light fields or the elementary quark superfields Q and Q
no invariant superpotential can be written in the massless
theory. Therefore, the classical vacuum degeneracy can-
not be lifted [5,6] and the quantum theory has a moduli
space of ground states. This is the point which was ques-
tioned in [7].

It is of interest to find the quantum moduli space of the

by the SU(4) symmetry break it to Sp(4). This is the natu-
ral guess for the pattern of chiral symmetry breaking in
theories with matter in a pseudoreal representation.
What is somewhat unusual is that the R symmetry is un-
broken. Therefore we should check the 't Hooft anomaly
conditions associated with it. The high energy fermions
are in 2X4 i+3 X 1i of Sp(4) XU(1)z. The low energy
fields are the fluctuations of V around the expectation
value (4.2) subject to the constraint (4.1). Their fermion
components transform like 5

&
under the unbroken

group. The nontrivia1 anomalies which should be
checked are
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Sp(4) U(1)i, —2d' '(4) = —d'~'(5)

2X4X( —1)'+3=5X(—1)', (4.3)

corresponding to the breaking of the flavor

SU(N/)XSU(NI) symmetry to the diagonal SU(N&).
Again, since U(l)s is unbroken, we should check the 't

Hooft anomaly conditions. The high energy fermions are
in N& X (N& ), , +Nl X (E&), , + (NI —1)X lo, under

SU(N&)XU(1)ii XU(1)R. The low energy fields are the
fluctuations of M, B, and B around the expectation values
(4.4) subject to the constraint (4.1). Their fermion com-
ponents transform like (NI —1)o,+1 z, + I+
under the unbroken symmetry. The nontrivial anomalies
are

SU(N/) U(1)R N/d' '(N—/) N/d' '(N—/)
= —d ~'~(N' —1)

U(1)R

U( I )e U( I )ii

2N/( —1) +(N/ —1)

=(N/ —1)( —1) —2,
(4.5)—2Nf,

2N/+ (N—I —1)= (N/ 1)—2—,
—

where d' (r) is the quadratic SU(N&) Casimir operators
in the r representation. Again, the anomalies match.

(3) Another generalization to arbitrary N, has

U(1)R

(4.6)

where the SU(N&) X SU(N& ) chiral symmetry is unbroken
and only the baryon number symmetry U(1}e is spon-
taneously broken. As before, at these points the 't Hooft
anomaly conditions provide a powerful consistency
check. The low energy fermions are in the (NI Xf)-—

f

+(1,1), representation of SU(N&)XSU(N&)XU(1)R.
The relevant anomalies which should be checked are

SU(N/)' Wfd' '(Nf ),
SU(N/) U(1)i, N/d' '(N/—),

—X —1
2f

—N —12f

U{14

U(1)R

(4.7}

where d' '(r) is the cubic SU(N&) Casimir operators in
the r representation. Again, the anomalies match be-
tween the macroscopic and microscopic levels.

The authors of [7] have already noticed some of these
anomaly matching conditions which led them to conjec-

U(1)ii 2X4X( —1)+3=5X(—1),
where d' '(r ) is the quadratic Sp(4) Casimir operators in
the r representation. Note that the anomalies at the mac-
roscopic and microscopic levels are the same.

(2) One generalization of these points to arbitrary N, is

B=B=O,
(4.4)

ture that states with these quantum numbers could be
massless. The novelty of our analysis is the identification
of the quantum moduli space which includes both these
special points and the semiclassical fiat directions of [6].

In order to obtain these results from an effective La-
grangian we need to impose the constraint (4.1). One way
of doing that is using a Lagrange multiplier field X with
the superpotential

2NW= X(detM BB——A I ),
W=X(PfV —A ) for N, =2. (4.8)

N8 =+i A '

B=+iA '

b

b

I /2
b

b
(4.9)

detM(M ') =0,
which means that there is a moduli space of solutions
where M is an arbitrary matrix with at most Nf —2

nonzero eigenvalues.
Semiclassically, at large field strength, this moduli

space can be understood as follows. The expectation
value Q =Q with only NI —2 nonzero eigenvalues is a flat

direction of the theory with the superpotential. It breaks
the gauge group to SU(2). N&

