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In this work the determination of low-energy bound states in quantum chromodynamics is recast
so that it is linked to a weak-coupling problem. This allows one to approach the solution with the
same techniques which solve quantum electrodynamics: namely, a combination of weak-coupling
diagrams and many-body quantum mechanics. The key to eliminating necessarily nonperturbative
efFects is the use of a bare Hamiltonian in which quarks and gluons have nonzero constituent masses
rather than the zero masses of the current picture. The use of constituent masses cuts ofF the growth
of the running coupling constant and makes it possible that the running coupling never leaves the
perturbative domain. For stabilization purposes an artificial potential is added to the Hamiltonian,
but with a coefBcient that vanishes at the physical value of the coupling constant. The weak-coupling
approach potentially reconciles the simplicity of the constituent quark model with the complexities
of quantum chromodynamics. The penalty for achieving this perturbative picture is the necessity of
formulating the dynamics of QCD in Light-front coordinates and of dealing with the complexities of
renormalization which such a formulation entails. We describe the renormalization process first using
a qualitative phase space cell analysis, and we then set up a precise similarity renormalization scheme
with cutofFs on constituent momenta and exhibit calculations to second order. We outline further
computations that remain to be carried out, There is an initial nonperturbative but nonrelativistic
calculation of the hadronic masses that determines the artificial potential, with binding energies
required to be fourth order in the coupling as in QED. Next there is a calculation of the leading
radiative corrections to these masses which requires our renormalization program. Then the real
struggle of finding the right extensions to perturbation theory to study the strong-coupling behavior
of bound states can begin.

PACS number(s): 11.10.Ef, 11.10.Gh, 12.38.Bx

I. INTRODUCTION

The only truly successful approach to bound states in
field theory has been quantum electrodynamics (QED),
with its combination of nonrelativistic quantum mechan-
ics to handle bound states and perturbation theory to
handle relativistic effects. Lattice gauge theory is ma-
turing but has yet to rival QED's comprehensive suc-
cess. There are four barriers which prohibit an approach
to quantum chromodynamics (QCD) that is analogous
to QED. The barriers are (1) the unlimited growth of
the running coupling constant g in the infrared region,
which invalidates perturbation theory, (2) confinement,
which requires potentials that diverge at long distances
as opposed to the Coulombic potentials of perturbation
theory, (3) spontaneous chiral symmetry breaking, which
does not occur in perturbation theory, and (4) the non-
perturbative structure of the QCD vacuum. Contrast-
ing the gloomy picture of the strong interaction in QCD,
however, is that of the constituent quark model (CQM),
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where only the minimum number of constituents required
by the symmetries are used to build each hadron and
where Zweig's rule leaves little role for production of ex-
tra constituents. Instead, rearrangement of preexisting
constituents dominates the physics. Yet the CQM has
never been reconciled with QCD not even qualitatively.
Ever since the work of Feynman, though, it has been clear
that the best hope of reconciliation is offered by infinite
momentum frame (IMF) dynamics.

In this paper, a framework closely related to the IMF
will be employed, namely, light-front quantization. The
purpose of this paper is to provide arguments that all the
barriers to a perturbative starting point for solving QCD
can be overcome, at least in principle, when a light-front
framework is used. We present the basic formulation for
such an approach. Coupled to the choice of coordinates
are the introduction of nonzero masses for both quarks
and gluons, the use of cutoffs on constituent momenta
which eliminate vacuum degrees of &eedom, and the ad-
dition of an artificial stabilizing and confining potential
which vanishes at the relativistic value of the renormal-
ized coupling but nowhere else. One result of these un-

conventional modifications is a theory with a t;rivial vac-
uum. However, the theory has extra terms in the Hamil-
tonian which are induced by the elimination of vacuum
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degrees of freedom, which account for spontaneous chiral
symmetry breaking, yet can be treated perturbatively. It
is a theory where a second-order treatment of renormal-
ization effects should closely resemble the phenomenolog-
ical CQM, while a fourth-order treatment, if all goes well,
should begin to replace phenomenology by true results of
QCD. We have not carried out these computations but
will outline them to show that they are indeed perturba-
tive ones.

Our basic aim, then, is to tailor an approach to QCD
which is based on the phenomenologically successful ap-
proach of the CQM. Central to our formulation is to start
with nonzero masses for both quarks and gluons and to
then consider the case of an arbitrary coupling constant
g which is small even at the quark-gluon mass scale—a
running coupling which is then small everywhere because
below this scale it cannot run anymore. This means sacri-
ficing manifest gauge invariance and Lorentz covariance,
with these symmetries only being implicitly restored (if
at all) when the renormalized coupling is increased to its
relativistic value, which we call g, . The value g, is a
fixed number because it is measured at the hadron mass
scale, and by asymptotic freedom arguments such a cou-
pling has a Gxed value. For smaller values of g our theory
lacks full covariance and is not expected to have the pre-
dictive power of QCD, but it allows phenomenology to
guide renormalization and is defined to maximize the ease
of perturbative computations and extrapolation to g, .

Some key new ideas in this paper have previously been
reported only in unpublished notes [1—5]. Some have been
presented in a condensed form in Ref. [6]. These ideas
underly two main parts of this paper. The first part is
a qualitative power counting analysis of divergences in
light-front QCD (LFQCD), which provides a vital basis
for the new cutoff scheme and renormalization frame-
work we develop in the second part. More broadly, this
paper draws on a range of previous research efforts by
the authors and colleagues: The QCD calculations pre-
sented in this paper are largely based on the standard
gauge-fixed LFQCD Hamiltonian [7], and the specific di-
agrammatic rules used here are defined with examples
in Refs. [8—10] following earlier work [11]. This paper
follows recent work on QCD [8—10,12,13] and the simi-
larity renormalization scheme [14,15]; and it is also the
outgrowth of a line of research that covers the Tamm-
Dancoff approximation [16], light-front QED [17], and
light-front renormalization [18]. The relation of this pa-
per to the entire Geld of light-front Geld theory will be
outlined in Sec. II.

The plan of the paper is as follows. As our formula-
tion is quite different not only &om previous approaches
to QCD but also to previous studies of light-front dynam-
ics, we start in Sec. II with a general overview and moti-
vation of our approach. We discuss the apparent contra-
dictions between QCD and its precursor, the CQM. Then
we outline why a light-&ont approach can bridge the gap
between QCD and the CQM and discuss in turn how each
of the equal-time barriers to a weak-coupling treatment
of QCD may be overcome. In Secs. III—V, the first major
part of the paper, we motivate and discuss the light-front
power-counting analysis, describe the canonical LFQCD

Hamiltonian, and use a qualitative phase space cell anal-

ysis to classify the possible counterterms for ultraviolet
and infrared divergences in LFQCD needed for renormal-
ization. Light-&ont power counting can determine the
operator structure of the LFQCD Hamiltonian [2], and
we rely on the derivation from the QCD Lagrangian to
determine details such as color factors. This canonical
LFQCD Hamiltonian will be treated as a Hainiltonian
in the many-body space of finite numbers of quark and
gluon constituents, a Hamiltonian which with regulariza-
tion gives finite answers in this many-body space. Three
terms in the canonical Hamiltonian itself require infrared
counterterms because of linear infrared divergences, and
we proceed to construct them. We explain the absence
of finite parts to many of these counterterms because
kinematical longitudinal boost invariance is a scale in-

variance. Because of this kinematical constraint, only
counterterms for logarithmic in&ared divergences are al-
lowed to contain flite parts, which as part of the renor-
malization process must be tuned to reproduce physical
results. Counterterms to canonical terms are prime can-
didates for bringing in phenomena associated with true
confinement and with the spontaneously broken vacuum
of normal rest frames. We distinguish true confinement in
the exact theory from the artificial confinement which we

introduce by hand in the weak-coupling starting point.
This leads to the second major part of the paper, where

in Secs. VI—X we set up an explicit quantitative scheme
for renormalization of the LFQCD Hamiltonian. First,
a momentum space cutoff procedure is introduced which
regulates the Hamiltonian itself rather than the individ-
ual terms of perturbation theory [3]. This cutoff scheme
depends on the use of massive constituents and is chosen
to ensure that each state has only a finite number of con-
stituents. Both gauge invariance and Lorentz covariance
are violated by these cutoffs, and a range of counterterms
is needed to enable a Gnite limit as the cutoffs are re-
moved. Restoration of the violated symmetries can only
be established by examining the solution to the theory at
the relativistic limit g, (or good approximations to this
solution). This is the price we must pay for achieving the
new &amework. We proceed to the construction of the
effective Hamiltonian. We begin by discussing a novel
perturbation theory formalism due to Gkazek and Wil-
son [14,15] designed to transform a cutoff Hamiltonian to
band-diagonal form while avoiding small energy denom-
inators that plague other approaches [19]. This is called
the "similarity renormalization scheme. " The end prod-
uct of the scheme is a band-diagonal effective Hamilto-
nian in which dependence on the original cutoffs has been
removed to any desired order of perturbation theory. As
an example we determine in detail the gluon mass coun-
terterms necessary to remove second-order divergences
generated by two-gluon intermediate states. We then
proceed to construct order g light-&ont infrared coun-
terterms, and we identify finite counterterms that may
be necessary to compensate for the removal of zero lon-
gitudinal momentum modes from the cutoff theory. The
next step is to analyze the role of an artificial potential in
the model. We use it to maintain the qualitative struc-
ture of bound states for small g, except for an overall



6722 KENNETH G. WILSON et al. 49

scale factor g . We argue our theory is closely analogous
to a CQM if the band-diagonal Hamiltonian is computed
only to order g . Our hope is that higher-order compu-
tations for the effective Hamiltonian will be invaluable
preparation for study of the limit g ~ g, .

II. MOTIVATION AND OVERVIEW

A key ingredient in the constituent picture of hadrons,
starting with the parton model and then moving to the
quark parton model with constituent quarks and gluons,
is the infinite momentum &arne. The field theoretic re-
alization of the intuitive ideas &om the IMF is provided
by the light-front dynamics of field theories. Recently
there has been renewed interest in LFQCD because of its
potential advantages over the normal equal-time formu-
lation, especially due to the triviality of the light-&ont
vacuum in the cutofF theory. However, a basic puzzle has
remained —namely, how do confinement, chiral symme-
try breaking, and other nonperturbative aspects of QCD
emerge from LFQCD?

Since Dirac's formulation of Hamiltonian systems in
light-front coordinates [20] and the development of the
infinite momentum &arne limit of equal-time field theory
[21], there has been intermittent progress in this area,
initially driven by the recognition of its importance for
current algebra [22] and the parton model [23], but later
slowed by the many renormalization problems inherent
to Hamiltonian field theory. After early progress towards
understanding light-front field theory [24], theorists be-
gan to consider light-front QCD [7]. No clearly success-
ful approach to nonperturbative QCD emerged, and so
some theorists tried to make progress on technically sim-
pler problems such as (1+1)-dimensional field theory [25]
and bound states in QED and the Yukawa model in 3+1
dimensions [26]. More recently there has also been much
work on the light-front zero-mode problem [27], primar-
ily by theorists who advocate a different approach to the
vacuum problem than that developed in this paper-
the relationship between most of this work and ours is
at present obscure. Unfortunately, the barriers that are
discussed in this paper have hindered theorists from at-
tacking nonperturbative QCD in 3+1 dimensions, and
so recent work on light-front Geld theory has not focused
on the light-&ont problem that is of greatest practical
interest.

