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Instantons and fermion condensate in adjoint two-dimensional +CD
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We show that two-dimensional QCD with adjoint fermions involves instantons due to nontrivial
7ri [SU(N)/Zrv] = Z~. At high temperatures, the quasiclassical approximation works and the ac-
tion and the form of the effective (with account of quantum corrections) instanton solution can be
evaluated. The instanton presents a localized configuration with a size oc g . At N = 2, it in-
volves exactly 2 zero fermion modes and gives rise to the fermion condensate (A A )z which falls off
oc exp( rr l T—/g tat high T but remains finite. At low temperatures, both instanton and bosoniza-
tion arguments also exhibit the appearance of the fermion condensate (A A )r-o g. For N ) 2,
the situation is paradoxical. There are 2(N —1) fermion zero modes in the instanton background
which implies the absence of the condensate in the massless limit. On the other hand, bosonization
arguments suggest the appearance of the condensate for any N. Possible ways to resolve this paradox
(which occurs also in some four-dimemsional gauge theories) are discussed.

PACS number(s): 11.15.Kc, 11.15.Tk, 12.38.Aw

I. INTRODUCTION

Two-dimensional QCD (QCDz) with fermions belong-
ing to the adjoint representation of the SU(N) group
has attracted considerable attention lately. In very in-
teresting recent works [1], the spectrum of the theory in
the large N limit has been determined. It displayed the
features which are strikingly analogous to the spectrum
of four-dimensional QCD. In contrast with QCDz with
fundamental fermions where the meson states lie on one
Regge-like trajectory [2] so that

M„g X,n

and the density of states rises linearly with mass

dn/dM M, here the number of such trajectories is in-

finite, and the density of states grows exponentially with
mass.

Of course, it is exactly the same behavior as in large
N QCD4 where the number of infinitely narrow reso-

nances also rises exponentially with energy so that the
Hagedorn phenomenon, the appearance of limiting tem-

perature above which the system cannot be heated, takes
place [3].

In this paper, we show that the adjoint QCDz bears
much resemblance to four-dimensional QCD describing
the real world also for finite X. The situation is clear
and the analogy is straightforward for X = 2. In par-
ticular, we show that, in contrast with what happens in

On leave of absence from ITEP, B.Cheremushkinskaya 25,
Moscow, 117259, Russia.

The notion of trajectories makes sense only for few first
states with small enough mass. At larger masses, the trajec-
tories begin to overlap, and the spectrum becomes stochastic

QCDz with fundamental quarks, a fermion condensate is

generated here which falls down rapidly at high T. The
physical picture is the same as in QCD4 with only one
light quark Havor [4] and in the Schwinger model [5—7].

The main effect leading to the appearance of the
fermion condensate is the presense of instantons. They
are specific for the theory with adjoint matter and were
absent in QCDz"" . The topological reason for their ex-
istence is the nontrivial iri[g] where the gauge group g
is SU(N)/Ztv rather than just SU(N) (adjoint fields are
not transformed under the action of the elements of the
center), so that there are N topologically nonequivalent
sectors.

Instantons appear by the same token as in the
Schwinger model [S, 6, 9]. In the latter, the topologi-
cal reason for the existence of instantons is the nontrivial

vri[U(1)] = Z. The difFerence from the non-Abelian case
is that, in the Schwinger model, the topological charge
can be written as an integral invariant:

2 X Fp, vl&v (1.2)

(it is the two-dimensional analog of the four-dimensional

Pontryagin class oc J d zTr(F„F„}I) vis an arbitrar. y
integer which labels different topological sectors. In non-
Abelian theory, no such integral invariant can be written

(Tr(F„ t j = 0). That is understandable, of course. If
such an integral invariant did exist, the number of topo-
logically nontrivial sectors would be infinite, but it is fi
nite in the non-Abelian case.

These new instantons which are specific for theories
involving only adjoint fields occur also in four dimen-
sions. Actually, they have been known for a long time as
't Hooft Auxes [10]. The difference with two dimensions
is that, for d = 4, the corresponding configurations are
not localized (they do not depend on two transverse di-

rections), and their action is infinite. For high T, these
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"planar instantons" have been studied in [11] and also
earlier in [12] (where they were, however, mi8interpreted
as real walls in Minkowski space separating diH'erent ther-
mal vacua we refer an interested reader to [11] for a
detailed discussion of this question).

Topologically nontrivial fields appear in QCD2 ' both
at low and at high temperatures. However, the high-T
case is more "clean" because quantum fluctuations are
small here, the quasiclassical approximation works, and
a quantitative calculation for the instanton contribution
in the partition function is possible.

One immediate eH'ect related to instantons is the gen-
eration of the fermion condensate due to the presense of
fermion zero modes in the instanton background. Recall
the situation in QCD4. Instantons involve there one com-
plex zero mode for each light fermion flavor (one for g and
one for Q). If Nf = 1, these zero modes are "absorbed"
by external Q operators in the Euclidean functional inte-
gral,

(Qf) J d Ad jkCkP Qg exp

4 1

2

(1.3)

and we get a finite result even for very large T. If
Ny & 2, there are extra zero modes for extra flavors,
and (Qg)z»~zcD is zero for massless quarks. For small

T, (Qg) is nonzero (this is an experimental fact; theo-
retically, its appearance can also be related to instanton
zero modes but not in a direct way [13]), which means
that the phase transition occurs.

The main observation of this paper is that the physics
of QCD2 with N = 2 and one Majorana adjoint fermion
flavor is essentially the same as that of QCD4 with
Ny = 1. A high-T instanton (the topologically non-
trivial configuration which minimizes the effective ac-
tion) involves exactly two zero modes which are ab-
sorbed by external fermion operators in the functional
integral for (A A ) and leads to an exponentially sup-
pressed oc exp( vrs~2T/g) but n—onzero result.

What happens at low temperatures'? Quantum fluctu-
ations are large there and only dimensional estimates can
be done. Still, these estimates display the presence of the
condensate. Its value is of order g. The appearance of
the condensate is also very clearly seen in the framework
of the bosonization approach. It is very essential that, in
contrast with QCD2"", the bosonized version of QCD2 '
does not involve a massless field which smears away the
condensate (gg) in the former for any finite N.

Whereas for N = 2 the picture is rather clear and
self-consistent, it is not so for N & 3. High-T instan-
tons involve here 2(N —1) fermion zero modes which are
"larger than necessary. " Similarly to what happens in
QCD4 with Ny ) 2, the extra zero modes lead to the
suppression of the condensate in the massless limit. In
QCD4, the statement of the absence of the condensate
at high T could not be extrapolated to low temperature

II. +CD~ WITH REAL ADJOINT FERMIONS

The Lagrangian of the model reads

F„„F„„+——A—[b' B„—ge 'A'„]p„A, (2.1)

where A is the two-dimensional Majorana (real) spinor,
o, = 1, 2, and A = A p . It is convenient to choose
the representation po

——o, pq
——io . In that case,

ps ——pppi ——o and the left AL, =
2 (1+ps)A and the right

AR =
2 (1 —ps)A components of the fermion field are de-

scribed by the upper and lower components of the spinor
, respectively. The fermion part of the Lagrangian can

be written in terms of AL, and AR as

l:f„=—(Al [h B —ge 'A'
]AL

2

+AR[P B+ —gP 'A+]A~~), (2.2)

with By = Bp + Bi Ay = Ap 6 Ai (left fermions are the
left movers and right fermions are the right movers).