—4 chiral superfields ac-

quire masses in the Higgs mechanism and eight more
from the superpotential. The remaining Nf —4 light
fields include the Goldstone bosons of the broken genera-
tors in the SU(N&) X SU{NI ) global symmetry and the pa-
rameters which label the flat directions. Since the unbro-
ken SU(2) gauge theory has no light quarks, it can easily
be integrated out. Its scale AL is determined by

2N 2N —4 — N —2 2 6A —Q /bb(Q I ) Al where the numerator
arises from the Higgs mechanism and the denominator
from the mass term in the superpotential. Since Al is in-

dependent of Q, gluino condensation in the unbroken

gauge group cannot lead to a superpotential for the light
fields. Furthermore, it is easy to use the symmetries of
the problem and to show that no invariant superpotential
can be generated. Therefore, the flat directions are not
lifted.

We now study some perturbations on the quantum
moduli space.

(/) Examp/e 1: W, =m+'. If the superpotential (4.8)

is perturbed by mass terms, i.e., the tree level superpoten-
tial W, =m /if' (or m, j V'~ for N, =2) is added to it, the

expectation values {3.1), (3.2) are found. In the special
case where n (Nf of the masses vanish we can integrate
out the massive quarks and X in the effective Lagrangian

(3N —n )/(N —n )

and find W,z=(N, —n )AL
' ' /det'M where the

determinant is only over the massless modes and the low
2Nf /(3%f —n ) 1/(3' —n )

energy scale AL =A ~ ~ ( ff;m; ) I, exactly
as in (3.4).

(2) Examp/e 2: W, =bB+bB Aless. trivial application
with a nontrivial moduli space arises when the massless
theory is perturbed by bB+bB Adding .this to (4.8) we

find

1/2
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The gauge invariant description of this moduli space is
in terms of the matrix M constrained to have at most

Nf —2 nonzero eigenvalues. This manifold is singular
when M has fewer than Nf —2 nonzero eigenvalues. The
most singular point is M=0. Classically, these singulari-
ties represent enhanced gauge symmetry at these points.
Quantum mechanically, we expect the gluons of these un-
broken gauge symmetry to confine and not to be mass-
less. Instead, there might be other massless fields. Since
our order parameter is M, we should find an effective La-
grangian for M. The symmetries including the explicitly
broken ones as in [1]lead to

W=')/bb A fh de™
(4.10}

2Nf

for some function h. In the next example we will in-
tegrate out B and B more carefully and will show that
h(t)=+2&t —1. The two signs correspond to the two
values of B and B (for a more detailed discussion of such
phenomena see [2]). The supersymmetric ground states
which follow from this Lagrangian satisfy detN(1/M)
=0 exactly as in the full theory and as expected in the
semiclassical region. Furthermore, at the singular points
of this manifold, the unbroken global symmetry is
enhanced and more components of M become massless.
They join the other massless fields to representations of
the unbroken symmetry. In particular, for M =0 the glo-
bal SU(Nf)XSU(Nf) is unbroken and all the com-
ponents of M are massless.

(3) Exam@/e 3: W, =m;M,'+bB+bB We now. com-
bine the previous two examples and consider the tree lev-
el superpotential 8', =m,'M'+bB+bB. For simplicity,
we present the answers only for N, =Nf =3. Classically,
there is one vacuum at the origin M =B=B=0
where the gauge group is unbroken and another ground
state with M=(detm /bb )(1/m ), B= —(detm /b b ),
B= —(detm /b b ) where the gauge group is completely
broken. The expectation values in the quantum theory
are determined by

with g = —1 and, for small bb,
' 1/3

1 2 detm
y =co123 + CO

A

detm

bb A3

—1/3

bb+

(4.15)

V. THE QUANTUM MODULI SPACE FOR Nf =N, + 1

As for Nf =N„ the expectation values (3.3) do not
satisfy the classical constraints (2.5), (2.9):

detM
1 —BB =A '

m, ,
2N —1

with co =1.
This example demonstrates that not only can there be a

continuous manifold of inequivalent ground states that
can also be inequivalent discrete vacua. Semiclassically
we found two different ground states. They are most
easily related to the situation for small bb. For bb =0 the
model has only the first three states. The anomaly free
Z6 R symmetry is spontaneously broken by gluino con-
densation to Z2 and the three ground states are related
by the symmetry. These three states correspond to the
unique state we found semiclassically near the origin.
For small bb there are four inequivalent ground states.
The first three solutions near the origin are no longer re-
lated by symmetry. The fourth one which was also ob-
served semiclassically is at large field strength.

