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Some properties of the finite temperature chiral phase transition
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We study the phase transition of the (3+1)-dimensional Yukawa model at finite temperature. We cal-
culate the critical exponents in the 1/N expansion and clarify certain subtleties involved in such a calcu-
lation. In the leading order we do not find the presence of any of the metastable states which were
claimed in the literature. To this order, the exponents are the mean field, but corrections shift them to
the usual nontrivial values. Dimensional reduction of this model is studied with special attention paid to
the discrete symmetries of the Lagrangian before and after reduction. In the reduced d =3 theory there
are two possible types of mass terms, one of which is allowed by chiral symmetry. It is the different
discrete symmetries of these two mass terms which force the finite temperature 3 + 1 Yukawa Lagrang-
ian to reduce to the usual scalar universality class (characterized by a conformally invariant o model)
rather than the chiral universality class (characterized by d = 3 conformally invariant NJL-type model).

PACS number(s): 11.10.Wx, 11.15.Pg, 11.30.Rd

I. INTRODUCTION AND SUMMARY

The finite temperature phase transition in QCD has
been a matter of much interest and controversy. One
physical picture of the phase transition emphasizes
confinement as the root cause of the phase transition [1]
and follows closely the confinement-deconfinement transi-
tion in pure Yang-Mills theory. In this approach chiral
symmetry breaking is not emphasized. An entirely
different description of the critical phenomenon, on the
other hand, uses explicitly a chiral Lagrangian [2]. This
approach relies solely on the chiral-symmetry-breaking
pattern to describe the transition. Confinement does not
play any role and in fact the 0. model may describe any
gauge or nongauge theory with the same symmetry-
breaking pattern, with or without the presence of fer-
mions. In between these two descriptions one finds a pic-
ture in which the phase transition is thought of as being
fairly well described by the Yukawa or Nambu —Jona-
Lasinio (NJL) model [3].

In the chiral Lagrangian point of view, which is sup-
ported by lattice simulations [4], the phase transition is
second order for N=2 flavors, but becomes first order in
the presence of additional massless quarks. The singular-
ity structure of the thermodynamic quantities are univer-
sal and are defined by the critical exponents of the sys-
tem. The N=2 flavor phase transition belongs to the
O(4)~O(3) universality class, meaning that its critical
properties are well approximated by the (Euclidean)
d =3, O(4) ~O(3) conformally invariant (critical} o mod-
el. According to standard dimensional "reduction" argu-
ments (see, for example, [S]), the fermions themselves,
even if they are massless at zero temperature, do not
influence the nature of the phase transition at 6nite tem-
perature. It is rather the presence of their bosonic com-
posites, Goldstone bosons, which are of importance. This
follows directly from the universality of second order
phase transitions [6]. The commonly held assumption is
that all the possible universality classes {or equivalently,

d=3 conformal field theories) are variations of the cr

model and one need only match the correct symmetry-
breaking patterns.

Recently, however, it was pointed out that there exist
different d=3 conformal field theories with the same
symmetry-breaking pattern [7]. These conformal field
theories are the critical four-fermion interaction models
of the NJL type. The critical indices are different and
were recently calculated using the 1/N expansion [8], lat-
tice [9], and 4 rand 2—+e expansions [10]. They depend
on N and are clearly different from the scalar ones. Phys-
ically, this corresponds to the fact that on the chirally
symmetric side of the phase transition there are S mass-
less fermions whose effect is felt even in the IR fixed
point, just like the effect of Goldstone bosons. With the
presence of more than one universality class in d =3, the
standard "reduction" procedure becomes ambiguous and
it is now uncertain to which critical conformal field
theory the (3+1)-dimensional, finite temperature quan-
tum field theory will reduce. In this situation, one must
explicitly follow the reduction process.

The argument in favor of the bosonic universality class
goes as follows. Loosely speaking, at finite temperature
the d =4 fermion field reduces to a collection of d = 3 fer-
mions which may be considered as having a mass
co„=2m(n+1/2)T [5,11]. Unlike for bosons, there is no
zero mode for which this frequency vanishes. There are,
however, an infinity of such temperature harmonics. One
can then imagine that even if a single massive field does
not inflUence the phase transition, the cumulative effects
of an infinite number of such fields may have an apprecia-
ble impact. In order to see whether or not this happens,
all the harmonics should be summed and their cumula-
tive effects studied.