In this paper we establish a new &amework for study-
ing QCD in light-front coordinates by building from an
unconventional choice of the bare cutoff Hamiltonian.
The basic question we try to answer is the following:
Can one set up QCD to be renormalized and solved by
the same techniques that solve QED, namely, a combi-
nation of weak-coupling perturbation theory and many-
body quantum mechanics? The changes from the stan-
dard approach in QED we introduce are (a) the use of
light-front dynamics, (b) the use of nonzero masses for
both quarks and gluons, (c) the need to handle relativis-
tic efFects which give rise to, for example, asymptotic free-
dom in QCD, which in turn leads to a fairly strong renor-
malized coupling constant and hence relativistic binding

energies, (d) the presence of artificial stabilizing and con-
fining potentials which vanish at relativistic values of the
coupling constant but nowhere else, and (e) the concerns
about light-&ont longitudinal in&ared divergences, which
cancel perturbatively in QED because of gauge invari-
ance. Our theory is not gauge invariant order by order
because we use a nonzero gluon mass. Moreover, we pro-
pose that these noncanceling divergences are necessarily
the sources of true confining potentials and chiral sym-
metry breaking in QCD. With the cutoff Hamiltonian
we have a trivial vacuum. Furthermore, the free part
of the cutoff Hamiltonian exhibits exact chiral symmetry
despite the existence of a quark mass. (In the canoni-
cal light-&ont Hamiltonian, chiral symmetry is explicitly
broken only by the helicity Hip part of the quark-gluon in-

teraction. The &ee Hamiltonian itself only breaks chiral
symmetry if zero mode quarks are included. ) We expect
light-&ont in&ared divergences to be sources of confine-
ment and chiral symmetry breaking because these are
both vacuum effects in QCD, and we show that vacuum
effects can enter the light-front theory through light-front
longitudinal infrared effects. Because of the unconven-
tional scaling properties of the light-front Hamiltonian,
these efFects include renormalization counterterms with
whole functions to be determined by the renormalization
pr ocess.

The basic motivation for our approach is physical
rather than mathematical. Physically, one's unperturbed
or starting Hamiltonian is supposed to model the physics
one is after, at least roughly. A Hamiltonian with nonzero
(constituent) quark and gluon masses and confining po-
tentials is closer to the physics of strong interactions than
a Hamiltonian with zero mass constituents and no con-
fining potentials. Then, in the spirit of QED, we analyze
renormalization efFects with the confining potential itself
treated perturbatively, but only to generate an effective
few-body Hamiltonian which can be solved nonperturba-
tively.

A. Constituent quarks versus +CD

Prior to the establishment of QCD as the underlying
theory of strong interactions, there arose the constituent
quark model [28] and Feynman's parton model [23]. The
CQM provides an intuitive understanding of many low-

energy observables. The parton model provides an in-

tuitive understanding of many high-energy phenomena.
Then QCD came along, and along with it came the com-
monly accepted notion that the vacuum of QCD is a very
complicated medium. Unfortunately, this is the source
of a contradiction between the constituent quark picture
and QCD, and 20 years of study of QCD have done little
to weaken that contradiction.

The complicated vacuum of QCD plays a crucial role in
invalidating any perturbative picture of isolated quarks
and gluons. One important function of the vacuum is
to produce confining interactions among quarks and glu-
ons at large distances, thus overturning the nonconfining
gluon exchange potential of perturbation theory. An-

other important function of the vacuum is to provide the
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spontaneous breaking of chiral symmetry. The equal-
tixne QCD vacuum is an infinite sea of quarks and gluons,
and baryons and mesons arise as excitations on this sea.
Unfortunately, individual quarks and gluons are lost in
this infinite sea.

According to the CQM, however, a meson is a simple
quark-antiquark bound state and a baryon is a bound
state of three quarks, and Zweig's rule suppresses parti-
cle production in favor of rearrangement of constituents.
But how can the hadrons be simply a quark-antiquark or
a three quark bound state if they are excitations over a
complicated vacuum state'? One may hope that the ef-
fects of quarks and gluons in the vacuum may be treated
via weak-coupling perturbation theory. Unfortunately,
the coupling of quarks and gluons in the vacuum grows in
strength as the average momentum of these constituents
decreases as a result of asymptotic freedom. Thus one ex-
pects the density of low-momentum constituents in the
vacuum to be quite large, thereby invalidating any per-
turbative treatment of vacuum effects.

The CQM, as we conceive it, requires that both quarks
and gluons have sizable masses. For gluons, this violates
the gauge invariance of QCD. For quarks, this violates
the rule that chiral symmetry is not explicitly broken
only for massless quarks.

On the other hand, many high-energy phenomena are
most naturally described in the language of the parton
model. The constituent picture and the probabilistic in-
terpretation of distribution functions are essential for the
validity of the parton model. But it is not at all easy to
reconcile the probabilistic picture with the notion of a
nontrivial vacuum in the equal-time &amework. Thus
both the constituent quark model and the parton model
are put in peril by QCD with a complicated vacuum
structure.

At first glance, the blame for the contradiction rests
with the naivete of the constituent picture. Equal-time
QCD seems to clearly indicate that any few-body, per-
turbative approach to hadron bound states is unfounded.
However, in light-front dynamics we argue that the CQM
and QCD can be reconciled so that the apparent contra-
dictions disappear.

B. Why the light-front and massive constituents?

A constituent picture of hadrons is certainly very nat-
ural in a nonrelativistic context. However, particle cre-
ation and destruction need to be a part of any realistic
picture of relativistic bound states. Is it possible to build
a relativistic constituent picture of hadrons based on non-
relativistic, few-body intuitions?

As pointed out long ago, the most serious obstacles to
this goal are overcome by changing to light-front coordi-
nates (the "front-form" in Dirac's original work [20]), or
moving to the IMF [21,23,29,30]. In light-front quantiza-
tion one quantizes on a surface at 6xed light-&ont time,
x+ = t + z (see Fig. 1), and evolves the system using a
light-&ont Hamiltonian P, which is the momentum con-
jugate to x+. A longitudinal spatial coordinate x = t—z
arises, with its conjugate longitudinal momentum being
p+

FIG. 1. Light-front coordinate system.

The possibility of building a constituent picture in
light-&ont field theory rests on a simple observation. All
physical trajectories lie in or on the forward light cone.
This means that all physical trajectories lie in the first
quadrant of the light-&ont coordinate system, so that all
longitudinal momenta satisfy the constraint

k+ &0. (2.1)

By implementing any cutoff that removes degrees of &ee-
dom with identically zero longitudinal momentum, one
forces the vacuum to be trivial because it can carry no
longitudinal momentum.

For a free massive particle on shell (k2 = m2), the
light-&ont energy is

k~+m2
k+ (2.2)

where k~ is the transverse momentum. This means that
the zero-momentum states we must remove to create a
trivial vacuum in theories with positive m have infinite
energy unless k~ ——0 and m = 0. This makes it sen-
sible to replace the zero-momentum modes with effec-
tive interactions, since this is exactly the strategy used
when renormalizing divergences Rom high-energy degrees
of freedom in equal-time field theory. However, such a
starting point may be far removed &om the canonical
field theory.

When field theories simpler than QCD are analyzed
in light-front coordinates, it becomes apparent that the
assumption of a trivial vacuum can be misleading. If
m ( 0 because of spontaneous or dynamical symmetry
breaking, constituents may have exactly zero longitudi-
nal momentuxn (known as "zero modes") and still have
finite energy. In this case the physical vacuum is free to
contain an arbitrarily large number of zero longitudinal
momentum constituents. The importance of zero modes
is most simply illustrated in models with spontaneous
symmetry breaking such as the cr model. In the case of
the o model, however, using power-counting arguments
and demanding current conservation (see Appendix A)
one can easily determine the countert rms needed to pre-
serve the physics, at least on the canonical or tree level,
for a theory in which zero modes are removed. We com-
pare and contrast the u model with and without the zero
modes removed. Both are reasonable theories, but the
phenomena of the two theories must be described with
different languages. The discussion of Appendix A in-
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dicates that an alternative way to realize the dynamics
of spontaneous symmetry breaking on the light-front is
to force the vacuum to be trivial and to include coun-
terterms in the Hamiltonian which are based on power
counting and explicitly break chiral symmetry. In Ap-
pendix A it is shown that current conservation can be
used to fix these counterterms. It has also been shown
in Ref. [32] that in some cases one can use the renormal-
ization group and coupling coherence, which is discussed
below, to fix such counterterms.

The analysis of QCD is far more complicated than that
of the 0 model. In QCD, the signal of spontaneous sym-
metry breaking is still a vanishing pion mass, but the
pion is now a composite state. For the weak-coupling
starting point, we require all hadrons including the pion
to have masses that are close to the sum of their con-
stituent quark masses. One might imagine other limiting
procedures, but we require our starting point to be per-
turbative and the pion cannot be massless initially with
this criterion. As the coupling increases, the pion mass
must decrease toward zero if spontaneous chiral symme-
try breaking is to be recovered as g ~ g, . The pion
mass should be a continuous function of the coupling,
and so it cannot reach zero until the coupling reaches its
physical value g„it does so only after the inclusion of
renormalization effects. In contrast, the 0. model illus-
trates spontaneous symmetry breaking even for arbitrar-
ily small coupling. Thus the complete determination of
the terms necessary to counter the elimination of zero
modes in QCD will not be simple.

But the major problem in LFQCD is not the ques-
tion of zero modes. To even address the role of zero
modes we need a reliable, practical calculational frame-
work. LFQCD has severe infrared divergences arising
from small longitudinal momenta when we eliminate the
zero modes [7,12,8—10]. These infrared divergences are
separate &om and in addition to the infrared. problems
of equal-time QCD. In equal-time QCD, infrared prob-
lems arise due to both zero quark and gluon masses and
to the growth of the running coupling constant in the
infrared domain. In LFQCD the same infrared problems
also exist, but they are divergences associated with small
transverse momenta, which are the only momenta that
combine directly with masses. The longitudinal infrared
divergences are special to LFQCD and for this reason it
is normally presumed that they will cancel out if treated
properly. An essential part of this supposed cancella-
tion is the maintenance of gauge invariance. To preserve
manifest gauge invariance in QCD in perturbation the-
ory one needs massless gluons and carefully chosen reg-
ularization schemes. With massless gluons, however, the
running coupling constant increases without bound when
the energy scale is of the order of hadronic bound state
energies. Thus one needs all orders of perturbation the-
ory to compute observables in the hadronic bound state
range. But all orders of perturbation theory involve ar-
bitrary numbers of quarks and gluons as intermediate
states, thus contradicting the notion that hadrons are
mostly a quark-antiquark or three-quark bound state. It
is this problem that has caused us to abandon manifest
gauge invariance in favor of a weak-coupling picture in

which gluons have mass.
Suppose we consider a light-front Hamiltonian whose

free part corresponds to that of massive quarks and glu-
ons. What is the justification for taking massive gluons
in the free part of the Hamiltonian? As is always the
case, the division of the Hamiltonian into a free part and
an interaction part is arbitrary; however, it is also true
that the convergence of a perturbative expansion depends
crucially on how this choice is made. We are free to take
advantage of this arbitrariness; we choose the free gluon
part of the bare cutoff Hamiltonian to be that of mas-
sive gluons. (In QED, in contrast, where electrons and
photons appear as free particles in asymptotic scattering
states, it would be more dificult to exercise this free-
dom. ) Furthermore, as we show in Sec. XIII, the cutoffs
we employ inevitably introduce quadratic mass renormal-
ization for quarks and gluons; thus the bare quark and
gluon masses are tunable parameters. Of course, the cru-
cial question is what the renormalized masses used for the
bound state computations will be: These might be of the
order that phenomenology assigns to constituent quarks
and gluons. (In QED, one would tune the bare masses
to reproduce physical masses; in QCD, we must tune to
fit bound state properties. )

The fact that we are giving the gluon a mass should not
create any contradiction with asymptotic freedom when

g achieves its relativistic value g, . The reason is that g,
is a running coupling constant gA at a scale where A is
of the same magnitude as hadronic masses, A AgcD.
gp .is small at extremely large momentum scales, and

the running scale is A - Agcoe'~gA for small running

gA, where c is a positive constant. But changes to am-
plitudes due to masses can be treated perturbatively at
such scales and behave as powers of AqcD/A = e '~«,
which vanishes to all orders in a perturbative expansion
in powers of g~.