Note (and this is very important) that, in contrast
with the theory with fundamental Dirac fermions, the
Lagrangian (2.1) does not enjoy any continuous global
symmetry. The phase transformations A -+ exp(in)A or
A ~ exp(iPp5)A are not allowed as they destroy the re-
ality condition. The would-be currents corresponding to
these transformations Ap„A and Ap„p5A are just zero for

region due to the presence of Goldstone bosons which dis-
play themselves in the low temperature partition function
[14]. But in QCD2 i, Goldstone bosons are absent. They
cannot appear in two dimensions due to the Coleman
theorem [15] and they do not as the generation of the
fermion condensate is not associated with spontaneous
breaking of a continuous symmetry.

Assuming that any top ologic ally nontrivial back-
ground involves exactly 2(N —1) fermion zero modes and
the absence of massless modes in the spectrum, we have
to conclude that the condensate is absent also at low T.
On the other hand, bosonization arguments display the
presence of the condensate universally for any N. This
is a clear para'dox. A possible way to resolve it which we
suggest will be discussed later in this paper.

The structure of the paper is the following. In the
next section, we fix our notations and discuss the sym-
metries of the theory considered. In Sec. III, the explicit
form of the high-T instanton for N = 2 is obtained and
the estimate for the fermion condensate is done. In Sec.
IV, we discuss the low temperature region and show that
both the instanton arguments and the bosonization ar-
guments imply the appearance of fermion condensate.
In Sec. V, we discuss characteristic field confugurations
contributing to the partition function of the theory and
show that the instantons are in some sense "confined" for
strictly massless case and are "liberated" for any small
but nonzero fermion mass. In Sec. VI, we analyze the
case N ) 3 and display the paradox. The paradox and
possible ways for its resolution are discussed further in
Sec. VII. Conclusive remarks are given in the last section.
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Majorana fermions. One cannot also mix left and right
components Al, = Ai and AR = A2—the Lagrangian (2.2)
is not invariant under such a transformation.

In this respect, the situation in two dimensions dif-
fers essentially from the four-dimensional case. The four-
dimensional Majorana spinor can be expressed in terms
of a complex two-component Weyl spinor m, and the
chiral phase transformation m ~ e'~m is the symme-
try of the tree Lagrangian.

There is, however, a discrete two-dimensional remnant
of this four-dimensional chiral symmetry. Either of the
transformations

V r(Ao )

-2' T/g 0 27t T/g

FIG. 1. Effective potential in adjoint SU(2) theory at high

Al. m -AL, ,

(2.3)
2

2 ( g )

leaves the Lagrangian (2.2) invariant. The mass term (3.1)

mid = —2imAI, A~ (2.4)

would break this Z2 Z2 symmetry down to Z2 (only a
simultaneous change of sign of AL, and AR is now allowed).
We shall see later that, even in the massless case, the
symmetry (Al, ~ —AL„AR -+ AR) is actually not there
in the full quantum theory due to an anomaly (this is
true, at least, for N = 2 theory which we understand
well) .

where we directed A~ along the third isotopic axis for
definiteness. The potential (3.1) is plotted in Fig. 1. It
has exactly the same form as in Schwinger model [9] and
is quite analogous to the similar potential Vg (Ao) for
pure Yang-Mills theory in four dimensions [18].

The potential (3.1) is periodic with the period 2vrT/g.
The periodicity is not causal. Really, the variable Ap is
canonically conjugate to the Gauss law constraint, and
the matrix

III. lV = 2: INSTANTONS AND CONDENSATE
AT HIGH T

0 "=exp(Pgf 'Ao) (3.2)

A. Preliminaries

Let us consider the theory (2.1) with two colors. As
was already mentioned, the gauge-symmetry group of
this theory, Q, is SU(2)/Z2 —— SO(3) with nontrivial

xi[g] = Z2. It admits therefore noncontractible topo-
logically nontrivial field configurations = instantons. All
nontrivial configurations belong to one and the same
topological class. In this section, we are interested only
with the high temperature case where a quasiclassical de-
scription works and quantitative estimates are possible.
Euclidean path integrals are defined on the asymmetrical
two-dimensional torus which is very long in the spatial
direction, I )& g, and narrow in the Euclidean time
direction, P = 1/T « g

To understand better how instantons appear, let us
write down the high-T effective potential on the con-
stant Ap background in this theory. The evaluation of the
one-loop fermion determinant (in two dimensions, there
are no physical degrees of freedom associated with gauge
fields, and the latter do not contribute; technically, the
contribution of longitudinal degrees of freedom Ai can-
cels out the contribution of the ghosts) gives [16, 17]

I am indebted to I. Klebanov who brought this point to my
attention.

(f ' = e ' for N = 2) may and should be thought of as
the gauge transformation matrix acting on the dynamic
variables Ai, A . Now, the points Ap ——0 and Ap
b 2+T/g correspond to one and the same matrix 0 s =

and are therefore physically equivalent (see Ref. [11]
for more detailed discussion).

One can consider, however, a field configuration which
is x dependent and interpolates between the values Ap ——

0 at x = —oo and Ae ——b 2vrT/g at x = oo. It presents
a noncontractible loop in SO(3) and cannot be trivial-
ized. The instanton is the configuration belonging to
this class with the minimal action. Usually, e.g. , in four-
dimensional Yang-Mills theory, the term "instanton" ap-
plies to a solution of classical equations of motion, i.e. , to
the configuration which minimizes the tree action. In two
dimensions, this definition is not convenient for two rea-
sons. First, such a classical solution does not have nice
properties —it is just a constant field strength configura-
tion which is smeared out over the whole volume V = PL
with the very small field strength Eei = 2vrT/gL (Ao in-
terpolates between 0 at x = L/2 and 2mT/g at—x = L/2
with constant slope). Second, quantum corrections can
be taken into account explicitly here at high T, higher
loop corrections to the potential (3.1) are small. (In the
exactly soluble Schwinger model, they are just absent
at any temperature. ) And if so, why not do it'? Thus,
our definition of an instanton is the configuration which
minimizes the effective action, quantum corrections being
taken into account.

How does one do that'? One may be tempted to al-
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low the argument Ao in Eq. (3.1) to be z dependent,
add the tree-level kinetic term 2(o) A0), and solve the
equations of motion for the effective Lagrangian thus ob-
tained. Though this naive procedure gives even the cor-
rect answer for the profile of the instanton, it cannot be
justified —the expansion over derivatives of Ao(z) breaks
down at the point Ao = mT/g due to severe infrared sin-
gularities [11],and the true effective Lagrangian is highly
nonlocal. One should proceed more accurately.