In this paper we shall study explicitly the finite temper-
ature phase transition of the simplest chirally invariant
theory, the Yukawa model, using the 1/X expansion. A
careful discussion of the dimensional reduction process
for the Yukawa model, so as to determine explicitly to
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which universality class the finite temperature chiral La-
grangian belongs, is given.

In Sec. II we shall calculate the critical exponents a, P,
and 5 and clarify a few subtle issues involved in this cal-
culation. In particular, we show that certain spurious
metastable states claimed in the literature [12] do not ac-
tually exist. To the leading order, we find that the critical
exponents are mean field. This is similar to what happens
in lower dimensions [13] and may appear to be a bit puz-
zling within the framework of the 1/N expansion. Ac-
cording to conventional wisdom, the critical exponents
should be completely independent of the number of fer-
mions as long as the symmetry-breaking pattern is

preserved. Later in Sec. IV we shall show how the non-
trivial critical exponents are recovered. Dependence of
the critical exponents on N disappears completely. The
higher order terms in 1/N encode corresponding higher
orders in the so-called fixed (d =3) dimension renormal-
ization group (RG) calculation of the critical exponents

[6].
In Sec. III the dimensional reduction is performed,

concentrating on the relationship between the symmetries
in d =4 dimensions and those in d =3 dimensions. As is
well known by now [14], the notions of parity and chiral
symmetry in three dimensions are quite different from
those in four. In particular, in d =3 dimensions there ex-
ists a charge conserving, chirally invariant mass, while

such an object does not exist in d =4. Although this
term does break d =3 parity, this parity was never a sym-

metry in the reduced d =4 theory to begin with. Rather,
parity in 3+1 dimensions becomes full spatial inversion
in d =3 dimensions. Since these mass terms are not for-
bidden by chiral symmetry, they appear as a result of di-
mensional reduction. This is the reason why the parity
invariant four-Fermi model does not appear as an IR
fixed point of the finite temperature chiral phase transi-
tion: unlike at T=0, there are no massless fermions on
the chirally symmetric side of the phase transition. '

Z = exp iN Tr ln i —g
1

~2
+P pz ~p4

2 4
(3)

where rescaled couplings are defined by g =g ~N,
P =p N, and X=AN. At finite temperature the integra-
tion over the fourth component of the momentum be-
comes a sum over Matsubara frequencies. The lowest or-
der term in the 1/N expansion is simply the steepest des-
cent approximation to the exponential. As usual, this in-
volves an expansion of the action about its extremum,
which is determined by the gap equation

2 2A+ A +rn
m

stead the 1/N expansion, even though, as we shall see, it
itself has its own subtleties. Although we consider only
the Z2~1 case, the more complicated chiral-symmetry-
breaking patterns like O(4)~O(3) are quite analogous.
This type of calculation has been partially done previous-
ly to leading order under the name of mean field approxi-
mation [12], which is in fact equivalent to the lowest or-
der term in the I/N expansion. Kawati and Miyata [12]
correctly estimated the critical exponent P to be —,', the
mean field value. In their calculation, however, they
completely neglected an important logarithmic term in
the effective Lagrangian which led them to a lengthy dis-
cussion of a nonexistent critical point "just below T, ." A
similar problem also occurs at finite fermion density (see
Appendix A). We now demonstrate that there is, in fact,
no such complication in the phase diagram and will
derive P and other critical exponents using the method
developed for scalar fields at finite temperature.

The 1/N expansion can be conveniently developed by
integrating over the f field using the path integral for-
malism. The partition function is then

II. FINITE TEMPERATURE PHASE TRANSITION
IN THE YUKAWA MODEL

where

p A,z+ 4m +4T f(x),g' g' (4)

We shall consider the simplest Z2 chirally invariant

Yukawa model

,'(d„P) +i P'Bf—' gg'f'P V(P—), —

where a =1, . . . , N labels the fermionic species and the
potential V(P) is the standard Mexican hat potential

Oo 1f(x)—= dy (5)
P gx 2+ & Qx&+y

and m —=gp is the order parameter while x =m /T. ~

Here A is an UV cutoff. Evaluating the argument of the
exponential at this point gives us the effective potential