Once we assume the free part to consist of massive
gluons, what are the consequences? A gluon mass au-

tomatically prevents unbounded growth of the running
coupling constant below the gluon mass scale and pro-
vides kinematic barriers to unlimited gluon emission. It
eliminates any equal-time-type infrared problems. With
nonzero quark and gluon masses it is also possible to de-

velop a cutoff procedure for the Hamiltonian such that if
the cutoffs are imposed in a specific frame, a large num-
ber of states (the upper limit of whose invariant masses
are guaranteed to be above a large cutofF) is still available
for study even in boosted frames. Another consequence
of nonzero gluon mass is that the long-range gluon ex-
change potential between a pair of quarks is too small
in transverse directions, falling oÃ exponentially. Hence
an artificial potential must be added to provide a full

strength potential to yield realistic bound states for small

9-

C. Light-front infrared divergences

Our basic objective is to establish a weak-coupling
framework for studying QCD bound states, so that one
can smoothly approach the strong-coupling limit and use
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bound state phenomenology to guide renormalization.
We have argued that the choice of light-front dynam-
ics, massive quarks and gluons, and a particular cutoff
scheme eliminates the traditional barriers to a perturba-
tive treatment of QCD. The first step, then, is the con-
struction of a bare Hamiltonian which incorporates con-
fining potentials, massive quarks and gluons, and a trivial
vacuum. The cutoffs will violate Lorentz and gauge sym-
metries, forcing the bare Hamiltonian to contain a larger
than normal suite of counterterms to enable a finite limit
as the cutoffs are removed.

Now in the equal-time theory, the QCD vacuum is
thought to be a complicated medium which presumably
provides both confinement and the spontaneous breaking
of chiral symmetry. But in the light-&ont theory with a
suitably cutofF Hamiltonian, we have asserted that the
vacuum is trivial. So we have to 6nd other sources for
confinement and spontaneous chiral symmetry breaking
in the cutoff theory. A natural place to look for them
is in the divergences associated with light-front in&ared
singularities.

Explicitly, suppose we regulate in&ared divergences
(where k+ -+ 0) by cutting off the longitudinal momen-
tum of each constituent i so that k,+ & e, with e a small
but finite positive constant. (We will also need to regu-
late ultraviolet divergences by cutting off large transverse
momenta, for example, via k& ( A, but this is not im-
portant for the present discussion. ) Because the total lon-
gitudinal momentum P+ of a state is just the sum of the
longitudinal momenta of its constituents, P+ = g,. k+,
it follows immediately that the vacuum of the cutoff the-
ory (for which P+ = 0) contains no constituents; that
is, the vacuum is trivial. Moreover, any state with 6nite
P+ can contain at most P+/e constituents. Therefore,
efFects which in an equal-time formulation are due to in-
finite numbers of constituents, in particular, confinement
and chiral symmetry breaking, must have other sources
in the cutoff theory on the light &ont. The obvious can-
didates are the counterterms which must be introduced
in the effective Hamiltonian in order to eliminate the de-
pendence of observables on the in&ared cutoff e. Of spe-
cial interest are counterterms that reflect consequences
of zero modes (namely, modes with k+ = 0) in the full
theory (see discussions in Secs. IV 8 and XI).

Now in the canonical Hamiltonian, one particular term
of interest is the instantaneous interaction in the longi-
tudinal direction between color charge densities, which
provides a potential which is linear in the longitudinal
separation between two constituents that have the same
transverse positions. In the absence of a gluon mass
term, this interaction is precisely canceled by the emis-
sion and absorption of longitudinal gluons. The presence
of a gluon mass term means that this cancellation be-
comes incomplete. But what is still lacking is the source
of transverse confining interactions.

According to power-counting arguments, the countert-
erms for longitudinal light-front in&ared divergences may
contain functions of transverse momenta [2], and there
exists the possibility that the a priori unknown func-
tions in the finite parts of these counterterms will in-
clude confining interactions in the transverse direction.

The g ~ g, limit may then be smooth if such con6n-

ing functions are actually required to restore full covari-
ance to the theory. In the absence of a gluon mass term,
the light-front singularities are supposed to cancel among
each other in physical amplitudes. This has been veri-

fied to order g explicitly in perturbative amplitudes for

quarks and gluons rather than physical states, to order
gs for the quark-gluon vertex [12,10], and to order g4 in
the gluon four-point function [33]. A gluon mass term
in the free part of the Hamiltonian, however, spoils this
cancellation. What are the consequences?

The light-&ont in&ared singularities give rise to both
linear and logarithmic divergences. The linear diver-

gences, however, contain the inverse of the longitudi-
nal cutoff —, which violates longitudinal boost invari-

ance, and hence the in6nite parts of the counterterms
for these divergences also violate longitudinal boost in-

variance. Thus 6nite parts for these counterterms are
prohibited by longitudinal boost invariance, which is a
kinematical symmetry. So we have to analyze logarith-
mic in&ared divergences in order to get candidates for
transverse confinement.

There is a speci6c problem that the complexity of the
counterterms creates. In covariant perturbation theory
every coupling or mass introduced by renormalization
becomes an independent parameter. One might worry
that the appearance of whole functions as counterterms
could destroy the predictive power of the theory because
functions include an infinite number of parameters and
may seem to destroy the renormalizability of the theory.
We discuss the resolution of this problem at the end of
Sec. V.

D. Zero modes and chiral symmetry breaking

How does chiral symmetry breaking arise in the light-
front theory with the zero modes removed'? The removal
of the zero modes has two important consequences for
chiral symmetry in LFQCD—namely, the vacuum is triv-
ial, and chiral symmetry is exact for &ee quarks of any
mass. The consequence of a trivial vacuum is that, as
with the o. model, the mechanism for effects associated
with spontaneous chiral symmetry breaking in the equal
time theory will be far different in LFQCD. The conse-
quence of chiral symmetry being exact for massive con-
stituents means that the mechanism for effects associ-
ated with explicit chiral symmetry breaking in equal time
will also be quite different in LFQCD. We discuss these
points further in this subsection but leave most details
of the light-front chiral transformation to Appendix B.
We just note here for the discussion which follows that
the fermion field naturally separates into two-component
fields g = g+ + g on the light front, where Q+ is dy-
namical and g is constrained. The light-front chiral
transformation applies freely only to the two-component
field @+ [34], because the constraint equations are incon-
sistent with the chiral transformation rules when explicit
breaking is present.

In light-front dynamics chiral symmetry is exact for
free quarks of any mass once zero modes have been re-
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moved. This is because chiral charge conservation is sim-
ply the conservation of light-&ont helicity, which is a fun-
damental property of free quarks in light &ont dynamics
in the absence of zero modes (see Appendix B). Despite
the conservation of chiral charge, the local chiral current
is not conserved. The divergence of the chiral current
remains 2im~gpsg. How does one reconcile the conser-
vation of light-&ont chiral charge with the nonconserva-
tion of the axial vector current? From the chiral cur-
rent divergence equation, the light-front time derivative
of the chiral charge is proportional to 1 dz d x~gpsg.
When the fields in this integral are expanded in terms of
momentum eigenstates, the diagonal terms b~b and d~d,
where b and d are the quark and antiquark annihilation
operators, vanish; namely, the matrix elements multi-
plying them vanish. Moreover, the off-diagonal terms
b~d~ and bd vanish if the zero modes are absent. Thus
it is the absence of zero modes which makes it possible
for the light-&ont chiral charge to be conserved irrespec-
tive of the nonconservation of the axial vector current for
free massive fermions. The light-front time derivative of
the chiral charge can avoid vanishing only if "zero-mode
quarks and antiquarks" (quarks and antiquarks with ex-
actly zero longitudinal momentum) are permitted to ex-
ist. But the cutoffs we use prevent this possibility, and
hence chiral symmetry is exact for all free quarks in the
cutog theory.

In normal reference frames, the absence of a mass term
implies conservation of the axial vector current and hence
a conserved axial charge. Given a conserved axial vector
current, there are two possibilities: (a) The axial charge
annihilates the vacuum, in which case as a consequence
of Coleman's theorem ("invariance of the vacuum is the
invariance of the world" ) the symmetry is reflected in
the spectrum of the Hamiltonian —that is, we expect de-
generate parity doublets in the spectrum; or (b) the axial
charge does not annihilate the vacuum, in which case one
talks about the spontaneous breaking of chiral symmetry,
as a consequence of which massless Nambu-Goldstone
bosons should exist. In the real world, the pion, the
Goldstone boson, is very light, and the second possibility
is thought to be realized. The nonzero mass of the pion
is thought to arise from the explicit symmetry-breaking
terms in the Lagrangian, namely, the small current quark
masses.

On the light-front, in the absence of interactions, mas-
sive quarks in the cutoff theory do not violate the chiral
symmetry of the light-&ont Hamiltonian thanks to the
cutoffs. Now consider interactions in the gauge theory.
There remains one explicit chiral-breaking term in the
canonical Hamiltonian (see Sec. IV):

( 1 1
ymca dz d x~g+crg

~

Ag @+ — (A~/+)
~

.

p~ does not appear, and the quark mass appears only
squared. Now the bare cutoff Hamiltonian has canonical
terms and counterterms. The chiral charge still annihi-
lates the vacuum state, which is just a kinematical prop-
erty of the cutoff theory, despite the fact that the chiral
charge no longer commutes with even the canonical cut-
off Hamiltonian. Thus the vacuum annihilation property
of the chiral charge in the cutoff theory has nothing to do
with the symmetry of the Hamiltonian and does not ap-
pear to have any dynamical consequences. The concept
of spontaneous symmetry breaking seems to have lost its
relevance in the cutoff theory.

But the pion should emerge as an almost massless par-
ticle. How does this become possible on the light-&ont
without zero modes? We may take a hint &om the o
model with the zero modes removed, as discussed in Ap-
pendix A. In that model terms which explicitly violate
the symmetry must be added to the Hamiltonian to yield
a conserved chiral current, and at the same time the pion
must be held massless. In /CD, the elimination of these
modes directly results in effective interactions. The effec-
tive interactions (the counterterms in the cutoff theory)
can explicitly violate chiral symmetry, yet still persist in
the limit of zero quark mass. Since spontaneous breaking
of chiral symmetry in normal &ames is a vacuum effect,
we look for interaction terms that are sensitive to zero
mode quarks and antiquarks. There is a term in the
canonical Hamiltonian of the form

1
g dx d XJ +OJ ' AJ . 0'j ' AJ +

Z|9
(2 4)

which contains an instantaneous fermion. Some of the
interactions which correspond to this term are shown di-

agrammatically in Fig. 2. These interactions by them-
selves do not violate chiral symmetry. However, since
they are sensitive to fermion zero modes, the countert-
erms for these interactions need not be restricted by chi-
ral symmetry considerations. The only requirement we

can impose is that they obey light-&ont power counting
criteria.

We show later that there are explicit chiral-symmetry-
breaking terms which satisfy the power counting restric-
tion. We add such terms to our Hamiltonian. As a
result of renormalization, in addition to the emergence
of noncanonical explicit symmetry violating terms, the
canonical symmetry violating term of Eq. (2.3) is also
renormalized. Because of the effects of explicit chiral-
symmetry-breaking terms on this renormalization, the
coe%cient mF of this symmetry-violating term in the
cutoff Hamiltonian need not be zero, even when the full
relativistic theory has only spontaneous breaking of chi-

(2.3)

This term, which involves gluon emission and absorption,
is linear in the quark mass and couples the transverse
gluon field A~ to the Dirac matrix p~ (actually, the Pauli
matrix o~ in the two-component notation above), which
causes a helicity fIip. In the free quark Hamiltonian,

FIG. 2. Examples of instantaneous interactions sensitive to
fermion zero modes.
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ral symmetry. In fact, in the limit in which chiral sym-
metry is broken only spontaneously, the same constituent
mass scale may appear in both the kinetic energy and the
symmetry-breaking interactions. This allows the quark
constituent mass to set the scale for most hadron masses,
and yet enables chiral-syxnmetry-breaking interactions to
be sufficiently strong to make the pion xnassless. Thus
light-&ont power-counting criteria and renormalization
allow us to introduce effective interactions which explic-
itly break chiral symmetry and yet may still ensure a
massless pion in the relativistic limit g ~ g, .

E. Arti6cial potential

The task of solving the light-front Hamiltonian at the
relativistic value of g is far too difficult to attempt at
the present time. Instead the goal of this paper is to
de6ne a plausible sequence of simpler computations that
can build a knowledge base which enables studies of the
full light-&ont Hamiltonian to be &uitful at some future
date.

A crucial step in simplifying the computation is the
introduction of an artificial potential in the Hamiltonian.

A primary rule for the artificial potential is that it
should vanish at the relativistic limit. For example, the
artificial potential might have an overall factor (I—g /g, )
to ensure its vanishing at g = g, . This rule leaves total
Hexibility in the choice of the arti6cial potential since no
relativistic physics is affected by it.

