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Hot gauge theories and Z~ phases
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In this paper several aspects of Zz symmetry in gauge theories at high temperatures are discussed.

The metastable Z& bubbles in SU(N) gauge theories with fermions may have, generically, unacceptable

thermodynamic behavior. Their free energy F ~ T, with a positive proportionality constant. This leads

not only to negative pressure but also to negative specific heat and, more seriously, to negative entropy.

We argue that although such domains are important in the Euclidean theory, they cannot be interpreted

as physical domains in Minkowski space. A related problem is connected with the analysis of the high-

temperature limit of the confining phase. Using two-dimensional QCD with adjoint fermions as a toy

model we shall demonstrate that in the light fermion limit there is no breaking of the Z& symmetry in

the high-temperature limit and thus there are no Z& bubbles.

PACS number(s): 11.10.Wx, 11.15.Pg, 12.38.Cy

I. INTRODUCTION

The Zz symmetry of pure Yang-Mills theories plays an
important role in the study of their thermal properties
[1]. It is known both from perturbative studies [2,3] and
from lattice simulations [4] that at high temperature the
Zz symmetry is spontaneously broken and the Euclidean
theory has N degenerate vacua distinguished by different
vacuum expectation values of the Polyakov line [1]:

(L ) = —trP exp i f Aodr
1 . p

N 0

In the presence of any matter which transforms as the
fundamental representation of SU(N) {for example,
quarks in QCD or quarks, leptons, and Higgs particles in
the electroweak theory), this ZN symmetry is no longer
present and all but one of these N degenerate vacua be-
come either metastable or unstable (depending on N and
the number of flavors). Following work on the computa-
tion of the interface tension between phases of different

Zz "vacua" in pure gluonic theories [5] it has recently

been argued [6] that these metastable vacua may lead to
interesting cosmological consequences.

However it has been found in [7] that Zz domains,

generically, have unacceptable thermodynamic behavior;
for example, their free energy F ~ T" with a positive pro-
portionality constant. This leads not only to negative
pressure but also to negative specific heat and, more seri-

ously, to negative entropy which means that something is
definitely wrong in our understanding of the hot gauge
theories structure. Using the above-mentioned thermo-
dynamical arguments one must conclude that the Zz
bubbies, i.e., different Z~ phases coexisting in space, do
not exist in models with metastable vacua. However the
thermodynamical arguments do not forbid the existence
of the different degenerate Z& phases in the theories with

unbroken Zz symmetry. It is completely unclear what
will be wrong with the theory if one adds some matter in
a fundamental representation. How does this matter de-
stroy the existence of (meta)stable states? In some sense
the situation would be much more clear if one could as-
sume that these phases cannot coexist in the space even
in the case of unbroken Zz symmetry. The problem of
Z~ bubbles has been recently discussed in [8].

Recently Smilga argued in a paper [9] that this point of
view may be indeed correct and that "different Z&
thermal vacua of hot pure Yang-Mills theory dis-
tinguished in the standard approach by different values of
Polyakov loop average correspond actually to one and
the same physical state. " He presented different argu-
ments supporting this statement including the possible
role of the infrared divergences in the calculation [5] of
the surface tension of the walls separating different Z~
phases as well as the difference between strong-coupling
lattice SU(N) gauge theories, where Z~ bubbles indeed
exist [1],and the weak-coupling continuum limit.

In addition to these general arguments he considered
an interesting example of the (1+1)-dimensional hot
QED, the Schwinger model, where a similar problem ap-
pears. Instead of ZN=~, [SU(N)IZ&] different vacuum
states in a pure SU(N) gauge theory one has
Z =a.,[U(1)] different states in the Schwinger model.
However it was shown in [9] that in this case there are no
domain wall solutions with finite surface tension.

In this paper we shall consider another (1+1)-
dimensional model which, contrary to the Schwinger
model, shares some common features with realistic
(3+1)-dimensional gauge theories. This is the (1+1)-
dimensional SU(N) gauge theory with Majorana fermions
in the adjoint representation with the action

S,qj
= Jd x Tr — F„„F""+iVy"D„4+m%%

4g2 P~

*On leave of absence from ITEP, B. Cheremyshkinskaya 25,
Moscow, 117259 Russia.

(1.2)

which obviously has Z& symmetry. The light-cone
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n (m) —m exp(PHm), (1.3)

which means that there is the Hagedorn temperature
TH =PH ' and the model undergoes a confinement-
deconfinement transition at this temperature which must
be the simplest analogue of the real confinement-
deconfinement transition in OCD. The numerical value
of PH =(0.7 —0.75)+m/(g N) in the large N limit was
calculated in [13]. The same picture was obtained in a re-
cent paper [14] where the Hagedorn spectrum was ob-
tained for (1+1)-dimensional QCD with adjoint scalar
matter. The numerical value of inverse Hagedorn tem-
perature in this case is PH = (0.65 —0.7 )+n l(g N)