V(0) = "0'+—0'—.
2 4

(2)
AA'+ &A'+ m'ea'

4
2'

2

As is well known, the weak coupling expansion for the
finite temperature phase transition has the problem that
the efFective potential is imaginary [15]. We shall use in-

In the presence of a chemical potential p this fact does not
change. Only a real constant will be added to the fermion mass
and the frequencies will be shifted by a complex value
a)„=2~(n+ —')T+ip.

m4
ln

A+'~/A +m~
m

L

2T4+ V(m/g) — f y dy ln(1+e " +~
) . (6)

~To avoid confusion with the critical index P we shall avoid us-

ing inverse temperature.
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Renormalization at finite temperature will be the same as
at T=O, as usual. The triviality features such as the ap-
pearance of the cutoft' and the exponentially negligible
metastability of the vacuum are basically the same as in

[16]. To find the temperature dependence on the order
parameter P we solve the gap equation near criticality.
Notice in particular the presence of the logarithmic term
in Eq. (4). It is this term that was dropped in [12]. With
its presence the system seemingly will not have a power
law dependence in its critical properties. Actually, we
shall see that this logarithmic term will always be can-
celed by a corresponding term in f (x) near the transition
temperature.

The critical temperature T, is given by

1T f(0)=—A +c 4 -2

where f (0)=m /12. We next need an approximation for

f (x) near x =0. Since f (x) is not an analytic function of
x at this point, doing so is nontrivial. Nevertheless, fol-
lowing the methods of [15], it is enough for our purposes
to use the asymptotic formula

f(x)=f(0)+ ln —— + —xX X X

4 m 8 4

where y is the Euler number. The somewhat lengthy
derivation of this expression is given in Appendix B. It
then follows from Eq. (4) that, for small order parameters
near T„

Near the transition temperature, both m and M are small,
and once again we use the expansion off for small argu-
ments. The logarithm again cancels and we find that

M= +y —)+ing k 2A
(12)

p g4 mT,
m

from which we can see explicitly that 6=3.
All three critical exponents that we have calculated are

mean field critical exponents and satisfy hyperscaling re-
lations. Actually, one will get the same critical exponents
in this approximation in d =3 [13], although they will

obviously not satisfy the hyperscaling relations in this di-

mension. Notice also that they are far from the Ising
critical exponents P=0.3, a=0. 15 at d=3 [6]. This
would seem to contradict conventional wisdom according
to which only the symmetry-breaking pattern plays a role
in determining the values of the critical exponents. The
number of fermion multiplets does not influence this pat-
tern. One then wonders how nontrivial critical exponents
could be recovered from this expansion. Moreover, since
these critical exponents are obviously not the chiral criti-
cal exponents P= 1, a=0 [g] either, there is a question as
to which critical exponents will ultimately be recovered:
the scalar Ising ones, or the chiral ones. Using symmetry
arguments in Sec. III we shall show that the scalar criti-
cal exponents are the ones which will be recovered. Then
in Sec. IV we shall address the issue of how the scalar
critical exponents can be obtained within the framework
of the I /N expansion.

Tc T

T.
m k 2A

8T2 g4 ~T

III. WHAT HAPPENS TO VARIOUS SYMMETRIES
UPON DIMENSIONAI. REDUCTION

C= f y ln(1+e )dy
24T

V o
(10)

and continuous at all T. This gives +=0. As for 6, we

first introduce a source term. In the current context this
is just an explicit chiral-symmetry-breaking mass term
Mgf. The gap equation then becomes

0=(m —M) —A+A +(m —M)

A+ A +(m —M)
m —I

+4T2(m —M )f((m —M )/T )

—",m+, m'.

In arriving at this simple expression we benefited from
the fact that the logarithmic terms from the second and
the last terms cancel in Eq. (4). We immediately see that
the critical exponent P is one-half. Notice also that the
metastable state that was found in [12] disappears due to
a similar cancellation of the logarithmic term in the
effective potential Eq. (6).