The 6rst role we propose for the artificial potential
is that it ensure that the bound state structure of the
theory at very small g is similar to the actual structure
seen in nature. However, we also want the weak-coupling
behavior of the theory to be similar to /ED in weak
coupling. This will ensure that methods of computation
already developed for /ED will be applicable. To ensure
these connections we propose to structure the artificial
potential so that bound state energies all scale as g for
small g, just as /ED bound state energies scale as e4.
We then demand a reasonable match to experiment when
the scale factor g4 is set to g„even when higher-order
corrections (of order gs, g, etc.) are neglected.

The second role of the artificial potential is to rexnove
unfortunate consequences of the nonzero gluon mass from
the gluon exchange potential. Because of the nonzero
mass, the gluon exchange potential falls off too rapidly
in the transverse direction, while being too strong in the
longitudinal direction. In the longitudinal direction there
is an instantaneous linear potential of order g which
normally would be completely canceled by the one-gluon
exchange, but because of the nonzero mass, the cancella-
tion is incomplete. Without the artificial potential there
are even instabilities that prevent the existence of stable
bound states at weak coupling. More details on these
instabilities are given in Sec. XB.

The third role we assign to the artificial potential is
to give the weak-coupling theory a structure close to the
CQM so that past experience with the quark model can
be used to determine the precise form of this potential
and to fit it to experimental data. To ensure this we will

define an initial calculation which involves /CD compli-
cations only in a very minimal form.

The final role of the artificial potential is to incorporate
a linear potential in both the longitudinal and transverse
directions to ensure quark confinement for any g. This
is important for phenomenology. It is also needed for
studying the roles of a linear potential and where it might
originate, especially in the relativistic limit where the
arti6cial potential vanishes.

Only broad principles will be laid down here for the
arti6cial potential. Its construction in detail will require
a collaboration between specialists in the CQM and in

/CD perturbation theory.
The basic need is to incorporate the qualitative phe-

nomenology of /CD bound states into the artificial po-
tential. This qualitative phenomenology comes &om
three sources: kinetic energy, Coulomb-like potentials,
and linear potentials. We propose that all three terms
should be present in the weak-coupling Hamiltonian and
all should have the saxne overall scaling behavior with

g in bound state computations, namely, g4. The kinetic
and Coulomb-like terms can be constructed directly &om
the canonical Hamiltonian combined with a one-gluon-
exchange term, the latter obtained for the case of zero
gluon mass. The Coulomb term, if represented in po-
sition space, has the usual form g /r, except that the
definition of r we propose is

and there actually are two terms which are added:

1 mQ m I+++'
-p r p r-

where bx is the light-front longitudinal separation of
two constituents, bz~ the transverse separation, m, the
constituent mass, and p+ the constituent longitudinal
momentum. The prime refers to the second of the two
constituents. The p+/m, in the definition of r ensures
that the dimensions match. The positive or negative
SU(3) charges must also be inserted. See Appendix C
for details.

A few comments regarding the forxn of the Coulomb
potential are in order here. Our nonrelativistic limit is
g + 0 and not the m, + oo limit studied earlier in Ref.
[35]. In this limit p is held fixed while hz scales as ~.9
In light-front coordinates, the factor p+ is necessary for
dimensions as already stated and in the nonrelativistic
limit p+ is proportional to the center of mass momentum
of the bound state independent of the relative coordinate
bx . Relativistically, r will need a careful de6nition to
avoid possible disastrous behavior when p~ (( p3 or vice
versa; this problem has not been studied. Also in the
relativistic case, p+ does not commute with bx, and so
p+bx must be symmetrized to preserve Herrniticity.

Finally, we need a linear potential term —terms pro-
portional to r and r'. In Coulomb bound states, both
are of order I/g2. Hence to achieve an energy of order
g, the linear potential must have a coefEcient of order
g . Thus the linear potential term, in position space,
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would be proportional to g r. To be precise, and get
dimensions straight, its form is

3 /3 I

+ I+ ) (2.7)

with P a numerical constant.
The linear potential needs to exist between all pos-

sible pairs of constituents: qq, qq, qq, qg, qg, and gg,
where q, q, and g stand for quark, antiquark, and gluon,
respectively. The linear potential must always be posi-
tive (confining) rather than negative (destabilizing). We
show in Sec. XB that it cannot involve products of SU(3)
charges as the Coulomb term does. The Coulomb term
could be given a Yukawa structure rather than the pure
g2/r term. All of the potential has to be Fourier trans-
formed to momentum space and then restricted to the
allowed range of both longitudinal and transverse mo-
menta after all cutoffs have been imposed.

The artificial potential must also contain counterterms
that remove the unwanted components of the one-gluon-
exchange and instantaneous-gluon terms. Thus in addi-
tion to the order g linear potential, linear in both the
longitudinal and transverse directions, there is a subtrac-
tion to remove the order g linear potential in the longi-
tudinal direction. The potential removed is the potential
that remains after the incomplete cancellation of the in-
stantaneous potential in the canonical Hamiltonian by
one-gluon-exchange terms.

To ensure that the artificial potential vanishes at g,
without destroying its weak-coupling features, the sub-
traction term has to be treated with care. We suggest the
subtracted linear potential be multiplied by (1 —gs/gs)
so that the subtraction begins to be negated only in order
g, which is smaller for small g than the artificial g lin-
ear potential that needs to be dominant. All other terms
in the artificial potential can be multiplied by (1—g2/g2)
instead.

To ensure that the Coulomb term shows Coulomb be-
havior, at least roughly, at typical bound state sizes, it is
important that the mass used in any Yukawa-type mod-
ification of the Coulomb term scale as g rather than
being a constant mass.

Finally, the linear potential should be invariant to the
full SU(6)~ flavor-spin symmetry of light-front quarks
and antiquarks discussed by Lipkin and Meshkov [36),
leaving all SU(6)iv violations to come from quark masses
in the kinetic energy, Coulomb terms, and the more com-
plex renormalization subtractions. This means that the
quark mass scale appearing in the linear potential will be
the same for up and down quarks.

The artificial potential would be added to the cutoff
canonical Hamiltonian. Then a complete set of countert-
erms would have to be added to ensure that the theory
has a limit as the cutoffs are removed.

The artificial potential is designed to allow confined
few-body states to emerge from a field theory. The con-
straints that dictate its design are severe, and the type of
potential we have discussed is the simplest we have found
that meets these constraints and does not require large
cancellations that thwart a constituent picture. However,
this potential has serious flaws. Probably its worst flaw

is that it confines everything including color singlets to
a single region of space. Any confining interaction that
is purely attractive between all particles does not pro-
duce scattering states. QCD must manage to produce
strong attractive forces between color charges as they
separate, without producing such strong forces between
color singlets. In lattice gauge theory this is arranged
through gauge invariance, which forces links to exist be-
tween color charges but not between color singlets. In
a field theory calculation without manifest gauge invari-

ance, there is no such obvious mechanism to turn strong
forces on and off by hand. Higher-order calculations will

hopefully provide clues to how QCD produces the impor-
tant phenomenological effects of our artificial potential,
without producing the unwanted side effects.

III. LIGHT-FRONT PO%'ER COUNTING:
CANONICAL STRUCTURE

To construct the bare cutoff LFQCD Hamiltonian with
counterterms we will try to follow the procedure adopted
in standard canonical covariant theory as much as possi-
ble. In the canonical theory, when we begin the analysis
the bare cutoff Lagrangian is unknown since the coun-
terterms are unknown prior to the analysis. One can per-
form perturbative calculations and determine the coun-
terterms order by order in perturbation theory. If one
starts with the canonical terms, which include all the
possible terms in accordance with covariance and power
counting, and if one maintains manifest covariance and
gauge invariance at all stages of the calculation, one finds
that the counterterms are also of the same form as the
canonical terms. Thus in the standard procedure the only
unknown parameters are just constants, namely, masses
and coupling constants.

Because we are interested in the cutoff light-front
Hamiltonian, we cannot use covariance as a guide. In-
stead we have to consider power counting based on the
limited kinematical symmetries of the light front. As dis-
cussed in Sec. III C, one consequence of the use of light-
front coordinates is that counterterms may contain entire
functions of momenta, which is of course a radical differ-
ence from renormalization in an equal-time formulation.
Before discussing renormalization, however, we establish
in this section the power-counting rules for determin-
ing the possible structure of operators in the canonical
Hamiltonian.

A. Light-front power counting

Light-front power counting is in terms of the longitu-
dinal coordinate x and the transverse coordinate x~.
Why are the two coordinates treated differently? The
main objective of the power counting analysis is to de-
duce the most general structure of divergences that arise
&om increasing powers of the interaction Hamiltonian in
perturbation theory. But power counting based on the
kinematical symmetries of the light front is different from
power counting based on the kinematical symmetries in
equal-time coordinates. This is immediately transparent
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&om the light-&ont dispersion relation for &ee particles,
k = ~&++ . Because the energy factors into separate
k+ and kJ dependences, the subtractions are not con-
stants. For example, when kJ gets very large the energy
diverges no matter what k+ is. Thus, in general, we get
a divergent constant multiplied by a function of k+ I. n
position space this translates into divergences at small
x~ being nonlocal in x and spread out over the light
front. A similar result follows for the case when k+ gets
very small. This situation is to be contrasted with the
equal-time case. Recall the relationship between energy
and momentum in equal-time theory, E = gk2 + m2. In
this equal-time form, if kJ -+ oo while k, is fixed, the k,
dependence becomes negligible and arbitrary functions of
k, cannot arise.

When we analyze the canonical light-front Hamilto-
nian, we confirm that indeed it does scale differently
under z and z~ scaling (strictly speaking, a unique
transverse scaling behavior holds only in the absence
of masses). To determine the scaling properties of the
canonical Hamiltonian it is useful to recall the canonical
equal-x+ commutation relations obeyed by the Geld vari-
ables in the two-component formulation [31,9]. For the
two-component gluon field variables A', i = 1, 2, we have

A'-(z) As(y) + + = ——(* —y )~'(» —»)bvb-s.

For the two-component quark field variables ((z) [the
nonvanishing upper components of g+(z)] we have

and the inverse longitudinal derivative

(3.7)

(3.8)

So the Hamiltonian H = P scales just like x, irrespec-
tive of whether there are masses present or not. Similarly,
for the interaction Hamiltonian density in the absence
of the helicity Hip interaction, under transverse scaling
'R + 'R' = —,'R and thus

HmH'= —H.
1

t2 (3.9)

So in the absence of masses, the Hamiltonian scales in-
versely as x&.2

The Hamiltonian we will consider also includes mass
terms. Under scale transformations masses scale as con-
stants. The Hamiltonian density for the mass term in the
&ee part, for example, scales as 'R ~ 'R' = ~, 'R. Thus
the Hamiltonian does not have a unique scaling behavior
when masses are present. For dimensional analysis we
assign

(3.1O)

It can be verified that under longitudinal scaling, the
canonical Hamiltonian density is invariant, 'R —+ 'R' =
'R (see Sec. IV), and the Hamiltonian

(3.2) In the presence of masses, we assign

Consider the scaling of the longitudinal coordinate

x Mx =8x (3.3)

/xJ W xJ ——txJ . (3.4)

From (3.1) and (3.2), A'(z~) +U~ (t)A'(z~)-Uq(t)
t A'(tz~) and f(z~) ~ U,'(t)((z~)U, (t) = t((tz~).
Here Uq(t) is the unitary transverse scaling operator.
Hence, the power assignments for the field variables are

From the canonical commutation relations
(3.1) and (3.2), under this scale transformation
A'(z ) +U( (s)A'(z -)U)(s) = A'(sz ) and ((z )
U& (s)((z )U~(s) = s~((sz ). U~(s) is the unitary lon-
gitudinal scaling operator. Next consider the scaling of
the transverse coordinates

4 )xJ
x

2xJ
(3.11)

These assignments have meaning only in dimensional
analysis.