We can now use the equations of motion of all the
fields to integrate out B, B, and X and to find an effective
superpotential for M only and thus determine the func-
tion h(t) in (4.10) Generalizing to arbitrary Nf =N„
it is straightforward to find the equations of motion
and to show that they are reproduced by 8',ff

N A j 2N=+2+bb A & (detM/A )—1+mM and therefore,
h (t ) =+2&t —l.

W=X(detM BB—A )+—m;M'+bB+bB . (4.11)

It is easy to see that the expectation values are
PfV—1

V
=A m" .

EJ

(5.1)

Ab y2
detm

Ab
detm

1M=Ay —,3

m

where y satisfies
2—4 detm & detm

bby — y + =0.

(4.12}

(4.13)

detm
3'&234 =4'

1/2

(bb} i'+ detm +
4A'bb

(4.14)

This equation has four solutions. For small detm/A
they are

However, unlike Nf =N, case the classical constraints
satisfied in the m,. ~O limit. Therefore, the quantum
moduli space of the massless theory is the same as for the
classical theory. The only exception is at the singular
points where different light fields might be present. Note
that for m;%0 all values of M and V (and with bB+bB
also of B and B ) can be found. Again, this is unlike the
Nf =N, case. This suggests that a complete description
for nonzero m needs a11 the Selds M, B, and B (and all the
components of V for N, =2) and not only the constrained
ones.

We now discuss the behavior of the massless theory at
the singular points V=O and its higher N, analogues
such as M =B=B=0. Since the expectation values of all
our order parameters vanish there it seems like the full
chiral symmetry should be unbroken there. Since we are
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(N~ —1)d' '(NI),

N~ 1—2

SU(Ng) U(1)„— d' '(Ng ),f R

SU(NI )

planning to use all the components of M, 8, and 8 (all the
components of V for N, =2), it is natural to expect that
all of them are massless there.

For N, )2 the massless quarks in the microscopic
theory transform under the global symmetry (2.1) as

N, X(N&, 1)»z~ +N, X(1,N&), , z~ and there are
f ' f

also N, —1 gauge fields. The fields M, B, and B trans-

form like (N&, N& )0 z&z, (NI, 1)~,~~, I&~ and

(1,N~) + ~i (+ i)/+ respectively. As a first test we
f ' f f

should check the 't Hooft anomaly equations. The non-
trivial ones are

theory. The classical constraint equations (2.5) (2.9)
which are not modified quantum mechanically arise here
as the equations of motion from (5.4).

(3) At the origin all the fields are massless. However,
away from the origin only some of the fields remain mass-
less in a way consistent with the semiclassical treatment.

(4) By adding m,'M,'+O'8;+b, B and solving for the

fields we recover all the results for Nf & N, +1. In partic-
ular, we can add masses to some of the fields, integrate
them out and find the low energy Lagrangian for fewer
flavors.

This theory is similar to the second example in Sec. IV.
There we also found a singular moduli space where the
singularity was associated with new massless fields. As in

that example, the superpotential leads to masses to some
of the fields away from the origin and its equation of
motion are the defining equations of the moduli space.

U(1)q —N +6% —12+- 8 2
f f N N2f VI. THE QUANTUM MODULI SPACE FOR NI ~ N, +2

U(1)ii U(1)„ 2(Nj ——1)

SU(N~) U(1)ii (N~ 1)d' '(N—g),

(5.2)

U(1)~ U(1)s 0,
Nf+2Nf —2

and they match between the low energy and the high en-

ergy spectra. Reference [7] noticed this anomaly match-
ing and conjectured the existence of a ground state with
these massless particles.