Other common critical exponents can be calculated in
a similar manner. To calculate a, we find the specific
heat near T, to be

We begin with the standard reduction procedure pay-
ing special attention to the 3+1 and d =3 symmetries.
The 3+1 theory is invariant under the special Lorentz
group, CPT, P, and T and chiral symmetry. For conveni-
ence, we use the Weyl representation of the y matrices in
Minkowski (3+ 1)-dimensional space:

0 —I 0 cr

0 7 (13)

where o are the Pauli matrices. In this representation
the discrete symmetries are

IqI'=)'q, chic'=

TPT = —i@~
lo 0

—io. 0

, 24
(14)

(15)

At finite temperature, Lorentz boosts and T invariance
are obviously lost due to the presence of the thermostat.
Three-dimensional rotations, PC, and chirality are left
undisturbed, however.

To perform dimensional reduction, we first Wick rotate
t ~—i ~. Then the fermionic piece of the Lagrangian Eq.
(1) becomes
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where for clarity we have considered only one of the N
fields. Writting f in terms of its "right" and "left" com-
ponents f=(g",P}', we then expand P and f in a
Fourier series in ~:

while f"' =f ' (r3. Then the Minkowski space form of
Eq. (17) becomes (see [17])

[ i—f„y(2+, ) Bg"„+iPy(2+, ) Bg„
00

PR, L(x T) = T1
/2 g e n QR, L(x }

n = —00

(16)

where co„=(2n+1)~T are the fermionic Matsubara fre-

quencies. Then

00

[ i—P„o"Bf"„+if„ta"Bg„

(qRtqR+yLtyL)

+gy (yRtg+qLtyR)] (17)

X=i QBQ+ (gg)

in 2+1 dimensions (where f is a four component field)
undergoing the chiral phase transition [7], we shall have
to rotate the d =3 Euclidean Lagrangian Eq. (17} back
into the (2+1}-dimensional Minkowski space. To do so,
we shall choose x3 as our "time" coordinate and define
our (2+ 1)-dimensional Minkowski y matrices as

X(2+1) +3 V(2+1) +1 V(2+1) +2

and the Lagrangian becomes a sum over an infinite num-
ber of fields each having a different "mass" co„. We have
retained only the n =0 temperature harmonic of the sca-
lar field P. Notice, however, the relative sign difference
between the kinetic terms of f"„and g„, which would
seem to be peculiar. It is known, however, that the Dirac
algebra in three dimensions (Euclidean or Minkowski)
does not have a "ys" matrix. Rather, the role of "y5" is

played by —I, the identity matrix, and the algebra
decomposes into two inequivalent representations. The
two different kinetic pieces of Eq. (17) are due to the two
different representations of the Dirac algebra. Under
reduction, the "right" fields g are mapped into one of
the representations, while the "left" fields g are mapped
into the other representation.

In order to compare the Lagrangian Eq. (17}with the
Z2 chirally invariant Gross-Neveu model,

(20)

R R
(2+1)0 (2+1) o)4 (22}

From this we can see explicitly that the thermal "mass"
terms in Eq. (20), which are precisely the Dirac-type mass
terms one expects from fermions in 2+ 1 dimensions, are
not invariant under (2+1}-dimensionsional parity [14].
On the other hand, the dimensionally reduced 3+1
chirally noninvariant mass term fg, when written in
terms of the two component Weyl spinors, is

g"„g„+P„P"„. This term is invariant under (2+ 1}-
dimensional parity.

The original (3+1) dimensiona-/ parity reduces to the
complete inversion of all the three-dimensional coordi-
nates which are not equivalent to (2+1)-dimensional pari-
ty. The mass terms obtained from dimensional reduction
would therefore not be allowed in the d =3 parity invari-
ant Gross-Neveu model exhibiting chiral critical ex-
ponents. It is for this reason that under dimensional
reduction one will not get the d =3 chiral critical ex-
ponents, but will, instead, obtain the Ising critical ex-
ponents. Simply put, the discrete symmetries of the two
Lagrangians are different. In one, d =3 parity is
preserved, while in the other it is explicitly broken by the
temperature mass terms.

One can see this explicitly within the calculation per-
formed in Sec. II. To develop the I/N expansion of the
reduced Lagrangian Eq. (17), we consider the partition
function in terms of the modes co„:

The parity operation in 2+1 dimensions corresponds
to x~ —x,y~y, t~t. Therefore, for the spinors the
(2+ 1)-dimensional parity P(2+) ) are

(2+1)ti (2+1) ~1 P
L L (21)

while because the right fields are in the other representa-
tion of the Dirac algebra,

Z = exp ~ N f R~' R+) Rf R+p Lfg . L+
&

(23)

where we have neglected the n&0 modes of P. Retaining
these terms does not alter the final result. The integra-
tion over each individual fermionic frequency mode can
then be done straightforwardly, and we obtain, as the
effective potential,

(24)

I

Notice that the sum is over a11 n, positive and negative,
and consequently the expression is a real number.