In string theory language the Hagedorn transition
occurs due to the fact that some winding modes in the
imaginary time direction become tachyonic at high tem-
perature [15,16] (see also [17]). In a string description of
the gauge theory this winding modes are generated by the
Polyakov line operators

quantization of this theory was considered in a large N
limit in [10]. The spectrum consists of closed-string exci-
tations. Contrary to the 't Hooft model [11] with fer-
mions in the fundamental representation of SU(N)
describing the open-string excitations with the only
meson Regge trajectory, in this theory there is an infinite
number of the closed-string Regge trajectories and the
density of particle states increases exponentially with en-
ergy [12,13],

II. ZN DOMAINS IN GAUGE THEORIES

Let us briefly review the origin of the Zz structure in
gauge theories. It is most illuminating to begin with the
Hamiltonian theory in Ap=0 gauge and impose Gauss'
law D, E, —gP /=0 as a constraint on the Hilbert space
of states. The projection operator P onto these states is
just the projection operator onto gauge invariant states:

f2)gU

fag
(2. 1)

where the integral is over all gauge transformations g (r)
with g (r) 6SU(N) using the Haar measure 2)g. U is the
representation of the gauge transformation g on the Hil-
bert space of states. The partition function at nonzero
temperature 1/P is given by

Z =Tr[e ~ P] = fl)g Tr[e ~ U ] (2.2)

If we compute this trace in a basis [~A;,g)] where (
represents an appropriate fermionic state then

Z= A; g A;, e ~
Ug A;, . 2.3

One can now proceed with the usual derivation of the Eu-
clidean functional integral at nonzero temperature except
to note that the presence of the factor U~ modifies the
boundary conditions on both the gauge fields and the fer-
mions. Thus apart from an overall normalization

1 kP
L&(x)=—trPexp i Ao(r, x)dr (1.4) Z= g r A, r~ r~

BC

X2)g"(r, ~)exp —f deaf d rXr,
wrapping k times around the imaginary-time direction ~.
In a very interesting paper [18] Polchinski studied the
high-temperature limit of the confining phase and calcu-
lated in large X limit the mass of the tachyonic winding
modes at high temperatures. His method was used by
Kutasov in [12] to study the stability of the confining
phase in the two-dimensional QCD coupled to adjoint
matter. We would like to note that both the Polchinski
and Kutasov analyses were based on the form of effective
potential which leads to the existence of the Zz bubbles
and these two problems —Z~ bubbles and tachyonic
winding modes seem to be ultimately related.

In Sec. II we shall discuss the effective potential for the
Polyakov line and the thermodynamical properties of the
Z,& phases. In Sec. III we consider the Polchinski
method and discuss its relation to the existence of the Z~
phases. In Sec. IV the 1+1 gauge theory with adjoint
fermions will be considered. Using the results obtained in
[19]we shall demonstrate that there are no coexisting Z~
phases in this model by the same reasons which have
been found by Smilga for Schwinger model [9]. More-
over, there is no Zz symmetry breaking in this model in
the light fermion limit m ((+g N. In conclusion we
shall discuss the obtained results and unsolved problems.
In particular we shall consider the possibility that the
metastable ZA phases (if they do exist in the four-
dimensional theories) may have interpretation as states
with inverse population, i.e, with negative temperatures.

BC: A, (r,P) =g [ A, (r, 0)],
y(r, P) = —g [y(r, o)]

(2.4)

where X& is the usual Euclidean Lagrangian for a gauge
theory coupled to fermions, g [ A ]:—g Ag

' —Bgg
' and

g [p]—=g1(. In other words we derive the usual functional
integral in the AD=0 gauge but where the periodic (an-
tiperiodic) boundary conditions are modified to be
periodic (antiperiodic) up to an arbitrary gauge transfor-
mation which we then integrate over.

It is of course possible to remove these strange bound-
ary conditions by performing a gauge transformation in
the functional integral. For each value of the integrand g
we may introduce any gauge transformation V(r, r) with
the property that V(r, O)=I and V(r, P)=g '(r). This
will force the introduction of a temporal gauge field
3p Bp VV '. The integral over g will then become an
integral over Ap with the appropriate measure. In fact if
we integrate over all possible such Vs we recover the
usual path integral over all gauge fields A„(r,r) with
periodic boundary conditions and over all fermionic fields
with antiperiodic boundary conditions.

If we consider the spatially constant gauge transforrna-
tion g EZz, i.e., g = exp(2mik /N)I (where k is an integer
and I is the identity matrix). Then g [ A, ]= A, but

g [f]=exp(2m& k/N)g. Thus in the absenc'e of fermions
there are N degenerate vacua. When fermions are
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present, however, a value of g EZ& corresponds to a path
integral in which the fermions have the "twisted" bound-

ary conditions g(P)= —exp(2nik/N)g(0). One can say
that this describes fermions having an imaginary chemi-
cal potential (for more detailed discussion see, for exam-

ple, [20)).
The main tool for analyzing the Zz structure of gauge

theories is the calculation of the effective potential in a
constant, background temporal gauge field A o. For
definiteness we begin by considering a four-dimensional
SU(N) gauge theory with Nf fiavors of massless Dirac
fermions. Although at finite temperature it is not possi-
ble to choose a gauge in which do=0, it is possible to
choose a gauge in which A c is independent of (Euclidean)
time ~ and in which it is diagonal. Ao can then be writ-
ten as

(2.5)

where for SU(N) one has 8, + . +8&=0 (mod2m. /P)
and there are N —1 independent 8;, the number of in-

dependent diagonal generators of SU(N) [i.e., the ele-
ments of the Cartan subalgebra of the Lie algebra of
SU(N) ]. In this gauge the Polyakov line is given by

L=—pe (2.6)
N,.