B. Structure of the canonical Hamiltonian from
power counting

We assume that the canonical LFQCD Hamiltonian
density is a polynomial in the six components m, AJ,
(, 8+, B~, and a+ . Then the most general structure we
can build for the canonical Hamiltonian density, which
has dimension, ,4, is

l, &~)

xJ
1 1

(3.5)

(3.12)

Here the expression (A~, O~, m)4 2" stands for mono-
mials of order 4 —2p in any combination of the three
variables AJ, BJ,m. The resulting structure is

We also need the power assignments for the derivatives p=0:
p=1:

AJ AJ 'OJ AJ '9J I AJ

(((t) (A2~, Ag Bg, B~, mAg, mug, m );

x (3.6) p=2: (3.13)
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—(((,(t)(c)~, A~, m) j, (3.14)

We need not specify the action of 0~ since we assume
that the inverse of B~ does not occur in the canonical
Hamiltonian. But we need to specify the action of the
integration operator +, which occurs only because of
the constraint equations that eliminate the dependent
variables @ and A . From P elimination we get the
structure

and from A elimination we get the structures

(8~A~), ( ) (j('~A,gB+A~). (3.15)

We will require that inverse powers of 0+ only appear in
these specific combinations in the canonical Hamiltonian.
Subject to this constraint, we can include both positive
and negative powers of 0+.

Specifying the precise way in which &+ acts, we can
enumerate those terms which obey our canonical rules:

@=0: (A~), (Ag) (9~, (A~)~((9~)', m (A~),
1

(Ag(9+A~) (B~Ag), (Ago)+Ag) (A~(9+Ag);

p=1: (((t) (AgO+Ag), (((t) (0~A~);

(m, c)g, Ag)(t ((m, Bg, Ag)(j;

1=2: (3.16)

Comparison with the Hamiltonian derived by the stan-
dard canonical procedure (see Sec. IV) reveals that the
free terms m2A2& and m(t(9~ &+ ( are absent. The absence
of the first term is because of the presumed gauge invari-
ance. A term such as the latter does appear in the free
part when Q is eliminated, but it is canceled by a simi-
lar term. When the smoke clears, no p~ matrices appear
in the free part of the canonical Hamiltonian. Note that
our list excludes terms that are equivalent through an in-
tegration by parts. This integration by parts is justified
because we assume cutoffs are present (see the discussion
in Sec. V).

mass term to appear through renormalization even if we

did not include it in the starting Hamiltonian. We choose
to extend the definition of the canonical cutoff LFQCD
Hamiltonian to include a massive gluon from the outset.
Of course, this is just the starting point, for renormaliza-
tion will eventually force us to add to our Hamiltonian
counterterms which do not obey the canonical rules.

A. Canonical Hamiltonian

In this section we follow Ref. [8], to which the reader
is referred for further details. The QCD Lagrangian is

IV. LIGHT-FRONT +CD HAMILTONIAN:
CANONICAL TERMS

In the previous section we motivated the structure of
allowed terms in the canonical Hamiltonian based on
power counting. In this section we use the standard
canonical procedure to determine the explicit form of the
Hamiltonian, including color factors. This gives a Hamil-
tonian with terms which obey the canonical rules estab-
lished in Sec. III ~ These canonical rules allow us to extend
our Hamiltonian to include a gluon mass term, and as we
demonstrate in Sec. VIII, our cutoffs will demand such a

I

Tr(F" F„„)+—Q(ip„D"—mF)g,
2

(4 1)

where F" = 0"A" 8A" ig(A", A ] are —the gl—uon field
strength tensors and A" = P A"T are the 3 x 3 gluon

field matrices, with T the Gell-Mann SU(3) matrices:
[T,T ] = if 'T' and Tr(T T ) = —h s. The field vari-
able @ describes quarks with three colors and Ny flavors,
and D" = 8" —igA" are the covariant derivatives, while

m~ is a Nf x Nf diagonal quark mass matrix.
In light-&ont coordinates with the light-front gauge

A+ =— A + A = 0, the Lagrangian can be rewritten
as

(4.2)

where

& = —(E 2+ B j+ (@+t[n~. (iB~+gA~) +Pm~]g )
1

8+(E, A )
—8'(E,'A, ))— (4 3)
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is the Hamiltonian density and

C = B+—E —(B'E' + gf 'AtE,') + gg+tT g+, (4.4)

C = xB+Q —(xo.g . Bg+ gag . Ag+ Pm@)Q+.

Here, E = —2B+A, E' = —2B+A' and B = Fi2 are
components of the light-front color electric 6eld and the
longitudinal component of the light-front color magnetic
field, and g+ and Q are the light-&out up and down
components of the quark field: Q = g~ + g
Ay/ = zp p+g, where A+ + A = I, Ay = A~, and
A+A = 0.

In (Abelian or non-Abelian) gauge theory, only two
components, the transverse components, of the vector
gauge potentials are physically independent degrees of
freedom. From the equations of motion, it becomes clear
that the independent dynamical degrees of freedom in
LFQCD are the transverse gauge fields A' and the up-
component quark field g+. The Lagrangian equations of
motion lead to C = 0 and C = 0, which imply that the
longitudinal gauge fields A and the down-component
quark field @ are Lagrange multipliers. Furthermore, in
light-&ont coordinates the four-component fermion 6eld
can be reduced to a two-component field. The two-

I

0 0
2i 0

0 —2i
0 p

—iu' 0
0

iver'

0 0
) 7 0 3 (4.6)

Then the projection operators Ay become

10 00
+ 00 ' 01 (4.7)

and

0+ =
()

0

(,si+ ) [o'(iB'+ gA*) + im~](

(4.8)

Hereafter, we shall simply let ( represent the (two-

component) light-front quark field. The canonical
LF/CD Hamiltonian becomes

component quark field can be explicitly formulated in
a light-front representation of the p matrices defined by

H = dx d x —FA~ + g A'A~ 'A~ + — ' "'A'A~A'„A~
~ ~ - g

( I )
+ ( (oJ (iB~ + gAg) —imp)

~
.

~
{o~ . (iB~ + gA~) + imp)(&»+ &

+gB'A'
~ (f 'A~~B+A~ + 2(tT (), , (I I

&B+)

+—
~ ~

(fa™A;B+A:+2(T.() I ~

(f' A„8+A~+2(T.f)2 (B+) ' ' &B+) "
J

(4.9)

If zero modes are retained, there are additional surface
terms [8].

I

In terms of the quark color current j+ = 2(tT ( and its
partial Fourier transform

B. Counterterms to canonical terms

Light-front infrared singularities arise when one elim-
inates the unphysical degrees of freedom by solving the
constraint equations, which are the source of the oper-
ator 1/B+ in (4.9). This operator produces tree level,
light-&ont in&ared divergences in the instantaneous four-
fermion, two-fermion —two-gluon, and four-gluon interac-
tions. These divergences require counterterms, which we
now construct.

Instantaneous gluon exchange

j+ (x,z~) = dp+j+ (p+, x~)e~~ *
2(2m)

p2

p4

(4.11)

First, we consider the instantaneous four-fermion term
shown in Fig. 3

k1 k2
iQQQQQQQQQr

(b)

Hq„,———2g* ch d~z~ ((tT E)
~ ~

(dT c)).
(4.10)

pl

FIG. 3. Instantaneous four-fermion and two-fermion-
two-gluon interactions.
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we have ln the cutoff Hamiltonian ip+
i

is restricted to be above
r. That is,

g
Hqqqq 8'

d2 i -.+a
+), jq (p, i)

x&+ (—&+, z, ). (4.12)
dp+ ~ (4.i3)

Thus we see explicitly that Hqqqq has potential diver-
gences.

To find the divergent part we can do a Taylor expansion
of the integrand:

GP
+)2+(p iz ) , F(o, zi)+ p++

[p+ ) |9p+ p+ —0
(4.14)

The linearly divergent term is

2

d zij+ (0, zi)j+ (0, zi).8' e
(4.i5)

The logarithmically divergent term vanishes because of the symmetric cutoff. Let us suppose we had used separate
cutoffs e+ and e for small positive and negative p, respectively. Then the potentially logarithmically divergent term
1S

i '
ln

~

—+
~

d zi dz dy j+ (z, zi)(z —y )j+ (y, zi),
8~ (. )

(4.16)

which is finite if we choose e+ ——pe, with p, some num-
ber. This particular operator vanishes because of sym-
metry under x ~ y exchange, but it forces us to re-
consider our original neglect of zero modes in the solution
of the constraint equations.

We are finding a potentially divergent sensitivity of
the Hamiltonian to modes with small longitudinal mo-
mentum, and we regard this as a signal that finite zero-
mode effects may arise. The potential divergence arises
from the constraint equations and reBects contributions
from A close to zero longitudinal momentum. It is ex-
tremely naive to suppose that the canonical constraint
equation for A reproduces the nonperturbative effects

of a zero mode in any simple manner. We discuss the
divergences that arise from the exchange of small lon-
gitudinal momentum gluons with physical polarization
below, but even here we can think of the counterterms
produced by the constraint equation as arising from the
exchange of small longitudinal momentum gluons with
unphysical polarization. Once one realizes that an ex-
change is involved and that the divergence is independent
of transverse coordinates, it becomes clear that even the
assumption that these counterterms will be local in the
transverse direction is naive. We therefore allow terms
in the Hamiltonian of the form

Z
2

dy d'»i,'(z zi)(z —y )&G(» —yi)i,+ (y, yJ ). (4.i7)

OG. is a function of the transverse variables and is restricted by dimensional analysis, kinematical boost invariance,
translational invariance, and invariance under rotations about the longitudinal axis. OG. must be odd under x~ ~ y~
to keep (4.17) from vanishing, and this is not possible here because gluon exchange gives only an even number of
polarization vectors e& with which to contract the transverse indices. Thus there is indeed no finite counterterm
associated with logarithmic divergences in Hqqqq, and our discussion serves only to illustrate one way candidate
vacuum interactions can be identified.

As discussed previously, the requirement of boost invariance means that there can be no finite part associated
with the counterterm for the linear divergence (4.15), whose form breaks longitudinal boost invariance. Thus the
counterterm for the canonical instantaneous four-fermion interaction is

cCH" = — — d z~ dz j+ (z, z~) dy j+ (y, z~).
8m ~

(4.18)

In a similar way, the Hamiltonian counterterms for the instantaneous two-fermion —two-gluon and the instantaneous
four-gluon interactions are found to be

22H" = ——— d z~ dz j+ (z, z~)qqgg2 4 q ) dy j,'(y z~) (4.19)
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and

2
d z~ dz j+ z , x~ dy j+ y , z~,9999 8X ~

(4.20)

where the gluon color current is j+ = f ~'A&8+A;
These three counterterms precisely remove the tree level
light-&ont in&ared divergences.

we find

(4.22)

g. Inetantaneone fermion ezcI))ange
OO +

Hqqssg
——— d z~ + f (p+, z~)f( p+,—z~).qq99 4 —oo p

There are several terms in the canonical Hamiltonian
which contain a single inverse derivative &+. With one

exception, all these terms can be rewritten so that &+
acts on a single Geld operator. Such terms do not give rise
to divergences since the zero modes are removed from sin-

gle operators. The exception is the two-quark —two-gluon
interaction involving an instantaneous fermion exchange

Hqq99q. Here + acts on a product of field operators and
hence can give rise to a logarithmic divergence (see also
Sec. V).

Denoting o~ A~(z, z~) ((z, z~) by f(z, z~), we

have

(4.23)

Introducing the partial Fourier transform as before,

A potential logarithmic divergence disappears if we use
a symmetric cutoff'.

Once again, though, we must be careful with this log-
arithmic divergence. While there is no divergent de-

pendence on the symmetric longitudinal in&ared cutoff'

e since the divergence due to small p+ is canceled by
the divergence due to small —p+, we still have to worry
about nonvanishing contributions from states with ex-
actly p+ = 0 —that is, from the exchange of zero-mode
fermions. Once an infrared cutofF is employed, we have

1 eliminated the possibility of computing this contribution,
+qq99& = & d+ d ~& ~

~ & ~
~ ~& . and so we should include in the Hamiltonian terms whicht8

can counter the effects of this exclusion. Such counter-
terms have the form

qqggl ~ d +& dy d y~ + )+2 I" +J yJ y )y4 (4.24)

where dimensional analysis reveals that OF scales as l.
Since this term comes from zero-mode fermion exchange,
O~ is a function of transverse variables and the Pauli ma-

trices 0~. Since this term arises from. vacuum effects, it is
not restricted to have a polynomial dependence on trans-
verse variables and the renormalized constituent mass.
Thus a term such as Op m& o'~ . B~ is allowed and
should be included in the Hamiltonian. Such a term ex-
plicitly violates chiral symmetry and need not be small
in the relativistic limit.