We then observe that, since co„AO for any n, the cubic
terms in V,&. become irrelevant. Consequently, V,&. is an-
alytic in & Pp & and can be expanded as a power series in
& Pp & ~ In fact, because of the presence of the imaginary
mass terms, we find that V-

& Pp & for small & Pp &.

Therefore, P= —,
' and we have recovered explicitly the
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mean field result. (How the correct Ising critical ex-
ponents can be restored from this mean field result shall
be addressed shortly. ) This should be contrasted with the
Gross-Neveu [8] theory in which the elfective potential is
not analytic in (Po) due precisely to these cubic terms in
the effective potential, as can be seen explicitly by setting
all the ro„=o by hand in Eq. (24). In this case one im-
mediately obtains P= 1 as the chiral critical exponent.

IV. CONCLUDING REMARKS

We now address the question of how the nontrivial
critical exponents are restored from the mean field values
that we have obtained in the leading order in 1/N. These
mean field critical exponents sharply disagree with the Is-
ing ones. This would appear to be a problem since if the
usual universality argument is applied only the
symmetry-breaking pattern plays a role in determining
the values of the critical exponents. The number of fer-
mion multiplets does not inAuence this pattern.

In many ways the 1/N expansion parameter functions
in much the same way that A does in the loop expansion
of the P model. In the partition function in the 1/N for-
malism, Eq. (3), the factor of N appears as an overall fac-
tor multiplying the Lagrangian. Although in the d=3
RG "loop expansion" one formally corrects the values of
critical exponents by taking into account higher loop dia-
grams [6], the values of the exponents are actually in-

dependent of the "expansion parameter" A'. Obviously, A,

as is 1/N in our case, cannot appear in the values of the
uniuersal critical exponents. The calculation of the criti-
cal exponents in either scheme is not truly an expansion.

From the symmetry arguments we know that these
mean field critical exponents cannot be restored to the
chiral critical exponents. Consequently, they must be re-
stored to the Ising critical exponents and therefore can-
not be functions of 1/N. Furthermore, one observes that
the 1/N expansion for the finite temperature Yukawa
model and the expansion in fi of the d = 3 P model coin-
cide after dropping irrelevant terms. We can see this ex-
plicitly by first calculating the P function for the scalar
field coupling constant A, in the Yukawa model by using
the 1/N expansion. It has the form Pl(A, ) —A,

a(A, /N)+—, where we have restored the original
l

factor of N in this expression and a is a constant. To find
the values of the critical. exponents, we then determine
the fix point of the 13 function A, *-N. Clearly, A,

' is not
an analytic function of 1/N. Because of this, to the
lowest order in 1/N, the Ising P function does not have a
nontrivial fix point and one obtains mean field values as
was done in Sec. II. Then the next order term in the 1/X
expansion is very significant and one finds that (to this or-
der) A,

* suddenly becomes proportional to N. When we
then incorporate A,

* in the expression for the critical ex-
ponents, say P- —,

' —b l,*/N, the dependence on N cancels
and a nontrivial value of P will be obtained.

Let us now contrast this situation with what happens
for the calculation of the 1/N expansion for the P func-
tion of the coupling constant g in the chirally invariant
four-fermion Lagrangian in d =3 [8]. One now finds that
P,h;(g)-g(1 —g)+[h(g)/N]+ where h is some
known function of g. Its specific value is unimportant.
What is important is that this P function has a nontrivial
fixed point even to the lowest order in 1/N. Consequent-
ly, a perturbative solution of the fixed point for the chiral
P function is well defined and analytic about g

*= 1, un-
like the previous case.