The effective potential for Ac has been calculated up to
two loops' [2,3,21]. Here we shall consider only the one
loop result [2,3]. For gluons the effective potential is

2T4 2T4 N 8,
V (8, . . . , 8 }=— (N 1)+-G 1&'''& s 45 24

and for each fermion flavor in fundamental representation it is

' 2

mod 2

8; 8k

~ mOd2

(2.7)

2~2 T4 ~2T4

i=1

6[;—+1 —1
mOd2

2'2

(2.8)

g g + 27Tk

N
(2.9}

We would like to mention here that what we con-
sidered was the effective action in a very specific external
field. This action was not obtained by the standard
method of Legendre transform and one cannot use in this
case the general results [25] that the effective potential
obtained via a Legendre transform is convex and has a
unique minimum —on the contrary, the most interesting
situation for us is when there are Zz degenerate minima

(or quasidegenerate in the case of matter in the funda-
mental representation}.

The values of the effective potentials at zero field

VG(0, . . . , 0)= (dT /45)(N— 1) and VF—(0, . . . , 0)

,'(rr T /45)N. It is easy —tosee that it is the free en-

ergy density of an ideal gas of gluons and the fermions at
a temperature T which is equal to nTa/90—, w. here.

each bosonic degrees of freedom contributes 1 to ~ and

each fermionic degree of freedom contributes —', to ~.
Thus the gauge fields contribute 2(N —1) and the fer-
mions contribute 4( ', )Nf N to i~ w—hich reproduces

VG(0, . . . , 0) and V~(0, . . . , 0).
The gluon effective potential (2.7) has the Z~ symme-

try

mion flavors Nf.
In general one can consider an N —1 parameter depen-

dent configuration of the external field e. However if we
are looking for the domain-wall-like configuration inter-
polating between two minima with neighboring values of
the Polyakov line (,L ), say ( L ) = 1 and
(L ) =exp(2ni/N) one can consider a more simple, one-
parameter representation for 8 in the form

(2.10)

(N —1)—
where the transition from (,L ) =1 to (L ) =exp(2ni/N)
is described by interpolating between q =0 and q = l. In
the general case of an interpolation between
(L ) =exp(2mil/N) and (L ) =exp[2ni(l +1)/N] one
must take q in an interval g 6 [l, l +1). Let us note that
for SU(2) and SU(3) groups any two minima are the
neighbors [(L ) =+1 for SU(2) and
(L ) = l, exp(+2ni /3) for SU(3)]. Only starting from
SU(4) we have pairs which are not neighbors and for
which the parametrization (2.10) is wrong. In the case of
SU(4) there are two such pairs (,L ) =+1 and (L ) =+i

where the integer k =0, . . . , N —1 must be the same for
all 8;. Then +8;=0 (mod2m/P} and without fermions
there are N minima at 8; =(2m/PN)k where.
k =0, . . . , N —1. The fermion potential (2.8) obviously
violates the Z~ symmetry (2.9) and only 8,. =0 is the glo-
bal minimum of the total effective potential. All other
Z& vacuua become either local minima ('metastable
states) or unstable states depending on the number of fer-

Let us note that a similar problem arises when one considers
the effective potential in some Kaluza-Klein models and dynam-
ical breaking of gauge symmetry, the so-called "Hosotani mech-
anism'* [22). The significance of the adjoint representation for
fermions was discussed in detail in recent papers [23,24].
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In this paper we shall not consider such a configurations
for the sake of simplicity, but it will not be a conceptual
problem to repeat the same analysis for a general external
field e.

The total free energy as a function of q is the sum of a
gluon (2.7) and Nf fermion (2.8) effective potentials and
can be written as F =+/y/T'. (2.16)

F and has a positive value E proportional to T . In more
detail this was discussed in [7].

It follows from the above discussion that for a large
class of models with both gauge fields and fermions we
can write the free energy density as

F(q)
', (N ——1)[VG(q)+Nf VF(q)]~2T4

—
—,', [(N —1)+ ', NNf —] (2.11)

Such a situation is impossible for the metastable state
of a real physical system. To see this let us remember
that the free energy of any physical system at tempera-
ture T is defined as

where the bosonic and fermionic contributions are given
in terms of the function

—F„/TF(T)= —T ln g e (2.17)

by

f (x)=(x,d, ) (1—x,d, )'

VG(q) =f (q),

1 N q 1

16N —1 N 2

(2.12)

(2.1 3)

Shifting E„by a constant C one can add C to F ( T), but
the T-dependent part must be negative as one can see
defining energy levels E„ in a such way that the ground-
state energy Eo=0 and F(T)= —Tln(1+ )(0. In
our case we got positive F(T) which leads to physically
senseless thermodynamic quantities, namely, the negative
entropy density

= —4y T (2.18)

Notice that the function f is periodic with period 1.
Thus VG(q) is periodic with period 1 but VF(q) is period-
ic with period N. Note also that a constant has been add-
ed to VF so that it vanishes at q =0 which is the pertur-
bative vacuum of the theory. The last term in (2.11) is
the free energy density of an ideal gas of gluons and Nf
fermions at a temperature T.