B. Fermion determinant and sero modes

As we have seen, the instanton presents a noncon-
tractable loop 0 (z) in the SO(3) group. In the cov-

ering SU(2) = Ss, it corresponds to a path which goes
from the north pole U 6 SU(2) = 1 at z = —oo to the
south pole U C SU(2) = —1 at z = oo. By symme-
try considerations, the path which minimizes the action
should go along one of the meridians. Each such meridian
corresponds to the Ansatz

square root is taken without pain:

- X/2

[D« IIDII]'
' = 2

Pn Pn) (3.6)

where only one of the double-degenerate eigenvalues p„
is accounted for in the product. Let us write Eq. (3.4)
on the Abelian background (3.3). It splits apart in two:

P„(8„—ig6„0a)Q„= y,„Q„,
V„(~ + tg6 oo)0 (3.7)

where g+ = gikig2. [There is also the third equation for
gs, but it is just a free one—the component gs decouples
from the background (3.3).] It is explicitly seen that the
solutions to these two equations are related by the trans-
formation (3.5). The equations are exactly the same as
for two-dimensional /ED on the instanton background

A„(z) = 6„0a(z) for the fermions with the charges g and
—g, respectively. Thus, we need not calculate the de-
terminant anew, but rather use the results of [6, 9] where
the instanton Dirac determinant has been calculated for
the Abelian theory:

Ao(z) = n a(z),
a(—oo) = 0, a(oo) = 27rT/g, (3.3)

- X/2 X/2

= D«qED Ilt'Dll. (3.8)
where n is the unit color vector. Let us choose for defi-
niteness n = 6 s and calculate the fermion determinant
on this background. Minimizing the effective action thus
obtained, we will find the profile of the instanton a(z)
and evaluate its contribution to the partition function.

Right from the beginning, however, we run into a prob-
lem. The matter is, that the Lagrangian (2.1) is well de-
fined in Minkowski space but not in Euclidean space. In
Euclidean space, we cannot keep the fermion fields real-
if we try to do so, the Euclidean counterpart of (2.2) with
c)0 ~ ic)0 becomes complex. This problem is well know in
four dimensions [19] and its resolution is also known [20,
14]. One should dejine the integral over Majorana fields
as the square root of the determinant of the full Dirac op-
erator. The latter is well defined also in Euclidean space.
The extraction of the square root also does not present
problems here. The matter is that the spectrum of the
eigenvalue equation for the Euclidean Dirac operator for
complex adjoint fields,

has a double-degenerate spectrum (p@ are anti-
Hermitian Euclidean p matrices). If Q„(z,~) is a complex
solution to (3.4), the function

y
—(0) (z ~)

I I

gP(z) aa T~—(11

y+(0) (z &)
I

—gP(z) wrT~—/0)
(1

where

(3.9)

c)$/t9z = a(z) (3.10)

[the r dependence provides the correct antiperiodic
boundary conditions Q(P) = —g(0) for the fermion fields
in Euclidean time direction]. We show in the Appendix
that zero mode solutions are still there also for configu-
rations involving small Huctuations around the Abelian
Ansatz (3.3).

Now, it is a proper time to note that all these determi-
nants calculated on the instanton background just turn
to zero for strictly massless fermions due to the presence
of fermion zero modes in the spectrum. Each of the equa-
tions in (3.7) has exactly one normalizable solution with
p = 0, the left one for g and the right one for g+:

@„(z,~) = CvP„'(z, ~) (3.5)

is also a solution with the same eigenvalue p . [C is the
charge conjugation matrix defined by (p@)' = —(p@)P P
Cp„C . In two dimensions, C = 0, under the partic-
ular choice po ——io2, pi = i 0' .] In view of C'C = —1,
the two solutions are linearly independent. Hence, the

In the standard Abelian convention, this con6guration
should be called an anti-instanton rather than an instanton-
its topological charge (1.2) is equal to —1. But in QCDz "

with N = 2, all noncontractible configurations (3.3) belong
to one and the same (the instanton) topological class. To
make the analogy between the non-Abelian and Abelian the-
ory more clear, we have changed the sign convention in the
latter. Also the prepotential P(z) defined in Eq. (3.10) has
the opposite sign compared to that in Refs. [6, 11,9].
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(3.11)

The second factor in the determinant comes from nonzero
modes. In the Schwinger model, it was responsible for
generating the photon mass. The first factor is due to
the zero modes. The proportionality coefficient in (3.11)
can be explicitly determined (in a finite box which pro-
vides infrared regularization) if choosing a particular con-
vention for P(x) [Eq. (3.10) defines ()i(z) only up to an
arbitrary constant]. We refer the reader to Ref. [6] for a
detailed and accurate analysis.

If we substitute now the result (3.11) in the bosonic
functional integral, calculate it, differentiate over mass,
and divide over the similar functional integral for the
partition function Zp in the topologically trivial sector,
we obtain the expectation value for the operator AA, i.e. ,

the fermion condensate.
Let us recall how it has been done in the Schwinger

model. The functional integral in the one-instanton topo-
logical sector had the form

dd(y) f d*.-*"I IZy oc Zpm
~ e e e

u

x exp
2

g4 g2 g2
dyd(y) y, ——

y„. d(y) j
(3»)

The saddle points of this integral were determined from
the equation

g4

A@4

g l9
P(y) = 2gTb(y —x). —

19'(II
(3.13)

(The parameter x has the meaning of the collective co-
ordinate describing the position of the instanton. ) Sub-
stituting the solution of this equation in Eq. (3.10), we

get the result [11,9]

; exp() (y —*))
a(y) =

[2 exp(V (*—y) )]
y(x,

y)x,
(3.14)

The presence of fermion zero modes suppresses the con-
tribution of topologically nontrivial sectors to the parti-
tion function exactly in the same way as it does in QCD4.
To get a nontrivial result, one should introduce a small
but finite fermion mass m « q. In that case, the par-
tition function involves DetI]i'D —mII rather than just
Det]]iVII, and the whole result (3.8) will be proportional
to m.

The accurate calculation of the determinant gives the
result [6]

- X/2
DetAb Ili'L) —m

ee
)

m dk e yi'I
)

exp — dye (y) j.r pg'
21r

2 AT/g-

FIG. 2. High-T instanton.

1 0
( )».= —

B ( + -)
LZo Bm

= —2T exp (3.15)

[the large factor L in the denominator cancels out the
large factor L coming from the integration over transla-
tional zero mode of the instanton solution (3.14)].