This is then the first point at which an arbitrary func-
tion enters the Hamiltonian. At the simplest level, the
function O~(z~, y~) must be determined phenomenolog-
ically by fitting bound state properties. It is an open
question whether theoretical techniques such as coupling
coherence will determine it a priori, whether the re-
quirement of relativistic invariance will determine it com-

C. Canonical Hamiltonian: free plus interaction
terms

Now we add explicitly the gluon mass term to the
LFQCD canonical Hamiltonian together with the coun-
terterms for instantaneous interactions. The Hamilto-
nian is written as a &ee term plus interactions

+0 + 1Dt (4.25)

with

pletely a posteriori, or whether phenomenology will still
be necessary when renormalization is done at higher or-
ders.

'Ro —— (8*A' ) (O'A' —) m~ A' A'—
i8+

& + +qq9 + +999 + +qq99 + +qqqq + +9999. (4.26)

Here Vg is the artificial potential, and
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t'1l (1)
~qqg=~( —

I l (&~ ~)+ 0~. i
l l

(~& ~i+ m~)+
l

(Oi Oi —mz)oi Ai (,i~+) (~+) &~+)

j ~'(8 A''A[A' +(.O'A')
~ ~

(A~8+A')],
1

A+ . 0 + ' A+ 2~ A~+~ T + Hq~~~i + H

(4.27)

(4.28)

= +qqgg& + +qqgs»
2

&qqqq= 2Q (( ~ () l g~ l (( T () + Hqqqq&~')
2 2

&g g
— f —'f "' A'sA~A'dA~ —2(As8+A', ) l l

(AqB+A~) + H'sgg

(4.2S)

(4.30)

= +vega& + +ageu2 (4.31)

In a careful analysis all of these couplings must be allowed
to renormalize separately and the quark masses in 'Ro and
'Rqqg are not the same. For simplicity we use one coupling
and one mass in our examples. It can be seen that all
canonical terms are predicted Rom the light-&ont power
counting (3.16). The artificial potential has the form
described in Sec. IIE. The Coulomb part will involve
the quark and gluon color currents j+ and j+ defined
above, and the linear part will involve the color singlet
currents j+ = 2(t( and j+ = A'8+A'.

As we have emphasized before, the division of the bare
Hamiltonian into a free part and an interaction part is
arbitrary. We have chosen the &ee part to be that of
massive quarks and gluons since self-mass corrections are
needed in any case. Note that these terms are allowed
by the power-counting criteria. Our computations will
involve two stages. The first stage is the computation
of the effective Hamiltonian, which is to be performed
perturbatively. The artificial potential will be considered
as part of 'Rl for this stage. The second stage is the
determination of bound states, and as discussed before
we will want to include the (nonrelativistic) Coulomb and
linear parts of V~ as part of the unperturbed Hamiltonian
for this stage.

V. POWER COUNTINC: PHASE SPACE CELL
ANALYSIS AND THE STRUCTURE OF

DIVERGENCES

A. Phase space cell division and Beld operators

Here we perform the power-counting analysis of ultra-
violet divergences and infrared divergences arising from
the products of interaction Hamiltonians. To facilitate
this analysis, we first introduce a phase space cell repre-
sentation of Geld variables in terms of wave packet func-
tions [38,39]. A realization of these wave packet functions
is given by wavelets. The present considerations are only

qualitative in nature, and hence we do not need their
many interesting mathematical properties [40]; however,
they may be needed by anyone attempting the nonpertur-
bative diagonalization of the renormalized Hamiltonian.

The motivation for a phase space cell analysis and an
example of phase space cell division is provided in Ap-
pendix D in the context of the more familiar case of equal-
time Hamiltonians. Here we discuss the division of phase
space cells in the light-&ont case. For the "plus" mo-
menta we choose

Pmax + P1 P2 P3 Pmin

with p,+.

+~ ——2p,+. . For the transverse momenta we choose

p~o ——0, p~i ——m, and then a sequence p~, ——2~ ' x m
until the cutoH' p~ „

is reached. Note that we always
use a logarithmic scale for momenta.

For a momentum space cell with centroids p+ and p~~
which is an annulus in the transverse momentum, posi-
tion space is divided into a linear grid of cells all with
width bz = + and bz~ —— . These cells are labeled

P$ PJ j
with position indices l and l~ ——(l, P) Aphase sp.ace
cell is denoted by the indices ijl = (i, j,l, l*, l") . A wave

packet function that belongs to the complete, orthonor-
rnal basis set is denoted in position space by P;~~(z), and

its Fourier transform is denoted by P;~~(p). The z-space
widths of these functions are bz, and bz~~ and they are
assumed to vanish outside of the cell. Normalization im-

plies that P;~~ is of order &, while P;z~(p) is of
b~,

order bx, 6x~~.
Next we consider Geld operators. For the quark Geld

operator, we have

(*)=) x.f . lb~ ~
" +dl."'I (''2')

S

with

(6A ., bt„...) = (dg „dt...) = 2(2vr) b(k+ —k'+)b (k~ —k~)b. , (5 3)
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Thus where

b, d - v'z-z~. (5.4)
h;rr , .1;rr, 1 errd k;rr(k) gw (5.7)

We wish to carry out the analysis in such a way that the
creation and destruction operators are of order unity. To
achieve this goal, we introduce phase space cell operators

Thus

bi, ,y, = ) P,,i(k)b;~i, (5.5)
(5.8)

and

(5.6)

It follows that the order of magnitude of ijlth mode's
contribution to the operator ( is

ba t

Next consider the transverse gluon field operator. We
write

dk+d2kg —i'm ~ t ikeA~(z) = ) [&~gas pe ' ' + e&&a& &e'
'

],
2 k+(2m)s

(5.9)

with

ah,, p, a~, „,= 2(2x) b(k+ —k'+)b (kg —k~)bye . (5.10)

The operators aI, and a&t are again unsuitable for our purposes. We deGne

ai i = ).4;,i(k)a', ii, (5.ii)

where k;rr(k) gkw, . bwr, . New,

Ai(z) =). [e~~4*,i(k)ajlAe ' '+e&~4;, i(k)a; &&e' '].
2 k+ (2') s

(5.i2)

The order of magnitude of ijlth mode's contribution to
A~(z) is s

i

Because of the cutofFs we impose, the wave packet
functions P;~i(z) do not have zero modes; that is,
jdzy;, i(z) = 0.

We must also specify the order of magnitude of 8~, 8+,
and (8+) when acting on a specified subset of wavelets
in an operator product. For qualitative purposes each
gradient needs to be applied only to the most rapidly
changing wavelet in the subset, so that 0~ is of order
(bz~) i, where bz~ is the smallest width in the subset.
A similar result holds for 8+. The effect of the inverse
operator (8+) i, which involves an integration, is also
determined by the smallest width bz in the product.
Qualitatively, it amounts to multiplication of the subset
by the width bz; for the other, broader widths act as
constants over this width. However, there is a special
case we must note.

To see this, consider the action of (8+) on a product
of field operators. Now the wave packet functions asso-
ciated with destruction operators have positive k+ only,
and the wave packet functions associated with creation
operators have negative k+ only. If the product con-
tains only creation operators or only destruction opera-
tors, then the operation of (8+) i qualitatively amounts

I

to multiplication by the smaller width among the prod-
uct in accordance with the rule above. But if the prod-
uct contains at least one creation and one destruction
operator, then wavelets with Fourier modes of positive
k+ and wavelets with Fourier modes of negative k+ will
both occur in the product. When they have the same
mean value of k+, the product acquires a zero mode and
then (8+) i no longer produces a localized function but
rather one which covers the whole space. Thus the ac-
tion of a single (&+) can lead to a logarithmic infrared

divergence and the action of (&+) can lead to both lin-

ear and logarithmic in&ared divergences already in the
canonical terms. We have discussed these divergences
and the counterterms which remove them in Sec. IVB.

B. Ultraviolet divergences and counterterms

Consider ultraviolet divergences arising &om the prod-
ucts of interaction Hamiltonians. Each term in the inter-
action Hamiltonian involves an integral over the product
of three or four Geld operators. Each Geld operator is
expanded in terms of wave packet functions. First, we
consider the ultraviolet divergences arising &om a prod-
uct of two interaction Hamiltonians. We shall consider
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the special case of just two wave packet sectors, one being
fixed and the other being arbitrarily large. This corre-
sponds to a single divergent loop integral in the familiar
language. The fixed wave packet width corresponds to
the fixed external momenta in the loop diagram, and the
varying wave packet width corresponds to the diverging
loop momenta.

We denote the widths of the fixed and varying wave

packet sectors by (bx, bx~) and (by, by~), respec-
tively. The energy of the varying wave packet sector

scales as &", . The energy diverges as by~ -+ 0, corre-
by2

sponding to the traditional type of short-distance ultra-
violet divergence, which we consider in this section. The
divergences as by ~ oo are light-front infrared diver-

gences, which we consider in the next section. Consider
ultraviolet divergences which occur when by~ (( bz~.
We set bz = by . The interaction Hamiltonian con-
tains only cubic and quartic terms in the field operators
(t, (, and A'. We now observe that, as a consequence
of momentum conservation at the vertices, to produce
an ultraviolet divergence at least trvo of the three or four
operators have to refer to a y sector We a.lso note that
a transverse gradient will yield b

unless it applies to a
bye

product of x sectors only.
Now consider the terms in the interaction Hamiltonian.

If all operators refer to y sectors, each term scales as b",by
by2~

except for the mass term (the helicity-fhp interaction),

which scales as by . But if some operators refer to x
bye '

sectors, there will be additional factors of b"~ . For each

field operator ((t, f, A~) belonging to an z sector and
for each derivative 0~ acting on only x sectors, there is a
factor of b"~. This gives the contribution &om a single

sector with width b'y, by~ as by~ gets small. But inany
wavelets with different by~ can contribute, namely, all
wavelets with diferent centers that overlap a given x-
wavelet (see Fig. 13). Since the transverse space has di-

mension 2, the number of independent wavelets of linear
size by~ that overlap with the wavelet of size bz~ is of
order (bzi/bye)'.

Next consider the second-order perturbation theory
formula

1
HI H (5.i3)

where DE denotes the energy denominator. For qualita-
tive purposes, we can replace the energy denominator by

the energy of the y sector, namely, b", . Thus the con-j by2

tribution in second order of a given term to the effective
Hamiltonian resulting &om wave packet functions of a
given width by~ scales as

(5.14)

where n counts the number of (r, (, A~, and 0~ factors
that refer to x sectors. If n is greater than 4, there is no
divergence, while for n less than or equal to 4 a divergence
arises. When n is equal to 4, the contribution from the
sector of a given size by~ is a constant. Now we have to

sum over all scale sizes by~. The scale sizes by~ allowed
are inverse powers of 2 all the way down to a minimum
size A. A sum over all scale sizes down to A yields a term
of order (lnA /ln2), which gives a logarithmic divergence
as Amoo.

Thus the power-counting rule for ultraviolet countert-
erms is the same (in bz~) as for the canonical Hamilto-

nian, namely, that there can be at most four operators
scaling as bx& . Even though we did the analysis for
two HI's, it holds for any number of HI's, where the
first HI creates one or more y-type constituents, inter-
mediate HI's maintain at least one y-type constituent,
and the last HI destroys all the remaining y-type con-
stituents. (We are ignoring contributions "d.isconnected
in y" —that is, products which contain an HI with only
x-sector constituents. These diagrams have already ac-
quired counterterms. ) Each energy denominator may be

replaced by the energy of the y sector, b", , since each in-
by2

termediate state contains at least one y-type constituent
by assumption. If there are m factors HI, there are

2

m —1 factors b" . Each HI scales like b", times pow-
by —' by2

ers of (by~/bz~). An overall factor (bz~/by~) counts
the number of y-type wave packet functions that overlap
with a single x-type wave packet function. Thus the anal
rule for the scaling versus bz~ and by~ is identical for
m HI's as for 2 HI's —namely, divergences occur for

products in the e8'ective Hamiltonian of x operators up
to fourth order in (t, (, A~, and 8~.