Now let us repeat the arguments which were used in

[7] to demonstrate very serious problems arising in the
thermodynamical description of the metastable Zz vacu-
ua. For example for N=3 it is easy to show that the
metastable minimum at q =1 remains metastable for
Nf & 18 at which point it becomes unstable. Notice, how-
ever that for N& & 3 the free energy density becomes posi-
tive in these metastable states. Since I' ~ T this poses a
very serious problem which we shall now discuss.

First note that the positivity of the free energy at
nonzero values of q is entirely due to the fermions. For
integer q & N/2 one gets

F (q integer ~ N/2) 2 q2 2q
~

2Z4 f 3 N2

N —1

45

This will be positive provided

7

180

1 2 q2 2q2
f 45N 3

—1

7

180
(2.15)

For X =3 and q = 1, for example, we find that F is posi-
tive (and proportional to T ) for Nf ) 3. For even N and

q =N/2 one has positive F (N/2) for Nf ) (N 1)/2N. —
This point will be a local minimum for Nf &N. Thus for
X =4 and A'2 =2, 3 the point q =2 is both a minimum of

the negative internal energy density

E =F+TS = —3iyiT

the negative pressure

p = —
ly I',

and the negative specific heat

c = —121y I

T' .

(2. 19)

(2.20)

(2.21)

Such a metastable vacuum thus has not only a negative
pressure but also a negative specific heat and worst of all
a negative entropy. It is clear that no physical systems
with positive temperature of this type can exist. Howev-
er, one cannot exclude the metastable states with inverse
population (the well-known examples are lasers). We
shall briefly discuss such an intriguing possibility in a
conclusion.

There are interesting cases in which the free energy
density at the metastable minimum has the correct, nega-
tive sign for F. One such example is given in Ref. [6] in
which the standard electroweak model is considered well
above the QCD phase transition point. In this case the
base free energy density of the leptons, the Higgs and the
weak gauge bosons contribute to the total free energy
density and make it negative. It is clear, however, that if
a subsystem of the full system (namely, the quarks and
gluons) has the disease discussed above, namely a positive
free energy density which grows like T, then including
the leptons, Higgs, and weak gauge bosons which couple
weakly to it cannot save the situation. This will be
clarified below but if we imagine a system whose total en-

tropy is positive but that some identifiable subsystem has
a negative entropy then any statistical description of the
full system fails since the subsystem has no states avail-
able to it. More discussion about thermodynarnical prop-
erties of these states as we11 as difhculties arising in inter-
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pretation of Zz domains in Minkowski space can be
found in [7].

Let us note that the real problems arise only when we
are assuming that these metastable states appear in our
space as ZN bubbles. To get such bubbles it was usually
assumed that one could use the effective potentials (2.7)
and (2.8) not only for a constant Ao for which the poten-
tials had been really found in [2] and [3], but also for a
spatially dependent Ao(x). Let us note that the Zz sym-

metry (neglecting the matter in a fundamental representa-
tion) exists only for coordinate-independent part Ao and
generally speaking it is not necessary that potential for
nonconstant modes Ao(x) is the same. Moreover, as has
been demonstrated by Smilga in the Schwinger model [9]
and as we shall demonstrate later in (1+1}-dimensional
QCD with adjoint matter, there are situations when the
total effective potential is the sum of two independent po-
tentials for constant and nonconstant modes. In this case
the zero mode Ao becomes a quantum mechanical vari-
able and no ZN bubbles exist in space; however the price
for this is the unbroken Zz symmetry. Before we start
this discussion let us consider how one can use the
effective potential (2.7) to analyze the high-temperature
limit of the confining phase following the ideas suggested
by Polchinski in [18].

III. ZN PHASES AND HIGH-TEMPERATURE LIMIT
OF THE CONFINING PHASE

Let us consider the two-point correlation function of
Polyakov lines (1.4) at low temperature in pure gluo-
dynamics:

(,Lk(x)L k(0) }—exp( Mk(p)x —}, x —p ()0 (3 1)

The correlation function vanishes at infinity because of

the confinement, so the expectation value of Poiyakov
line is zero (LI, }=0 and ZN symmetry is unbroken. The
usual interpretation of the Polyakov line is the world line
of an external source in fundamental (for k =1) or in
higher (k ) 1) representations. However there is a dual
description when one can consider compact Euclidean
time ~ as a spatial coordinate and Lk is the creation
operator of a winding state with an electric flux in the
periodic direction and Mk(P) is a temperature-dependent
mass of the winding state. In the deconfinement phase
the winding modes become tachyonic and the theory
makes a transition to a phase with broken ZN symmetry.