Let us turn now to the non-Abelian case. In the frame-
work of the Ansatz (3.3), the functional integral for Zi
is basically the same as in the Schwinger model, and its
saddle point is given by the same expression (3.14). How-

ever, two novel features appear. First of all, in addition
to integrating over P da(y) and dz, we should integrate
also over dn in the Ansatz (3.3). n is the new collective
coordinate describing the orientation of the instanton in
color space. Naturally, the rotation of n does not change
the action and corresponds to zero modes in the bosonic
determinant. Let us make an estimate for the contribu-
tion of these zero modes. The general method for such a
calculation is presenting the integral over quantum Huc-

tuations over the classical solutions (3.3), (3.14) which
do not change the action as the integral over collective
coordinates n [21—23]. To this end, one should express
Ao" (y) as a sum of two independent normalized zero
modes:

Ae (o), , (o) B o (y) r'BAo)(y) )
Bn

x(1 —n n)
and then write

(3.16)

determined by the integral (3.12) are a~" gT/g [11,
9] which is much less than the characteristic amplitude
of the solution (3.14) a' T/g so that the quasiclasical
picture works.

Calculating the whole integral (3.12) and adding the
equal contribution from the one-anti-instanton sector (in
the Abelian case, the relevant topology is vri[U(l)]
Z and instanton and anti-instanton configurations are
topologically nonequivalent), one obtains the following
result for the fermion condensate [6]:

where )a = g/~sr. The function a(y) is plotted in Fig.
The field density E(y) = Ba(y)/By is locali—zed at

)(d so that the topological charge (1.2) is equal to
—1 as expected. The characteristic quantum Auctuations

d( )A'i"(y) —dc dc (1 —n n )

(BAo)(y) &-dn dy
Bn )

(3.17)
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The representation (3.3) is, however, not convenient for
this purpose because the zero modes BAsi/Bn appear
to be not normalizable (this difficulty is also well known

in four-dimensional theories [21]). The paradox can be
resolved by noting that the proper measure in the func-
tional integral is g d'""0 ~(y), 0 s(y) being given by

Eq. (3.2), rather than just g dAo(y). Thus, we have

B0cl
d~ lO~s(y) - dn dy

~g

. z gu"(~)
dy sin

2T g
(3.i8)

To find the condensate, we should divide Z~ by Zp.
The latter may be estimated in the one-loop approxi-
mation (see, however, the discussion of the validity of
this approximation later in the paper) in which case
the fermion condensate depends on the ratio of two
bosonic determinants —one calculated on the background
(3.3), (3.14), and the other on the trivial background
0 (y) = b' . Thus, one should divide the result (3.18)
by the corresponding integral in the topologically triv-
ial sector where only the constant harmonics of Aoi(y)
and Ao2(y) should be taken into account [the integrals
over y-dependent parts of Ao(y) and As(y) cancel out
the contribution of nonzero modes in the bosonic deter-
minant in the topologically trivial sector [18, 16, 17, 9]].
The range of y where this constant harmonic mode should
be normalized is the characteristic size of the instanton
oc g (0 b far away from the instanton center and
the contributions of these distances in Z~ and Zp cancel
out). Hence, the denoxninator over which the integral
(3.18) should be divided is

Bo '&'
dy /, /

dAO dAO"(BA;,lu-*I-g-'

x exp .-'f. .. . ,
-

1 2 1 1
(pg)

Pg

(3.i9)

(3.20)

Unfortunately, the numerical coefBcient C cannot be
fixed here and a more accurate calculation for the ra-
tio of determinants which could, in principle, be done
would not help. The matter is (and this is the second
and more serious nuisance which distinguishes the non-

Thus, rotational zero modes provide the factor oc T/g
in the condensate. In fact, this estimate could be ob-
tained immediately using the rule of thumb coined in

[22] (see also [23]): Each bosonic zero mode provides the
factor ~Sp in the measure where So is the instanton ac-
tion. In our case, So ——vrs~2T/g [see Eq. (3.15)], and
there are two rotational zero modes. Our final result for
the fermion condensate in QCD2 i with W = 2 at high T
1S

B T2 zs/'T
(z, ) =c-

pLZO Bm g g

(3.21)

Abelian case compared to the exactly soluble Schwinger
model) that the partition function Zs in the topologi-
cally trivial sector by which the integral for AA should be
divided cannot not be determined analytically here —the
one-loop approximation is not justified and higher-loop
effects provide a comparable contribution in the free en-
ergy. We return to the discussion of this point in Sec.
V.

It is convenient for us to adjourn now for a while the
discussion of high-T instanton physics and look first what
happens in the low temperature region.

IV. LOW TEMPERATURES

Consider now QCD2 ~ with N = 2 at T = 0. Let us
assume that the fields contributing to the Euclidean path
integral tend to pure gauge at spatial infinity:

ie A„(z) "m iO '(z)B„Q(z), (4 1)

1
(AA)T —0 ——p lim (Zi) g,m-+p VZp Om

(4 2)

where V is the volume of our two-dimensional sphere. In
contrast with the high-T case, a one-loop calculation for
Zz makes no sense here as quantum fluctuations are out
of control. The estimate (4.2) has been done purely on
dimensional grounds. The two signs in Eq. (4.2) corre-
spond to two possible choices for the partition function:

Z+ = Zp+Zy. (4.3)

The &eedom in choosing the sign is exactly analogous to
the freedom of choice of the vacuum angle 8 in QCD4
or in the Schwinger model. The difFerence is that here

We return to the discussion of this point in Sec. VII.

with A(z) C SO(3). All fields belong to one of two topo-
logical classes: the trivial class consisting of the fields
which can be continuously deformed to zero and the in-
stanton class for which O(z) presents a noncontractible
loop in the SO(3) group when z goes around the large
spatial circle. Another way to look at the problem is to
define the theory on a large two-dimensional sphere. A
topologically nontrivial field cannot be written as a uni-
form regular expression on the whole sphere. Such a field
can be described by use of two difFerent regular expres-
sions defined on two patches, the northern and the south-
ern hemispheres, which are glued together (related by a
gauge transformation) on the equator. The transition
matrix O(P) presents then a nontrivial loop in the SO(3)
group (cf. the analogous description of the Schwinger
model in Ref. [8]).

High-T analysis has taught us that the fields belonging
to the instanton class involve two fermion zero modes
related to each other by the transformation (3.5).4 That
means that the partition function in the topologically
nontrivial sector Zq involves a factor m and the fermion
condensate is generated:
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we have only two topologically distinct sectors and the
"vacuum angle" can acquire only two values: 0 or vr. In
the Hamiltonian language, the choices (4.3) correspond
to two possible superselection rules imposed on the wave
functionals. The plus and minus sectors of the theory do
not talk to each other: The matrix elements of all phys-
ical operators between the states from difFerent sectors
are zero.