Another remark is that the infinite number of modes in
the reduction does not spoil the argument about the ir-
relevance of the fermionic modes. A priori one might ex-
pect that this term will have an effect but, as the explicit
four-dimensional calculation has shown, this is not the
case. As we have seen in Sec. III, this is basically due to
the discrete symmetries of the Lagrangian.
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APPENDIX A

In this appendix we shall consider effects of adding in
the chemical potential to the system. The addition of a
chemical potential p is straightforward. One only has to
modify the distribution function f (x) in Eq. (5) so that

f(x,p)= —fo 3/x'+y' exp( —&x'+y'+p)+ I
+ 1

exp( —1/x +y —P, )+ I
(Al)

where p=p/T. The phase diagram was studied to lead-
ing order in 1/N (or, equivalently, in the mean field) ap-
proximation in [12]. Actually the authors of [12) studied
the four-Fermi (Nambu —Jona-Lasinio) model rather than
the Yukawa model, but any differences are irrelevant for

The situation is very different from the 1/M expansion for
critical exponents in scalar theories, where M is the number of
scalar fields. In this case the symmetry-breaking pattern does
depend on the expansion parameter 1/M. See Ref. [6].

T, (p)+p, =const . (A2)

In their analysis, however, they once again found another
pole in the thermal propagator of the Goldstone bosons,

4This also resolves a similar "paradox" in three dimensions

[13].

I

our purposes. They established a phase diagram in the
T—p plane with the critical line satisfying a simple equa-
tion
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T,'=cos(a)T, +sin(a))tt, ,

)tt,
' =cos(a))M, —sin(a)T, .

(A3)

This symmetry, however, does not survive higher order
corrections in 1/N.

As we have seen, the critical exponents of Yukawa
theory Eq. (1) will fall within the Ising universal class in
the absence of any chemical potentials. This is true even
with the addition of a real chemical potential. As was ob-
served in Sec. III, under dimensional reduction fermions
gain masses which cannot be canceled by any real chemi-
cal potential. Only nonuniversal quantities such as the
critical temperature will be changed, and as was calculat-
ed in [12], the critical temperature is related to the chem-
ical potential by Eq. (A2).

APPENDIX B

In this appendix we shall derive the small x approxima-
tion for f (x) in Eq. (5) following the technique of [15].
Although f (x) and its derivative are well defined func-
tions of x for all x ~0, one finds that the second deriva-
tive off (x) is singular at x =0. Consequently, a straight-

leading them to complicate the situation with the addi-
tion of a metastable state just below the phase transition.
Moreover, they seemingly found the presence of a ta-
chyonic ghost between these two temperatures.

We have reconsidered the calculation and have found
that this additional pole of the propagator arises from a
rather unnecessary approximation they made. Once
again, as in the case of zero chemical potential, they ig-
nored the logarithmic term in the gap equation. As be-
fore, this contribution will be canceled by a correspond-
ing term in f(x,p, ) even in the presence of a finite chemi-
cal potential. Because of this the tachyon pole disappears
and the metastable state they alluded to does not actually
exist. There is only one phase transition.

It is also interesting to note that the simple spherical
shape of the phase transition line in the T—p plane in
mean field is rather generic. It follows from Eq. (A2) that
there is a symmetry

forward Taylor series expansion of f (x) for small x is ill

defined. We are instead forced to use the method
developed by [15] to find an approximate expression for

f (x) which is valid for small x.
We first differentiate f (x) and separate the resultant

integral into two pieces:

f'(x) = ——lim(I,'+I, )
x
2 p~o

where

(Bl)

and e is introduced as a regulator for the integrands at
large y. In its absence, each integral separately is infinite,
although since f'(x) is a well defined function, their sum
is finite. The first integral is straightforward to do, giving

1 1I,= ——ln2x .1

26 2
(B3)

Now we can see explicitly the singularity when a~0.
There is, however, a logarithmic singularity in x which
shows explicitly that f"(x) is singular at x =0. As for
the second integral, we first make use of the expansion

tanh
7TZ 4z ~ 1

~ „—i z +(2n+1)
(B4)

then integrate the series term by term giving

I,= — +—1n2n —++1 1

2E' 2 2
(B5)

where y is the Euler number and we have only included
terms to order x . We can now see that the singular
terms in e in the sum I,'+I, cancel and after integration
we obtain the expression for f (x) valid for small x:

f(x)=f (0)+ ln (B6)
4 m

+g 2

8 4

I,'= f dy, I,= f tanh(yl2) " dy,
x +y x +y

(B2)
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