C. Infrared divergence and counterterms

Light-&ont infrared divergences are large-energy diver-

gences as can be seen from the light-kont dispersion re-

lation p = "~++, which blows up as p+ ~ 0. Wep+
have already discussed the counterterms for light-front
infrared divergences that arise in the instantaneous in-

teractions in the Hamiltonian. In this section we discuss
the infrared divergences which arise in products of the
interaction Hamiltonian.

As in the analysis of ultraviolet divergences we will

separate out the divergences caused by a specific y-type
wave packet function Rom the operator structure asso-
ciated with an x-type wavelet. Let us discuss the difkr-
ences from the analysis of ultraviolet divergences. First

of all, the y-wavelet energy scale ", is blowing up be-
yg

cause by is approaching oo. Thus it will be assumed
that by )& bx, while to avoid confusion with ultravio-
let problems we assume by~ is of order bx~. In contrast
with ultraviolet case, light-kont in&ared divergences are
caused by a single y-type wavelet with a width by . The
reason for this is that only one y-type wavelet overlaps
with a given x-type wavelet, since by is much wider
than bx . In this case momentum conservation at the
vertices implies that to produce a light-&ont infrared di-

vergence at least two operators in HI have to be x type.

Each term in III scales as s", times a factor: (a) (s" ) 2
by2 b~-

for each g or (t referring to an x type, (b) (s" ) for every
8+ acting on an x-type operator and a reciprocal factor
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Q'

Ai(
AiQ'

AiAi
AiAi(

AiAiQ

O'H

no factor;

(bx /by ) ~

no factor;

(bx /by );

(» /by )'
no factor;

(b'y /bx )

(by /» ).

Next we classify again the possible x-type operators in
Hl by the degree of divergence in Ki that results when
the effects of t9+ and + factors are included. Here it is
assumed that 0+ or (1/0+) is applied to a product that
contains at least one x-type operator. It is useful to recall
the structure of terms in the canonical Hamiltonian (see
Sec. IV), which we consider one by one in the following.

When all the operators in the Hamiltonian refer to the
y sector, the Hamiltonian scales as by . We have to de-
termine the scale factor that arises as a result of replacing
two or more y-type operators by x-type operators. Let
us 6rst consider some speci6c examples. In the follow-
ing we denote the operators that belong to the x type
by a subscript (z) and those belonging to the y type by
a subscript (y), respectively. Now consider the term in
the Hamiltonian jdz d z~(tA~ &+(. Here we write the
integration variable as z in order to distinguish dz from
the widths bx and by.

(1) For the case Jdz d zi(A~)i„l(I ) &+(~ l, f'rom

our rules we get by x (&" ) (for two ('s) x (&* )

(for —) x (S* ) (arising from the range of integration).
Thus the scaling behavior is like bx which we write as
by x (s ). Hence the scale factor is (s ).

(2) For the case f dz d2z~(A~gt)~ l &+(~„l we get

from our rules by x (s" ) ~ (for (t) x (& ) (arising
from the range of integration). Thus the scaling behav-
ior is like (bx by ) ~ which we write as by x (s ) ~.by—

(&* ) for every (0+) operator when applied to a prod-

uct including at least one z-type operator, and (c) (& )
arising &om the range of integration in each KI involving
an x-type operator. As in the case of ultraviolet diver-
gences, in the effective Hamiltonian a term with no factor

(s ) diverges logarithmically due to a sum over differ-by—

ent widths by . However, exceptions to the above rules
occur for terms in the canonical Hamiltonian involving

(&+ ) or (&+ )2 operators, which we will note below.
Let us now catalogue the factors associated with the

scaling behavior of various terms in the interaction
Hamiltonian. If we ignore 0+ or &+ factors, then the

rules are simple: An x-type ( produces a factor (&" ) ii2,
an x-type Ai produces no factor, and the presence of
any z-type operator in Hi produces (s ) as result of
the change of integration width. Thus, ignoring 0+ and
&i+ factors, we can compute the impact of any product
of x-type operators on the sealing behavior of Ki .

((
(0') '(&4)

&(0') '&

L.'(0') '&

no factor;

no factor (exception applies);

(bz /by )

(bz /6y )'. (5.16)

Products of Ai and (:
Ai(

(0+) '(Aif)
((0') (0'A )

(0+Ai) (0+)

((0+) A~

A~ (0+)

((0+) A~

(bx /by )~

(bz /by ) ~ (exception applies);

(bz /by ) ~
;

(» /4 )'
(» /» )'
(» /by ) ~;

(bx /by ) ~ .

Products of (, (, and A~ ..

$ (0+) A~

( (0+) 0+A~

A~ (0+)
(0+A~) (0+)

g2(0+)-'A~
((0+) 'A

(A (0+)

(» /» )'
(bx /by );
(bz /by );
(bx /by );
(b'x /by );
(bx /by );
(bx /by ). (5.18)

Hence the scale factor is (&* ) &.

Now there may be exceptions to these rules when
(0+) i or (0+) acts on a product of operators, for
then it would pick out a zero mode as described above.
However, we have eliminated this possibility by impos-
ing a longitudinal cutoff e on such terms and then adding
a counterterm to remove the e dependence. Because of
this, integration by parts is allowed and can be used to
determine the order of magnitude of (0+) i or (0+)
The exception to the usual rule occurs, then, when there
are not x-sector wavelets on each side of the inverse gra-
dient, for integration by parts allows us to rewrite the
product so that the inverse operator acts entirely on y-

type wavelets. Then it picks out a y-sector width and so
does not produce the factor (b'z /by ) or (bx /by )2 ex-
pected &om the above rules. Thus, for example, consider
the term f dz d2zi((tAi)(„l&+ ($Ai)~ l. With the zero
mode eliminated, we are free to interchange the operation
of &+ to get jdz d zi&+ ((tAi)~„l (Ai()( l. Thus the

scaling is by x (s" )~ (from () x (& ) (arising from

the range of integration). Hence the scaling behavior is

(» by ) ~, which we write as by x (&* ) ~, and so

the scale factor is (s ) ~.
In the following we determine the scale factor for var-

ious terms in the interaction Hamiltonian when two or
more operators in them are replaced by x-type operators,
the remaining operators being of y type. Each &+ may

apply to y operators too; e.g, &+ ( might mean &+ (Ai()
with Ai of y type. The scale factor is unchanged by any
such embedded y operators.

Products of ( and (:
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Products of Ai and Ai..

AJ AJ

A~(B+) A~

A (B+) 'B+A~

(B+A~) (B+) B+A~

(B+) (AHAB+A~)

(hx /by );
(bx /by )';
(bz /by );
(hz /by );

coming from a two-gluon intermediate state.
As candidates for HI, we take

Hz), )
= gf' jdz d'zz)) Az'd'zAz (5.22)

Hz)z) = gf—f dz d zz ( z
O'A' )Azg A . (5.25I

AgO+Ag
l

Ag A~ (bz /by ) . (5.19)

no factor (exception applies),

no factor;

We separate the field operators into low-momentum

parts which contain wavelets of width bx~, bx and
high-momentum parts which contain wavelets of width

by~, by . In the discussion below we drop factors of g
and color factors.

Products of (, Ai, and A~..

((B+) 'AHAB+A~

A~((B+) 'A~

Ag (B+) '(A~

(bz /by )'
(bx /by )2;

(bz /by ) ~ . (5.20)

Products of (, (, and (:
g(B+ )

—2(2

('(B') '&

(bz /hy ) ~;

(bz /by ) ~ . (5.21)

The above list splits into four types. (a) Products

which contain no
&

factors. They are all components
By

of the color charge density, either the quark or the gluon
component. These products can occur in any number
of HI's without reducing the divergence of the overall
product. If these products are the only source of x-
type operators, the overall divergence behaves as hy
that is, linearly. (b) Products which contain a factor of

(bz /by ) 2. These products involve a single (. Since
only an even number of ('s can appear in the effective
Hamiltonian, two such products are required from two

separate Hl's, and the result is to generate a factor
(bz /by ), which implies a logarithmic divergence. If
more than two such products occur, there is no longer
any divergence. (c) Products which generate a factor
(bz /by ). If any such product occurs once, a linear di-

vergence is converted to a logarithmic divergence, and
if they occur more than once, there is no divergence.
Finally, (d) products that scale as a higher than linear
power of (bz /hy ). Such products cancel any diver-

gence —even if present linearly.
As we have already explained, counter-

terms for linear divergences cannot have 6nite parts.
Thus we are interested in logarithmic divergences. Even
in this class, the power-counting analysis may be an over-
estimate since, for example, as seen in Sec. IIIB, a loga-
rithmic divergence may disappear when a symmetric cut-
oA is used.

D. Examples

Now we provide examples of the determination of the
divergence structure in perturbation theory using the
qualitative phase space cell analysis described above. We
consider the second-order shift in the energy of a gluon

Ultt aeiolet dieergence

2. Infrared divergence

To avoid confusion we set bz~ ——by~. Remember that
to produce an infrared divergence at least two operators
have to belong to the low sector. Thus, for example, we

may take

Hl(i) = dz d O'A(
)

A'A
( ), (5.24)

1
Hl(2) = dz d z~ O'A(„) A 8+A

( ). 5.25

(a) Consider the energy shift AE = Hy~2l & H1~2l.

According to our rules, Hi(2) scales like by . The energy

denominator produces a factor B . Another III(z) pro-By—

duces a factor by . Thus AE = by, which results in a
linear infrared divergence.

(b) Consider the energy shift AE = Hl~zl ~ Hl~q~.

According to our rules, Hi~&~ scales like by x (& ).
The energy denominator produces a factor B

. HI(2)By

produces a factor by . Thus AE = bx, which results
in a logarithmic infrared divergence.

To complete the analysis one must determine what

To avoid confusion with infrared divergences, we set
bx = by . For a candidate HI, we choose Hl(i). Re-
member that to produce an ultraviolet divergence at least
two operators have to belong to the high sector.

(a) Consider Hi~ql = J' dz d z~(B'A~A')l„lAI
l

and

the energy shift 4E —Hl(i) D HI(i). Referring back to
the scaling formula (5.14), n = 2. Hence the scaling be-

havior of the energy shift is
~& l, x (by~) x

l& l2 x

(s* )2 x (&"~ )2, that is, b,E =
~& l, , a quadratic

Byg
ultraviolet divergence.

(b) Consider Hllql -- f dz d z~B'Al ~(A' A~) l~
and

the energy shift AE = Hl(i) D Hi(i). In this case n =
4 and hence the scaling behavior of the energy shift is

AE =
(B ), , a logarithmic ultraviolet divergence.
(Beg)2 '
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happens when by~ && bx~ and simultaneously b'
y

bx, as well as other double orderings involving drasti-
cally difFerent transverse and longitudinal widths. We
have not completed analyses for all such cases.

E. Structure of counterterms: summary

We have found that the power-counting rule for ul-
traviolet counterterms is the same (in bz~) as for the
canonical Hamiltonian, that there can be at most four op-
erators scaling as

&
. However, the counterterm has a

complex nonlocality m the longitudinal coordinates. The
reason for this is that the longitudinal distance scales for
x-type and y-type wavelets overlap even when ultraviolet
transverse divergences are produced. Thus the ultravio-
let counterterms are built out of products up to fourth
order in (, (t, A~, and B~ [see Eq. (3.16)] and have
completely arbitrary longitudinal structure. As a result
of the constraint &om longitudinal boost invariance only
vertex counterterms can involve a priori unknown func-
tions of longitudinal variables.

The counterterms for in&ared divergences, on the other
hand, involve arbitrary numbers of quark and gluon oper-
ators. They have a complex nonlocality in the transverse
variables. This is in contrast with the divergent counter-
term for the canonical instantaneous four-fermion inter-
action which is local in the transverse direction. If we
identify the counterterms arising from infrared gluons
(small longitudinal momentum) as the source of trans-
verse confinement, then the unknown nonlocal transverse
behavior would have to include con6ning efFects at large
transverse separation.