The spectrum of the theory does not include massless
states, the lowest excited state having the mass Mg P of
order g [1]. That means that, for large volumes Vg )) 1,
the partition functions Zp enjoy the extensive property
[24]

Z~ oc exp( —e+'(m, g)V} (4.4)

and the finite size corrections to the vacuum energy are
exponentially small oc exp( —Mg i'R}. The presence of
the condensate (4.2) implies that the function P '(m, g)
involves a nonzero first-order term of the Taylor expan-
sion in m, and we can write, for m (( g,

Z~ oc exp( —m(AA)yV}, (4.5)

with (AA) = —(AA)+, and hence

Zo oc cosh(m(AA)+V},

Zi oc —sinh(m(AA)+ V}. (4.6)

The result (4.6) is the analogue of the result Z„oc
I„(m~gg]V) for the partition function in the sector with
a given topological charge v for QCD4 with one light
fermion Havor derived in [14].

Note that the representations (4.5) and (4.6) are valid
as long as m (( g, Vg )) 1; the dimensionless combi-
nation x = m[(AA)y]V may be either large or small. The
instanton zero modes are responsible for the formation
of the condensate only in the limit when x is small and
Zi oc z. In the physical large volume limit (large z), the
value of the condensate is the same but the Inechanism
for its formation is quite different being related to small
oc I/](AA)y]V but nonzero modes of the Dirac operator
(see [14] for detailed explanations and discussions).

The presence of two fermion zero modes in the in-
stanton background gives rise to the 't Hooft term
A A AL A& in the effective Lagrangian. That means
that the Z2 Z2 symmetry (2.3) is in fact anomalous—
quantum corrections break it down to Z2 exp/icitty. And
that means that the condensate (A A ) does not break
spontaneously any symmetry of the full quantum theory.
The appearance of two sectors of the theory (4.3) with op-
posite signs of the condensate should not be interpreted
as a spontaneous breaking because, as we have already
mentioned, these two sectors correspond to different su-
perselection rules which should be imposed uniformly in
the whole physical space and the formation of the "do-
mains" separated by the "walls" so that (AA) is negative
to the left and positive to the right is not possible.

Again, the situation is exactly the same as in QCD4
with %y ——1—the presence of the sectors with different 0
in the theory should not be interpreted as a spontaneous
breaking of U(1) symmetry. 0 is one and the same in
the whole physical space and the spatial fluctuations of
0 (which would give rise to Goldstone bosons) are not
possible.

The existence of the condensate is also clearly seen in
the framework of the bosonization approach. Since [25],
it is known that a theory involving Majorana fermion
fields A is dual to some other theory involving the
bosonic field presenting an orthogonal matrix 4 . The
correlators of all fermion bilinears in the original the-
ory coincide identically with the correlators of their
bosonized counterparts in the bosonized theory. For the
scalar bilinear A A, the correspondence rule is just

(4.7)

where p depends on the normalization procedure for the
operator C . p is of order g if the normalization con-
vention (C s), = 8 s is chosen. It is obvious then that

(A A ), -p, -g. (4.8)

Note the difFerence with the theory involving funda-
mental Dirac fermions. For @CD'"", the bosonization
rule is not (4.7) but rather

(4.9)

(4 )7 d'" C ~""(e)=0. (4.10)

As follows from Eq. (3.21), for high but finite T the
direction b in the group is still a little bit preferred,

where U is the unitary SU(%) matrix, and P is a light
color singlet. In that case, the normalization mass p is
not g but depends on the mass of the scalar singlet which
in turn depends on the fermion mass m. Both p, and the
light singlet mass tend to zero in the limit m m 0 for
any finite X (and the singlet becomes sterile) [26]. The
condensate (Q'it'), also tends to zero in the massless
limit. One can say that the light singlet P smears the
condensate away.

But in the adjoint theory, all fields in the spectrum are
massive and the condensate (4.8) survives.

The rapid falloff of the condensate at high tempera-
ture as given by Eq. (3.21) is also naturally explained in
the bosonization language. Taking into account finite T
effects, namely, the presence of excited states in the heat
bath, the thermal average (4 s)T is no longer h, but
can acquire any value on the SO(3) group with almost
equal (at high T )) g) probability, and

Note that, if the plus and minus sectors could talk to each
other, the walls between them would have a finite energy (due
to the absence of transverse directions), and the condensate
would vanish. (It is not easy to break not only a continuous
but also a discrete symmetry in two dimensions. ) But it does
not.

The absence of the condensate in QCD2"" is, of course, nat-
ural. The condensate would break spontaneously the global
chiral symmetry, and such a breaking is not allowed in two
dimensions [15j.
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and the condensate is still nonzero though exponentially
small. The physical picture is exactly the same as in
the Schwinger model where the quantitative calculation
is possible at any temperature [7].

V. HIGH-T PARTITION FUNCTION

All the arguments of the previous section which have

led to the results (4.5) and (4.6) can be repeated with-

out change also for high temperatures. We only have to
substitute PL for V and (AA)~ for (AA), . Let us look
how the partition functions (4.6) behave when the spatial
volume L is very large:

zT = mpL~(AA)T
~

&& 1. (5.1)

The cosh and sinh functions in Eq. (4.6) can be expanded
in the series and, if zT is large, the number of the terms
in the series to be taken into account is also large. Each
such term is

(t, ) (—mpL(AA)T )"
kf

5.2

where k is even for Zo and odd for Zq. The series con-
verge at k zT. The contribution (5.2) in the partition
function can be interpreted as being due to k instan-
tons (3.3). Each instanton brings about the factor m
&om the fermion zero mode and the factor L &om the
translational bosonic zero mode in the partition func-
tion. The instantons are very well spatially separated,
the characteristic interinstanton distance being of order
L/k'" '

1/(mP~(AA)2 ~) && g . Thus, we see that the
characteristic Geld configurations in the high-T partition
function present a rarefied noninteracting instanton gas.
Naturally, the total number of instantons is even for Zo
(the configuration is topologically trivial) and odd for Zq.

The same picture is valid in high-T Schwinger model

[9] and in high-T QCD4 [13]. Note that we cannot ex-
trapolate it to low temperatures. When T ( g, the char-
acteristic separation between instantons is of the same
order as their size g ~, and their interaction (as well
as distortion of their form due to quantum fluctuations)
cannot be neglected. Instead of a rarefied instanton gas,
we have a dense strongly interacting instanton liquid [13,
27].

It is interesting to look also at the limit when L is kept
large but finite and m tends to zero. In strictly massless
theory, Zq vanishes and Zo has no trace of instantons at
all. The explanation is simple. Consider the contribution
of two well-separated instantons to Zo. The zero modes
of individual instantons are now shifted from zero, but
the shift is tiny:

OO

FsM(T) = —ln 1 —e ~~" +"
2' (5.4)

Its high-T asymptotics is

xT'
FsM(T » lt) = — 1—

6
(5.5)

When T p, subleading effects are essential.

For QCD2 ', the qualitative estimate is the same, but
we cannot determine now the coefBcient of preasymptotic
term exactly: The mass of bosons in the spectrum cannot
be determined analytically, and their interaction cannot
be neglected. Thus, we can only write

AF„',„' „,(T) - gT. (5.6)

That is the same uncertainty which prevented us from
determining the exact coefficient in Eq. (3.21): The un-

certainty in Zo is

exp( —PEF„,„p.,t(T) g ') -1 (5.7)

[g
~ is the instanton size where the background field (3.3)

differs essentially from zero and the determinants of fluc-

tuations in Zq and Zo are different].