Polchinski in [18] used the high-temperature effective
potential (2.7) to calculate the mass of these tachyonic
states. To find them he considered the effective action

N

S,e= fd'x t Z (Vg;)
2g'P =t

N+, , X (8 —Hk)'. d2.
24m p';k=i ™

X [2n —(8, —Hk ),d2 ]' . (3.2)

The gradient term corresponds to the square of the elec-
tric field E in the bare action and the second term can be
obtained from the effective potential (2.7) after omitting
the 8-independent first term. In the large N limit one can
introduce the normalized density

p(H, x)=—+5(8—8, (x)) .
1

(3.3)

In the Np ~ limit Zz symmetry is transformed into
U(1} symmetry 8-+8+const. It is easy to see that Lk(x)
are the Fourier coefficients of the density p(8, x) [see
(2.6)]:

00

p(H, x}= 1+ g Lk(x) exp( ikH)+L —
1, (x) exp(ikH)

277

Ie(x)= f p(g, x)e' dg —Z exp(ikg;(x= ))=—trp exp i f de(rx)dr,ik8 kP

0 N, 0

The action (3.2) takes the form

N
ff
—

2
X ~ ~ X +

2g2p 0 p H, x 24m p o 0

(3.4)

(3.5)

pb, k,„(H,x):5(8 Hp) (3.6)

where Be
' is defined as Be 'exp(ik8) =exp(ik8)/ik and in

large N limit we must keep g N fixed. The minimum of
the potential is when all the eigenvalues are equal which
gives us the spectral density in the high-temperature
phase with broken Z~ [here is U(1) in large N limit] sym-
metry:

p, (H, x)= 1
(3.7)

S=N g fdx
k= —co

1
VLkVL

2g NPk

which is unstable. One can easily find that in quadratic
approximation in Lk the action (3.5) takes the form

for some 80. The symmetric confining phase is defined by
the U(1) invariant distribution

1+
2 3 ~kLkL —k

24m P
(3.8)
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where Vk is the Fourier transform of the potential
82) (81 82)mod2n[ + (81 82)mod2m. ]

Vk = d8e' V(8)
27K 0

d 8 ik882(2 8)2
2~ o k4

(3.9)

and one gets the tachyonic winding modes with masses

M2 2g 2N/ir2P2k 2 (3.10)

One can make an assumption that the same spectrum of
the tachyon masses must be reproduced in the string
theory (if any} describing QCD. Let us note that this
spectrum is different from the spectrum obtained in the
usual string theory [15] a'M„= n/—6+P /4m. a' where
n is some effective constant proportional to the number of
the world-sheet degrees of freedom (24 for critical boson-
ic string). Using (3.10) Polchinski made a conclusion that
for QCD string the effective number of degrees of free-
dom grows with temperature as n, ff(P)-g (i3)N/P and
the main conclusion of his analysis is that a string theory
describing QCD in the large N limit must have a number
of world-sheet degrees of freedom which diverge at short
distances [18].

Let us note that this analysis can be repeated even in

the case when there are Nf fermions in the fundamental
representation. Then using the (2.8) one can see that the
fermion contribution to the effective action (3.2) will be

cannot use this approximation when Xf =N, i.e., precise-
ly when the suppression factor for nonplanar diagrams
Nf /N is of order one and nonplanar diagrams have the
same order of magnitude as the planar ones. In this case
the one-loop approximation is invalid and one can no
longer use the method of an effective potential in the
external field to get any information about the (possible)
string instabilities at high temperature. However one
must take into account that in the case when nonplanar
diagrams are not suppressed, the connection between
large N gauge theory and a string theory is much more
problematic.

Thus we see that effective high-temperature theory
gives us important information about the (possible) string
description of the low-temperature con6nement phase.
This information was based on the form of the effective
potential which may lead in some situation to physically
senseless results. So we must be very accurate in dealing
with this potential and for this reason let us study the
simplest model where one can hope to have a
confinement-deconfinement transition: (1+1)-
dimensional QCD with adjoint matter [10,12—14].

IV. TWO-DIMENSIONAL QCD COUPLED
TO AD JOINT MATTER

AT HIGH TEMPERATURES

Let us repeat the following Kutasov [12] the analysis of
the previous section in the case of (1+1)-dimensional
QCD interacting with Majorana fermions in the adjoint
representation described by the action

12m P

(3.11) S,d,
= fdx f dr Tr F„,F""+iiIiy"D„O+miTi+

0 2g

f d x f d8p(8, x)(8 n)—
12' P' 7T

1)k
=NN, y fd'x . . .L,k(x) .

k irP

Sf=—

(3.12)

Including this term into (3.8) we get

S=N' g fd'x
k = —oo

1

2 7Lk ~L —k
2g NPk

I
LkL

2P3k 4 k —k

This corresponds to the linear in p(8, x) contribution to
the effective action for the density p:

(4.1)

defined on Euclidean space-time with periodic Euclidean
time r-r+P with periodic boundary conditions for
gauge Gelds and antiperiodic for fermions. One can again
choose the gauge when Ao is diagonal and independent
of time r: Ao=(1/P)diag(8i, . . . , 8&). Then the one-
loop effective action for the 0; takes the form

d8; + V(8„.. . , 8~ } (4.2)
1

S
S,s= fdx g2g')8

where the effective potential is nothing but the deter-
minant of the Dirac operator in adjoint representation
y„D„'' in an external Ao 6eld:

&f ( —1)k+
k4 2P3

I', 3.13)

V(8, , . . . , 8&)= —lndet[y„D'„'[A]+m]
and it is easy to see that linear terms do not change the
values of the tachyon masses (3.10), but shift the fields

N

lndet[y D [8;—8,-]+m] .
i j =1

1)k
Lk~Lk+

2
(3.14)

(4.3)

For small Ef /2V this shift is small and the quadratic ap-
proximation for the total action (3.5) is still valid. One

Using the proper time representation of the fermion
determinant one gets
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v()); —))))= Jdx z ) —)'
2' k =1

~dr kPX exp
o r 4~

Xcosk(8, —8 ),
V(8; —8~ ) = f dx [(8+rr),&2„~], m =0,1

2n.

(4.4}
and in the high-temperature limit p~O one can neglect
the mass term in the leading 1/p approximation. The
sum over k is the sum over winding of the particle trajec-

I

tory around the compact imaginary time and in the
high-temperature limit p~0 one can neglect the mass
term in the leading 1/p approximation. This representa-
tion of the determinant can be easily generalized to
higher dimensions where one must substitute dr/a by
dr/a +' in the case of (d +1)-dimensional theory. Also
in the case of bosonic degrees of freedom the factor
(
—1)" is missing. One can easily reproduce (2.7) and

(2.8) using the proper time representation of the boson
and fermion determinants.

Thus for small p the effective potential for constant 8,
is known and assuming, as usual, that for slowly varying
8 one can simply substitute 8; by 8;(x) one gets the
effective action (see [12])

T 2
1 N d8. N

S«=
2

X +
2g p ;=, dx mp , k , k

(4.5)

dLk dLCO
1S=N dx

2g2Npk2 dx dx

+( —1) 2LkLk 2

m k

and got the masses of the winding modes,

(4.6)

Obviously this action has ZN symmetry
8,.~8, +2am/N, m =1,2, . . . , N and we get the same

ZN bubbles as in four-dimensional case. One can also
consider the density (3.3) p(8, x) and using the same
method as in [18] Kutasov obtained the effective action
for L„(x} in quadratic approximation

8;(x). The second term depends on x-dependent fields

8, (x }; however, there is no reason why this part must
have ZN symmetry, and it does not. As a result any
configuration with a domain wall has an energy propor-
tional to the one-dimensional system length f dx and

these configurations are absolutely irrelevant.
To make this statement more clear let us repeat the

calculation of the determinant of the two-dimensional
Dirac operator and demonstrate the factorization proper-
ty following [19]. We shall not consider here the case of
an arbitrary gauge field A„, where A„ is a Hermitian
matrix, instead we shall consider interesting for us case
when this matrix is diagonal [see (2.5)]:

Mk(p~O}= (
—1)4g N

(4.7)
A "(r,x)=

A", (~,x)

(4.8)

where only the odd k winding modes are tachyonic.
However in the massless limit the form of the effective

potential (4.5) which leads both to the existence of the Z~
domain walls (and in the case of the fermions in the fun-
damental representation they will be metastable bubbles)
and gives the imaginary mass of the unstable winding
states is wrong. As we shall demonstrate now in the
massless theory there are no domain walls and one can-
not make simple predictions about the condensation of
the winding states —and all this because the potential for
the x-dependent modes of the fields 8, is not periodic,
contrary to the constant mode part which was really cal-
culated in (4.4). The two-dimensional fermion deter-
minant on cylinder in arbitrary gauge field was calculated
in [19] where it was shown that it is factorized into prod-
uct of two independent terms. The first one is the period-
ical potential but for constant modes 8;, not for the fields

Ag(~, x)

Then the fermion action from (4.1) takes the form

S&=fdx f dvTr[)p(iy„B"+m)%+Vy„[A "0']]

gl. . I'y P+y AP —AP +m
l,J

(4.9)
and we see that the total determinant for the adjoint fer-
mions,

det[y„D),"~, ( A )+ m] = P det(y„[iB"+ A/,']+m ), (4.10)

is the product of Abelian determinants of fermions in-
teracting with Abelian fields A,Ij A A j".

As discussed before in the high-temperature lixnit one

21t is easy to see that the corrections will be by order of m P.
To get the effective action in quadratic approximation one must simply repeat the same procedure as in a (3+ 1)-dimensional case.

Let us note also that because we need Fourier transformed effective potential Vk it is not necessary to take the sum over k in (4.5) to
get V(8).
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can omit the mass term and what we are trying to calcu-
late now is the determinant of the Dirac operator for the
massless fermion in an Abelian gauge field A" on the
cylinder S' XR ' or on the torus S' X S' if the space is a
circle too. Let us consider the Hodge decomposition of
the vector potential (in the sector with zero topological
charge),

8~+e~"a +a~g,1

R„ vg (4.11)

where the last term is the pure gauge and can be neglect-
ed. The R„ factors are the radii of two Si and R,=P. In
the case of the noncompact space, i.e., when we are con-
sidering the cylinder S'XR' one can put R ~~. Con-

stant modes 0" are the angle variables with periodicity 2~
and y is a coordinate-dependent mode. Substituting the
Hodge decomposition into Dirac operator and using the
well-known property of two-dimensional y matrices
y„e"'=iy y, one can get

~'y (8" ~ A")='iy 8"— 8" ie""r) y—I

P P
P

=ie ' y„B~— XgI

R„
(4.12)

Now let us consider a family of operators:

Xl =ie 'y 8"— 8" e
P

(4.13)

ln dew, = ' f d'xg—a'g
d7.

which can be easily integrated and finally we get

(4. 14)

We are looking for Di and Do =y„[r)" (i /R„)8—"] is the

operator in a constant field whose determinant is periodic
in 0".