For N, =2, the fundamental quarks are in 6, /3 and the
field Vis in 15&&i of SU(6)XU(1)z. The 't Hooft anoma-

ly conditions are satisfied:

It is not easy to extend the previous descriptions for

N&~ =N, +2. As for N&=N, +1, all values of V, M, 8,
and 8 can be obtained and they should all be considered
independent fields. By examining the massless limit of
the expectation values we see that the classical con-
straints are satisfied quantum mechanically. Therefore,
as for N& =N, +1, the quantum moduli space is the same

as the classical one. However, unlike Nf =N, +1, the
singularities cannot be associated with unbroken global
symmetry and massless V, M, B, and B fields. This can
be seen in several ways: (1) The 't Hooft anomaly condi-
tions are not satisfied there; (2) an effective Lagrangian
description depending only on our mesons and baryons is
singular. Consider for simplicity the case of N, =2.
There is a unique invariant superpotential for V:

SU(6)3 2d' '(6)=d' '(15)
(6.1)

SU(6)~U(1)g 2( —~ )d~ '(6)= —Ed~i'(15)

U(1)„

U(1 )ii

12( ——') +3=15(——')'

12( ——')+3=15(—
—,
'

) .

(5.3)

W,s.= (B,MP' —detM ),
f

W,~= — PfV,1

A

(5.4)

which satisfies the following properties.
(1) It is invariant under all the symmetries in of the

problem including the U(1)z symmetry

(2) Its fiat directions are exactly as in the microscopic

Given that there are more massless fields at the origin,
we should be able to find a low energy effective Lagrang-
ian which describes a11 these fields. There is a unique su-

perpotential

Although it leads to the correct expectation values of V

in the massive theory it is singular at V=O. We could

try, following [7] to add the field S. Even without impos-

ing the anomalous Ward identities the symmetries lead to
—2 6—NW=Sf [PfV/(S A )] which is always singular at

V=S=0.
We conclude that a complete gauge invariant descrip-

tion near the origin needs more fields. We could not find

a simple set of fields which could resolve the singularity.
Perhaps the Kahler potential is singular there and the

origin is infinitely far from every point on the moduli

space.
An alternative is that at least some of the elementary

colored fields are massless at the origin. One possibility is

that the gauge group breaks to an Abelian subgroup
there. A more interesting possibility is that the spectrum
at the origin is identical to that in the classical theory.
Clearly, this is the simplest solution of the 't Hooft equa-

tions.
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Massless quarks and gluons are possible only if the
theory is scale invariant. We cannot show that such a
scale invariant theory exists for every Nf ~ N, +2. How-
ever, it is easy to establish it at least for some range of Nf
and N, .

The two-loop P function of this theory is [10)

p(g ) = — (3N, Nf )—+ 2N, Nf 3N-,
16a 128m

+O(g') . (6.2)

The authors of [11] argued that the exact p function
satisfies

g 3N, Nf+—Nfy(g)p(g)=-
16m 1 N, (g—/8n )

(6.3)
g& N, —1

y(g)= — +O(g ),8~' N,

where y(g ) is the anomalous dimension of the mass [Eq.
(6.3) is consistent with (6.2)].

Since there are values of Nf and N, where the one-loop

p function is negative but the two-loop contribution is
positive, there might be a nontrivial critical point [12].
Several people noticed that by taking N, and Nf to
infinity holding N, g and Nf /N, =3—e fixed, one can es-

tablish the existence of a critical point at
N, g, 8m. /3e+O(E ) .Therefore, at least for large N,
and a=3 (—Nf/N, ) «1 and perhaps even for every

Nf N, +2 there are massless interacting gluons and
quarks at the origin.

We would like to make a few comments about these
scale invariant theories.

(1) At the origin the operators have anomalous dimen-
sions. For example, Eq. (6.3) shows that
y(g, )=1—(3N, /Nf) [in deriving this result we only
need the numerator of (6.3) which is better motivated
than the full expression] and therefore the dimension of
the operator QQ is 3(Nf N, )/—Nf.

(2) A in the formulas is the scale at which the theory
crosses over from the UV to the IR critical behavior. Us-
ing A we can relate the UV expression for the mass to the
IR expression which has an anomalous dimension.

(3) By adding mass terms for the quarks one can flow
between these critical points by reducing Nf.
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