VI. N)3

A. High T

Let us repeat the analysis of Sec. III for higher color
groups. Consider Grst the case N = 3. The effective
potential on the constant Ao background has been calcu-
lated in Ref. [16]. For N = 3, it depends on two group
invariants: AOA and d d "'AOAOAOAO. It is conve-
nient to choose the matrix A&t in the diagonal form

as p~" '"" (R) (( m. If m is large enough [the condition
(5.1) is satisfied], two-instanton contribution dominates
over zero-instanton one: Instantons are "liberated. "

Now, the time has come to pay our old debt and to
discuss nonperturbative effects in Zo for the massless
theory (one can forget about instantons until the end
of this section). Let us estimate the free energy density
I" = —TL lnZo of the theory at high temperature. In
the leading order, it is given just by the free fermion loop
and is of order T2. But what are preasymptotic effects?
It is instructive to consider first the Schwinger model. In
the bosonized language, it is just a theory of &ee scalars
with mass p = g/~7r. At finite T, they are excited and
the exact expression for F is

pq" '""'(R) - exp( —z TR}, (5.3)
Aot = diag (aq, a2, as), ) a, = 0, (6.1)

where R is the interinstanton separation. Thus, the large
R configurations provide exponentially small contribu-
tion to the path integral, instantons are "confined, " and
cannot be separated &om each other. (The same phe-
nomenon occurs in the Schwinger model [11, 9]. For

QCD2 ', it has been actually observed in Ref. [17].)
If m g 0, the contribution of the two-instanton contri-

bution to the path integral ceases to depend on R as soon

Note that uncertainties of essentially the same kind in the
determination of the instanton measure appear also in QCD4
when the size of the instanton p becomes comparable with the
characteristic scale of the theory The corrections to the. mea-
sure are of order p eqgo p Agco [28j. When pAqco
the situation is out of control.
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and write the efFective potential as a function of a, (or,
if you will, as a function of Ao and Ao). The result is

U(x = —oo) = 1, U(x=oo) =e "'~ .

(6.3) of the unitary group so that, say,

(6 4)
2 3

V(a) = ) ] n, —a+ 7rT )r

g )
g

(6.2)

Up ——1, 2ni/3 U
—27ti j3~ ——e, ~ ——e (6.3)

In a theory with fundamental matter, these three sets of
points mark out physically different gauge transforma-
tions; the counterpart of Eq. (6.2) would also be different
at these points: V ""

(Uo) g V ""s(Ui3) g V "" (U~),
and the proper integration region would be the standard
Weyl cell (solid triangle in Fig. 3) + transformations
from the torus.

But in @CD' ', the proper gauge group is SU(3)/Z3
rather than SU(3), and all minima of the potential (6.2)
[which occur at the points (6.3)] should be identified.
There are, however, noncontractible Euclidean configura-
tions which interpolate between different center elements

This potential has a hexagonal symmetry. The structure
of its minima is shown in Fig. 3.

What is the proper range of integration over Ap in
the functional integral? As was discussed earlier, the
proper integration variable is not Ap but rather the ad-
joint gauge transformation matrix (3.2) (which was the
orthogonal matrix in the case N = 2). To count each such
matrix only once, we should restrict the range of integra-
tion by the "small" Weyl cell (marked out by the dashed
lines inside the solid traingle in Fig. 3) which is spread
out over the whole SU(3)/Z3 group by the transforma-
tions from the torus of the group with nonzero Ap' ' ' ' ' .

Note that in the general case where the theory involves
also fundamental matter fields, the integration goes over
unitary matrices U = exp(iPgAot ) which are different
in the three different classes of minima:

The configuration (6.4) presents a nontrivial loop in the
SU(3)/Z3 space. For N = 3, there are two difFerent topo-
logically nontrivial classes: the configurations (6.4) which

may be called instantons and the configurations interpo-
lating between 1 and e '/ which may be called anti-
instantons (double-instanton configurations are topolog-
ically equivalent to anti-instantons).

Consider a representative of the instanton class which
has the form

t Ao(x) = —a(z) diag(1, 1, —2),
3

a(-oo) = 0,
2~T

a(oo) =
g

(6.5)

It corresponds to going upwards along the vertical side
of the solid triangle in Fig. 3 with the transformation
from the torus being fixed to be trivial [so that different
points on the side correspond to all different elements of
the group SU(3)/Z3, only the vertices are identified].

Let us estimate the fermion determinant in this back-
ground Beld. The eigenvalue equation for the Euclidean
Dirac operator [the analogue of (3.7)] on the background
(6.5) has the form

g„(B„+iga(z)b„o)Q„+' = p„g„+',
,

p~(0„+ iga(z)b„o)g„'+'" = p„Q„'+'", (6.6)

and the components g ' ' ' decouple from the back-
ground.

We see that the Dirac equation admits now not one
but two pairs of zero modes (3.9). That means that the
partition function in the instanton sector involves now

the factor m rather than just m. And that means that
the contribution of topologically nontrivial sectors in the
condensate is

A(i
(& ~ ),"»' —— (Z, + Z~) ~ m (6.7)

PIZ, am

and turns to zero in the massless limit. The situation
looks the same as in QED2 with two Dirac charged
fermions where the fermion condensate is zero by the
same reason.

A similar analysis can be done also for larger ¹ The
generalization of the Ansatze (3.3), (6.5) for any N is

t Ao (x) = —a(z) diag(1, 1, . . . , 1 —N),

2~T
a(—oo) = 0, a(oo) =

g
(6.8)

FIG. 3. Geometry of etfective potential for high-T QCDz
with N = 3. The minima occur at the points Q, , and A
which are related to each other by Zz transformations and are
physically undistinguishable in the adjoint theory. The solid

triangle marks out the standard "fundamental" Weyl cell and
the dashed lines inside, the "adjoint" Weyl cell. (papa)N N 2—(6.9)

which supports N —1 pairs of fermion zero modes. The
determinant has the same structure as in the Schwinger
model with N —1 flavors, and the contribution to the
condensate is



49 INSTANTONS AND FERMION CONDENSATE IN ADJOINT. . . 6845

which vanishes in the massless limit.
Thus, at high temperatures, fermion condensate seems

not to be formed in QCD2 ' with N ) 3.

B. Low T: The paradox

The bosonization arguments of Sec. IV which have led

to the conclusion of existence of the fermion condensate
for N = 2 can be transferred without essential change
to larger N. The theory involves now the set of N —1
Majorana fermion fields. Staying in the &amework of the
original Witten's paper [25] where only free fermions were

discussed, we would have to put such a set of field into
correspondence to the boson fields presenting orthogonal
SO(N2 —1) matrices. In the case when the fermions

interact with gauge fields, it is more convenient, however,

to write the bosonized theory in terms of the fields

e'= T (t Ut'Ut), (6.10)

where U g SU(N) and e' 6 SU(N)/Ziv. This modified
bosonization procedure has been worked out in [29]. I s

is dual to the scalar bilinear A A as written in Eq. (4.7).
As earlier, y, g and the estimate (4.8) for the fermion
condensate is valid.