A very elegant formula was obtained by Blau, Visser,
and Wipf in [19] for a family of general first-order elliptic
self-adjoint operators depending on a parameter ~ of the

type 0 =+go/g, exp(rf )Goexp(rf) where f (x) can be

in general some matrix-valued function and g, is the

parameter-dependent metric on the manifold. In our
case (4.13) we have f (x)=y5y(x) and fiat metric in-

dependent on 7.. We shall present here the result for this

case only, more general expressions including general
non-Abelian field can be found in original paper [19].
For a family of operators (4.13) one gets

dety (8" —i A ")=dety Q"— 8~
R

1
X exp f d2xyg2y

2m
(4. 1 5)

and we see that the contributions of constant modes 0"
and nonconstant modes y(x) are factorizable.

Here we neglect the possible contributions of the zero
modes. If they are present the determinant itself is zero
and one has the expression for det'2), /detK„where K, is
the matrix of scalar products of zero modes. However if
we consider the sector with a zero topological charge
there are no zero modes and one can simplify life a little.
Because we restricted the topological charge to zero we
are not allowed to consider a single domain wall which
carries a nonzero topological charge. However we can
consider wall-antiwall configurations (which one may call
soliton-antisoliton or instanton —anti-instanton
configurations) which is nothing but a one-dimensional

Z~ bubble [see discussion after Eq. (4.18)]. Thus we see
that the restriction to the sector with a zero topological
charge is not too restrictive indeed. Moreover, it is easy
to generalize the analysis to the case of nonzero topologi-
cal charge —the only new elements will be the presence
of several zero fermion modes and we have to calculate
not the vacuum-vacuum amplitudes in the presence of
the external field (0~0) „=exp( —S,s( Ao)), but the ma-

0

trix elements of the transitions with the production of n

fermion zero modes ( g,"0';4; ). It is evident that there
are no contributions from nontrivial topological sectors
to the vacuum-vacuum amplitude we are looking for.

Thus the effective potential is the sum of two terms.
One is the effective potential for the constant field which
we had calculated and which is periodic in 8 with a
period 2m. Another one is the potential the x-dependent
part of the gauge field which is not periodic at all; this is
the ordinary Schwinger mass term proportional to

f d x yB y=(1/4) f d xe„g„„(1/B)e„g„„.
Now let us consider the effective action when only Ao

component in (4.8) is nonzero and Ao depends only on x.
This is precisely the case which is relevant both for study-
ing Zz bubbles and instability of the confining phase at
high temperatures as we have discussed before. Then one
can immediately write the effective action in which the
constant modes 0; are completely independent from x
dependent fields A;, where the tilde means that we ex-
tracted the zero mode from A;(x):

S,s.= g [(8;—8, +m), d2
—~] + f dx g

dA, -

+ fdx g [A, (x)—A (x)]
dX 2%

(4.16}

where I is the size of the one-dimensional system. The Z& symmetry of this action 0; ~0;+2am /X, m =1,2, . . . , &
does not affect the x-dependent fields A;(x) at all.

It is clear now that for such potential any Zz bubbles will have infinite energy in the thermodynamical limit. To see

it let us consider the field [see (2.5)]
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(N——1)

(4.17)

where q =0 and q
= 1 corresponds to two different ZN vacuua. The effective action for one interpolating field q (x) is

'2

L

(4.18)

where q (x)=qo+q(x) and zero mode
qp ( 1/L )J Odx q (x }. Let us consider the Z)v bubble,

i.e., the region with q (x)= 1 with size R. The rest part of
the space, i.e., the region with size L —R has q(x)=0
and we assumed that both L and R are large in compar-
ison with domain wall width 1/')/Ng, so one can neglect
the contributions from the regions where q(x) interpo-
lates between 0 and 1. It is easy to see that in this case
qo=R/L and q(x)=q(x) R/L —and one must have

R /L & —,'; in the opposite case it is better to say that there

is a bubble of q =0 phase in the space with q =1. Then
the second and third terms in S [q] contribute to the ac-
tion

'2

S(L,R) =(N —1) R 1 —— +(L —R)2m R R
L L

2

+L R
L

=(N —1) R
2'

(4.19)

and we see that the action is proportional to the bubble
size R. To consider the single domain wall one must put
R -L sending the "anti"wall far apart, then in the ther-
modynamical limit L~00 and single domain wall is
infinitely heavy.