Again, the spectrum of the theory involves a gap and,
in the limit m && g, Vg )& 1, the partition function can
be written in the form

(6.12)

VII. CONFRONTING THE CONTROVERSY

The paradox appeared when putting together the fol-
lowing premises: (1) validity of topological classification;
(2) the presence of 2(N —1) zero modes in the instanton

For N ) 3, the leading contribution to the condensate
comes not from instantons but just from the topologically
trivial sector. The latter gives (AA) oc m for any N [cf. Eq.
(8.22) in Ref. [14]].

Z oc exp( —m(AA) V) (6.11)

both for large and for small values of m~(AA) ~V.
But that contradicts instanton arguments.
Let us consider for simplicity the case N = 3. There

are three topological classes: the trivial, the instanton
and the anti-instanton. In the topologically trivial sector,
the partition function

Zp oc (A„'+ m'), A„g 0,

is expanded in the even powers of m. The expansion of
Zl and Z~ in m also starts &om the term oc m due
to the presence of two pairs of fermion zero modes. It is
absolutely not clear how the linear term in the expansion
of the exponential (6.11) can appear.

Thus, bosonization arguments tell that the condensate
is formed whereas the instanton arguments tell that it is
not formed.

sector; (3) bosonization arguments displaying the pres-
ence of condensate; (4) absence of massless states which
allowed us to write the partition function in the extensive
form (6.11) also for small values of the exponent.

The only way to resolve the paradox is to invalidate
one of these premises.

For example, in the conventional QCD4 with several
fIavors where instantons involve Nf zero modes, their
contribution to the partition function is oc m ~ but the
condensate is still generated without any paradox be-
cause premise (4) is false. There are Goldstone states in
the spectrum which lead to finite volume effects which are
essential in the region of small m~(gQ) ~V and the par-
tition function cannot be written in the extensive form
(6.11) but has a more complicated structure [14]. But
in our case, no continuous symmetry is broken sponta-
neously and there are no Goldstone bosons.

At first sight, the weakest point is the second premise.
We have obtained 2(N —1) zero modes by solving explic-
itly the Dirac equation in a particular background. We
have also checked that the zero modes are stable with re-
spect to small deformations of background (see the Ap-
pendix). But we cannot write down an index theorem
which would enforce the presence of 2(N —1) zero modes
for any background belonging to the instanton class. The
"normal" index nPI —n& oc J'Tr(F„„t )e„„d z is just
zero in QCD2 [indeed, we have established the presence
of N —1 left-handed and N —1 right-handed zero modes
related to each other by the transformation (3.5)], and
we do not know of any other relevant integral invariant.

Thus, we cannot rule out that, for some fields belong-
ing to the instanton class and located at some finite dis-
tance from the Abelian Ansatz in Hilbert space, the num-
ber of zero modes is less which would allow the generation
of the condensate.

We think, however, that it is not the case, and there is
some index theorem prescribing the existence of exactly
2(N —1) zero modes; only we are not clever enough to
unravel it. The reason why we believe it is the following.

The paradox discovered is actually not specific for

QCD2 '. The same paradox appears also in some four-
dimensional gauge theories where the conventional Atiah-
Singer theorem works and the analogue of our premise (2)
is certainly valid.

As we have already mentioned, there is no paradox
in the conventional QCD. Consider, however, supersym-
metric d = 4, N = 1 non-Abelian Yang-Mills theories
involving a Majorana fermion in the adjoint representa-
tion of the gauge group. The paradox does not arise when
the group is unitary. Let us understand why.

At first sight, it does. The fields belonging to the in-
stanton class involve 2N, fermion zero modes [the trace
Tr(T T ) which enters the index theorem differs, for the
generators T in the adjoint representation, by the factor
2N from the analogous trace for the fundamental repre-
sentation]. That means that the instanton contribution
to the partition function involves a factor m . On the
other hand, exact supersymmetric Ward identities tell us
that the correlator (AA(xi) - AA(xiv. )) does not depend
on x, . The computation in the instanton background
gives a Donzero result which implies that the correlator
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22 2 26= ——x10=—
3 3 3

(7.1)

is comparatively small here (though the theory is still
asymptotically &ee) which may after all prevent the for-
rnation of fermion condensate. And, in contrast with two
previous cases, we cannot present solid independent the-
oretical arguments that the condensate is formed. Thus,
this theory may serve only as an additional indication
that something is grossly wrong in our understanding;

does not vanish also when all ~x, —
x~~ tend to oo [30].

And that implies the presence of the condensate (AA). As
it does not break spontaneously any exact symmetry of
the quantum theory, no massless states appear, the ex-
tensive representation (6.11) for the partition function is
valid, and we cannot reproduce the linear in mass term in
the expansion of Z when taking into consideration only
the fields with integer winding number.

The paradox is resolved in this case by noting that,
for a theory involving only adjoint fields, the fields car-
rying fractional winding numbers v = +1/ N„+2 /N„. . .
are equally admissible [31—33, 14]. The reason is, again,
that the gauge group here is actually SU(N)/Ziv rather
than SU(N) and the gauge transformation matrices dif-
fering by an element of the center are undistinguishable.
The configurations with v = kl/N, involve only two
fermion zero modes and are responsible for the forma-
tion of fermion condensate for small m (AA) ~V.

The situation is much worse, however, for higher or-
thogonal and exceptional groups. The simplest exam-
ple where the problem appears is the super Yang-Mills
(SYM) theory with SO(7) gauge group [34]. The instan-
tons involve here 7 —2 = 5 pairs of zero modes and the
corresponding contribution to the partition function is
oc m . The group SO(7) does not have a nontrivial cen-
ter and, in contrast to what we had for SU(N) groups,
we cannot pinpoint a topological field configuration with
winding number v = 1/5. Things are not better when
N & 7. Thus, SO(N & 7) four-dimensional SYM theories
are as paradoxical as QCD2 " with N & 3.

We present here another very simple four-dimensional
example where the paradox also appears. Consider the
SU(2) Yang-Mills theory involving a Dirac fermion Q be-

longing to the color representation with isospin I = 3/2.
Suppose that the fermion condensate (Q@) is formed
here. As in conventional QCD4 with NI = 1, it breaks
only the U~(1) subgroup of the chiral symmetry group
which is anyway anomalous, and no massless states ap-
pear. On the other hand, comparing TrIT T ) = I(I +
1)(2I + 1) in the representation with I = 3/2 with the
same trace for I = 1/2, we see that the instantons involve
here ten fermion zero modes and provide the contribution
oc m to the partition function. There is no way to get
the fermion condensate in the path integral framework.

Of course, the paradox here is not so prominent as in
two other theories considered above. It appeared when
assuming that the condensate is generated. The assurnp-
tion looks natural —the dynamics of the theory is rather
similar to that of conventional QCD with NI = 1 where
the condensate is formed, but there is also a distinction.
The first coeKcient in the Gell-Mann —Low function

we could not claim that solely on its basis.
But for SO(N & 7) SYM theory and for QCD2 " with

X & 3, the situation is really mysterious.
We cannot say that we understand how this mistery

is resolved. But if there is a universal reason which re-
solves it in both theories, the only one we can think of
is that premise (1) in the list in the beginning of this
section is false. Perhaps, there are some singular field
configurations which contribute to the path integral and
which cannot be classified by topological considerations.
If these unspecified configurations have only one pair of
fermion zero modes, the condensate may be generated.
One argument in favor of this guess comes from the ob-
servation that, in strong coupling theory, fields Huctuate
wildly and the topological classification which is based
on the assumption that the fields are smooth and regular
may be not true.

Suggestions that this may happen can be found in the
literature. In particular, Crewther [35] and Zhitnitsky
[33] argued that, for the conventional QCD4 with Nt
light Havors with equal mass, field configurations car-
rying winding number 1/Ny (obviously, such fields can-
not be described in topological terms) can be relevant.
Actually, we do not see compelling reasons to assume
this for standard QCD—the usual description including
only the fields with integer winding numbers works per-
fectly well there. But for QCD2 with N & 3, for SO(7)
four-dimensional SYM theory, and maybe for SU(2) four-
dimemsional gauge theory with Dirac fermions belonging
to the representation I = 3/2 of the color group, we are
kind of forced to think in this direction. What is abso-
lutely unclear by now is in what respects path integral
dynamics of these paradoxical theories differs from that
in standard QCD and other well-studied theories where
no need of invoking exotic nontopological fields arises.

VIII. CONCLUSIONS

The SO(3) QCD2 " which we analyzed first in this pa-
per presents no problems. The picture is self-consistent:
The instantons which are present there due to nontriv-
ial err[SO(3)] = Zz involve two fermion zero modes and
lead to the formation of the ferrnion condensate. This
condensate falls down as the temperature increases [see
Eq. (3.21)] but never turns to zero. Qualitatively, the
same follows &om bosonization arguments. This model
can serve as a remarkably good playground which may
allow us to understand better the physics of QCD (in
particular, of QCD with only one quark flavor). For ex-
ample, lattice simulations of this theory would be very
interesting. One could try to calculate the fermion con-
densate on the lattice at zero and at high temperature
and compare the numerical results with theoretical pre-
diction (3.21). Such simulations are muck simpler than
in four dimensions and could provide an independent test
for the whole lattice technology.

For N & 3, we encountered an explicit paradox: The
existence of the condensate follows f'rom bosonization ar-
guments but we could not get it in the path integral ap-
proach. As was discussed in details in Sec. VII of this
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T* gv N (8 1)

(a natural mass scale of the theory). In the limit N ~
oo, T* -+ TH, the Hagedorn limiting temperature.

Note added in proof After . this work had been com-
pleted, I got acquainted with the paper [36] where the
idea of the nontrivial topological structure of QCD2 with
adjoint matter has been put forward for the first time.

paper, a similar paradox displays itself also in some four-
dimensional gauge theories. Its satisfactory resolution
could bring about a progress in our understanding of
quantum Geld theory in general.

In conclusion, we note that, if we would believe in the
bosonization arguments at low temperatures and in the
instanton arguments at high temperatures (at high T,
quasiclassical approximation works and one could think
that it still suKces to consider only smooth topological
field configurations), the conclusion of the existence of
the phase transition in the theories with N & 3 would
follow —at some temperature T„ the condensate would
vanish and stay zero beyond it. But at the present level
of understanding, we cannot really claim it is true.

If nontopological fields contribute to the path integral
also at high temperatures, there is no phase transition
but only a crossover where the condensate falls down
but never turns to zero (as is the case for N = 2). As
N grows, the crossover is expected to become more and
more sharp. Its temperature is estimated as

deformation b (z) has no projection on the global gauge
rotation mod~s discussed at length in Sec. III.

For b (z) = 0, the Dirac eigenvalue equation (3.7) had
two zero mode solutions (3.9). With b g 0, the solutions
are modified. Unfortunately, in contrast with the more
simple Abelian case [8, 6], we cannot solve the zero mode
equation explicitly for any gauge field background. What
we can do is to develop a perturbation theory in the small
parameter b/a and find the solution as the series in this
parameter:

ya(zero) &
a(zero) &

a(zero) I a(zero) +
(A2)

Let us start, for definiteness, &om the solution

1bo
""

(z, 7) and find the corresPonding Qi
'"

(z, 7).
It satisfies the equation

(c)ocr2+ 8 cr, )P —ge a(z)02 g,
"'

(z, 7)

= —i —8 sb+(z)o2go ('" (z, ~).
2

We see that only the component 1(ti
""

appears. It is

left handed as go
"'

was and also has the same 7 de-
pendence oc exp(ivrT7). The solution of (A3) is

~3(zero)
( )

g rrT'z b+ ( )~
—(zero)

(2'

x e T"dy. (A4)
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APPENDIX

We want to show here that the zero modes (3.9) and
their conterparts for larger N are stable under small de-
formations of the Abelian high-T instanton background
(3.3), (6.8). Consider first the case N = 2. Choose as
earlier n = b s in Eq. (3.3) and deform it in the trans-
verse direction in the color space so that

Ao(z) = b a(z) + (1 —b )b (z), (A1)

with b (—oo) = b (oo) = 0 and b « a for all z. Then the

I am indebted to I ~ Klebanov and I. Kogan for illu-
minating discussions on the early stage of this work and
to M. A. Shifman for the discussion of SYM theory with
orthogonal groups. It is a pleasure for me to thank the
TPI department of the University of Minnesota where
this work has been done for warm hospitality.

It is easy to see that Qi("' ) has the same asymptotics
oc exp( —vrT~z[) at [z[ -+ oo and is normalizable.

Generally, the nth term of the series (A2), g„'" (z),
is related to Q„'i' (z) by a similar integral kernel which
provides the asymptotics oc exp( —7rT[z[) for g„ if lb„
had such, and the normalizability of the deformed zero
mode is proved by induction.

For larger N, the analysis is quite similar. The integral
kernels are a little bit different for different Qo('" —the
different color components of the deformation b (z) en-
ter, but the result is the same: If the perturbation is
small, all 2(N —1) different zero modes remain normal-
izable and are there in the spectrum.

Certainly, this analysis cannot rule out bifurcations in
the space of zero modes when the perturbation is large
enough so that the number of zero modes would be less
than 2(N —1) for some b, but we do not think that this
possibility is realized (see the main text for more detailed
discussion).
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