Thus there are no Z& bubbles in this theory; moreover,
we are not allowed to have any Z)v vacua. The reason is

very simple —in this theory the Z)v symmetry cannot be
broken spontaneously. The reason is obvious —due to
the decoupling of constant modes from all other modes
we have to average over all Zz vacua and cannot restrict
ourselves for only one, as would be possible in the case
without factorization. Let us consider, for example,
SU(2) theory with the symmetry of the center Z2. The
Polyakov line in this case is

L (x}—) [e iraq(x)+e iraq(x)]
2

I

qo is factorized and

1e(y( )q(0))
2

(4.22)

which is nonzero and has a finite limit at x ~~. Thus
we have ( L (x)L (0) )~—,

' when x ~ ~)o and at the same

time (L(x) ) =0. The breakdown of the clusterization
property is connected with the factorization of the zero
mode qo. This mode is absolutely delocalized and one
cannot use the naive rule ( A (x)B (0) )
—+( A(x))(B(0})atx —+ao.

Because the Zz symmetry is unbroken at high temper-
atures one can conclude that the analysis of the instabili-

ty of the confining phase at high temperatures which was
done in [12] is incomplete. However, we must remember
that the factorization of the fermion determinant (4.15)
was obtained only for massless case. For massive fer-
mions the effective action is

Trln[y D" m]=Trln—y D"—Tr g (4.23)

and only in first term there is a factorization; other terms
may mix constant and variable modes. However their
contribution is suppressed by powers Pm and one can
think about their importance at temperatures T &m. It
is still unclear what is the order parameter corresponding
to the Hagedorn transition in the theory with light fer-
mions with mass m "(/g N/qr In any case . the usual
picture of the Z& symmetry breaking is wrong in this
case and one has the strange picture of unbroken ZN with

(L (x) ) =0, but with nonzero (L ( ao )L(0) ), which
means deconfining.

(4.21)

However the zero-mode qo factors are canceled in the
two-point correlation function:

(L (x)L (0) ) =
—,
' ( cos[q(x) —q(0) ] )

'~qoeinq(x)+ '~qo —ixq(x)]
2l (4.20) V. DISCUSSION AND CONCLUSION

and it is evident that (L(x) ) =0 because averaging over

4Here we are considering the simplest case with the winding
number k = 1. The generalization for arbitrary k is trivial.

In this paper we tried to address some at first sight
different but, from our point of view, related problems
connected with the Zz symmetry in hot gauge theories.
We demonstrated that by allowing the nontrivial Z~ va-

cua to exist one may have a real problem when studying
the metastable states which have impossible thermo-
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dynamic properties. We tried to present arguments that
such bubbles cannot exist as metastable states at all.
However we did not explore in this paper another possi-
bility, which seems unrealistic, but cannot be excluded
completely. This is the idea that if after all our attempts
the metastable states will survive one must consider them
as some kind of states with inverse population, i.e., the
states with negative temperature. Let us remember that
both negative specific heat and negative entropy propor-
tional to T and for negative T they will change the sign;
i.e., in the case when they were negative at positive T
they will be positive for negative T. This idea seems rath-
er strange because we still have a paradox —what we

have started from was the gas of quarks and gluons at
high positive temperatures. How one gets a negative
temperature is a big question. One may speculate that we

can reach this region passing through infinite T. If such
a thing would be possible one could imagine something
like a quark-gluon laser in hot gauge theories. Despite all

its strangeness this idea deserves further analysis.
We also considered the connection between the ex-

istence of Zz bubbles and the instabilities of the confining

phase at high temperatures. Using two-dimensional

QCD with adjoint fermions as an example we demon-

strated that the situation with the breaking of the Z~
symmetry is not so simple as one could imagine when

dealing with "simple" two-dimensional models. In fact,
for the massless case we have proved that the Z~ symme-

try cannot be broken at all; however, the correlation
function of the two Polyakov lines (I.(x)L (0) ) is not go-

ing to zero when x~oc and we are in the deconfining

phase at high temperatures. It is unclear how the mass of
the fermion affects this situation. We conjectured that
the same physics must be correct for light enough fer-
mions with a mass m less than +g N. For heavy fer-
mions with m &g N one may have another phase and

may be even the breaking of global Zz. It is amusing
that in this theory one has hidden supersymmetry pre-

cisely at m =g N le as was shown by Kutasov in [12].
Does it mean that the supersymmetry point is a phase
transition point and one has two phases in a QCD with

adjoint fermions7 This is a very intriguing possibility.
It is also unclear how reliable the effective action is in

the four-dimensional gauge theories at high tempera-
tures. What is known is the effective action for the con-
stant field and one assumes that it is possible to substitute
the constant field Ao with a general x-dependent field

Ac(x). We just saw, however, that this recipe is not
universal; the two-dimensional example is a good demon-
stration of the fact that it is absolutely wrong in this case.
There is no such strong statement as a factorization of a
constant mode contribution to the effective action in a
four-dimensional case, but maybe we still missed some-

thing else in a four-dimensional case. In any case it
seems that the problem of Z~ phases and related with it
the problem of the instabilities of the confining phase'
definitely deserve further investigations.
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5Which may give us unique information about structure of
QCD strings, if string description of QCD exists.
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