From a physical point of view the appearance of long-
range many-body interactions involving arbitrary num-
bers of quarks and gluons is inevitable if one allows a
confining two-body interaction. It has long been appre-
ciated in the CQM that if one uses confining two-body
interactions, unphysical long-range van der Waals forces
inevitably arise above 1+1 dimensions [41]. In the CQM
various schemes allow the potential to distinguish be-
tween colored objects in different hadrons, but we have
no such operators at our disposal in a field theory. There-
fore the only way to cancel the residual long-range multi-
pole interactions between color singlets is with long-range
many-body interactions. It would be a failure of our ap-
proach if such operators were not allowed by the same
arguments that lead to a confining two-body interaction.
The possible impact such operators have on the predic-
tive power of the theory is not known yet.

There is a question of whether the artificial potential
will drastically alter the analysis of in&ared divergences.
We do not study this problem here.

As xnentioned in Sec. II, one might worry that the ap-
pearance of functions of momenta in the counterterms
could destroy the predictive power of the theory and lead
to nonrenormalizability. However, these functions are
needed to restore Lorentz covariance and gauge invari-
ance as g -+ g„and without such counterterms physical
quantities will not even approach finite limits as cutofFs
are removed for any coupling.

We do not expect any new parameters to appear in the
properly renormalized theory; so all new counterterms
must actually be determined by the finite set of canon-
ical &ee parameters. This problem has been studied in
Ref. [32], where a set of relationships called "coupling co-
herence" [42] were used to fix this relationship. Coupling
coherence rests on the observation that only canonical
variables should run independently with the cutofFs in
renormalization group equations. To lowest orders in per-
turbation theory it has been explicitly demonstrated that
coupling coherence 6xes the bare Hamiltonian in scalar
6eld theory, and that Lorentz covariance is restored by
the resultant counterterms [19]. Whether coupling co-
herence helps solve the in&ared problem has yet to be
demonstrated, but it is at least able to deal with sponta-
neous symmetry breaking [32].

VI. CUTOFF SCHEME FOR THE
HAMILTONIAN

In the previous sections we presented a qualitative
analysis of divergences based on wavelets. Now we set
up a precise momentum space &amework for renormal-
ization of the LFQCD Hamiltonian. We employ the "sim-

ilarity renormalization scheme" [14,15], which allows one
to avoid the difficulties often encountered in traditional
perturbation renormalization schemes when using plane
wave states to study the structures of divergences. Thus,
although we use plane wave states to determine the form
of the efFective Hamiltonian, we may still set up the renor-
malization to follow the qualitative wavelet analysis of
Sec. V. Of course, the assumption here is that the ar-
tificial Coulomb and linear potentials will not affect the
structure of the divergences. As we have seen, the canon-
ical Hamiltonian already leads to divergences at the tree
level due to k+ getting small. Beyond tree level, prod-
ucts of Hamiltonians also lead to divergences both due
to k+ getting small and Ic~ getting large. We need to
introduce a regulator before we can investigate these di-
vergences and construct the corresponding counterterms.
This is done here.

A. Cutouts on constituents

Since the 6nal step of the renormalization process in-
volves the nonperturbative diagonalization of the Hamil-
tonian, we need to develop a cutoff procedure that is
applicable to the Hamiltonian as a whole instead of just
to perturbative calculations order by order. One way to
accomplish this is to cut oH' the single particle momenta
appearing in the field variables themselves. Cutoffs on
the constituent momenta k+ and k~, which we call "con-
stituent cutofFs, " obviously violate the longitudinal and
transverse boost symmetries of the light &ont. What
does this violation mean? The direct efFect of the cutofF
is to eliminate states that would be present without the
cutoff. For a given center of mass momentum, a key pa-
rameter is the lowest mass state that is not eliminated
by the cutoff. This lowest mass depends on the center of
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mass momentum chosen, and is degraded if P~ increases
or P+ decreases.

If constituent cutoffs destroy light-&ont boost invari-
ance except for a limited range of center of mass mo-
menta, then, why do we want to use such cutoffs7 One
could instead employ, as has been suggested elsewhere
(see, e.g. , [19,35,43,44]), cutoffs which preserve both
transverse and longitudinal boost invariance. We shall
call such cutoffs "Jacobi cutoffs" for they act on the Ja-
cobi or internal momenta of a constituent, which are de-
fined relative to the center of mass momenta. Unfortu-
nately, Jacobi cutoffs inevitably refer to extensive quan-
tities of a state and thereby introduce nonlocalities in the
Hamiltonian. If the cutoff on constituent i depends on
the total momentum of the state, then a dependence on
all spectators j will be introduced in any matrix element.
Thus any counterterm may change when another spec-
tator is included, which greatly complicates the renor-
malization process [19]. So there is a stiff price to pay
for insisting on a regulator which preserves explicit boost
symmetry.

We prefer to employ a constituent cutoff scheme be-
cause of the conceptual simplicity of its implementation.
This is especially important for LFQCD, where the fi-

nal diagonalization of the Hamiltonian will be done on a
computer. In addition, we will be encountering nonlocal
effective potentials which result from the similarity renor-
malization scheme, and it will be important to avoid non-
localities from the regulator itself. Choosing constituent
cutoffs ensures there is a limited possibility of confusing
between different sources of nonlocalities. Moreover, as
we show below, one can choose constituent cutoffs which
would allow boost invariance to be maintained to a good
approximation within a large domain of center of mass
momenta. In the next section, we discuss the details of
the cutoff scheme and map out the center of mass do-

main (the values of P+ and P ) in which when a cutofF
constituent appears in a state, the internal mass of that
state is guaranteed to be above an effective cutofF A .

B. Details of the cutofF scheme

m2 2m' + qi~
x .

(6.2)

Thus the square of the total mass of the system is simply
a sum of internal mass terms, which is a manifestation of
the kinematical boost symmetries.

We need to prove that the partial sums of internal
mass terms can always be lowered by replacing two con-
stituents by a single constituent with the same total q~
and x and the lower of the constituent masses, that is,

1+qrz 2+q2g ( 1+rr12) +(qlJ +q2l)+
xl X2 X1+ X2

(2 + I (1 qli —rJ + (1qJ

q2g = —rg + (2q, where qz = q1~ + q2~. Then

We start with the formula for the total mass of an
eigenstate of Ho (where Ho is the free part of the Hamil-

tonian) of n constituents with momenta (k,+.

, k, ~) and
masses m, :

~.m'+ I '
M2 P+ g ™iiJ P2J

k,.

where P+ = P,. k,+ and P~ ——P, k,~. If we introduce
I+

the internal or Jacobi momenta xi = &'+ and q, ~ ——ki~-
xiP~, then

2 2 2 2
mg + q~~ m2 + q2~+

xg X2

ml + rg m2+2 2 2 2

+ +qg+1++2 (1 6
1 m1(2 + m2(1 + qg&1+ &2 6(2

(6 4)

rn2 2

But the minimum value of ~ + ~ is (m1+ m2) . Hence

m', + q,'~ I', + q2~ (m, + m2)'+ (q,~+ q2~)' m'+ (q,~+ q2~)'+ )
xl x2 X] + x2 X1 + X2

(6.5)

where m is the lower of the constituent masses. It follows
then that any multiconstituent state with a given total
x and q~ must have an invariant mass which is greater
than or equal to that of the state containing just two
constituents of lowest mass m and having the same total
q and x.

We set constituent momentum cutoffs such that for
states of center of mass momentum (Po+, P~ = 0) the
cutoff momenta first appear in states when the (mass)
is 2A and then evaluate the range of center of mass mo-
menta (P+, P~) for which cutoff momentum constituents

first appear at a (mass) of A or higher. Thus all states
with (mass)2 & 2A2 and total momentum (Po+, 0) are

kept, and we must then restrict the range of (P+, P~)
so as to ensure that no state with this total momentum
and (mass) & A has a constituent beyond the cutoff
boundary. This gives us a large domain to test whether
covariance can be restored to good approximation with

appropriate counterterms.
By our theorem, if a constituent of momentum (k1+,

k1~) and mass m, 1 appears in a state of center of mass mo-

mentum (Ps+, 0), then the state of minimum total mass
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m, ski~ m ski~2 2 2 2

mass +
x1 1 —xg

(6.6)

l+ l+
with x~ —— '+, x2 —— '+. We therefore need to charac-

terize the boundary curve in xq, kq~ space on which

m)+ kq~ m + k~~ m~ m2 2 2 2 2 2 2

+ = + +
x] 1 —z 1 z 1 1 —xl xl (1 —xi)

Solving this equation for k~& we have

= 2A2. (6.7)

k,~ = 2A zl(1 —zl) —m', (1 —xl) —m zl. (6 8)

For A )) mz, we find kz& achieves its maximum value

very close to 2, when xq ——2. To ensure no deteriora-A 1

tion in the cutoff for momenta P+ & Po+, we define the
cutoff boundary curve to be

k~~ ————m1

k+
for xq ——

P+

(including xl & 1), (6.9)

while, for xg ( 2,

k, ~ ——2A zl(1 —zl) —m, (6.10)
I

containing this constituent contains a second constituent
with momentum (k2, k2~), where k2+ ——Po+ —kl+ and
kj~ ———k2~, and mass m, the minimum of the con-
stituent masses. The mass of this state is

2
which applies only in the domain zl & 2» + 0(«) for
which k~& & 0. We will ignore corrections to the bound

on x that are 0( A, ), but a careful analysis must retain

these. xq & 2A, is not allowed. Note that xq is defined

in terms of Po+, even for P+ g Pz+

The reader may at first feel somewhat uneasy about
the statement "including x] ) 1. Consider for sim-
plicity a two-body system of equal-mass particles. First
consider the kame P+ = Po+ and Pg ——0. The internal
mass of the state is

t'm y ki~ m y k2~
kl+

+ k+ )
(6.ii)

l+ lcq+
Define xq —— + and x2 —— +. Thus in the kame P+ =

po+ p+

Po+, 0 & zl & 1, where we have dropped terms of order

m2/A2. Next consider the frame P+ = P+ Let c.= +.p+
p+

Thus in this kame 0 & x~ ( c and c is greater than 1 if
P+ & Po+. We also have z2 ——c —xl and 0 & z, & c.
If we did not extend the boundary as exhibited in (6.9),
however, the x s would be limited as 0 & x; & 1, and one
could not have a two constituent state with P+ & 2PO+.

Such a cutoff would likely be too restrictive.
We next determine the boundary curve in P+ and

P~ space for which the cutoff mass is A2; namely, con-
stituents on the cutoff boundary occur only in states of
(mass) = A2 or higher. If the center of mass momentum
of a state is (P+, P~) and we consider one constituent
(kl+, k») on the cutoff boundary (6.9) and (6.10) with
zl ——kl+/Pz+, then from our theorem above we know that
the invariant mass of this state must be at least

+ (kl J. (1PJ ) + (k2J (2Pj) m +

(klan

(1PL)
6 6 6(1 —(1)

(6.i2)

where (1 ——kl /P+, (2 ——k2 /P+, and the second equality follows from the relations k2 ——P+ —kl and k2~ ——P~ —kl~.
We ask, what must (P+, P~) be to ensure that the minimuln of this mass over all allowed values of kl+, with k12& on
the boundary, is A ?

First, note that M is a minimum when kl~ and P~ are in the same direction. Let p = P+/Pz+, so that (1 ——zl/p.
Using (6.12) and the requirement that M2 be greater than A2, we find

2xly
I
kii I I

Pi I& A'zl(7 zl) —v (klg + m ) . (6.i3)

Dropping the solution which excludes P~ ——0, we have

«IP~ I& —~ Ik» I
—A xl(~ —») —~ m

1 2 2- ~/2

x1
(6.14)

Substituting for kl~ from (6.9) and (6.10), dropping terms of order m /A, and minimizing the right-hand side with
respect to xq, we find

0 &I Pz I& A[(1 —p)(2p —1)j'~ for 1/2 & p & 3/4 (6.15)

and

A
0 &IP~ I&

2 2
for p & 3/4. (6.16)

Using the definition of p, this implies that only states with P+ & Po+/2 are allowed.
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C. Cutoffs and field operators

To summarize the results of the previous section, the cutoff boundary on each constituent's momenta (k+, k,~) is

specified by

k~=2A *+ /1 — '
/

—m, k+ ( k+~

0 & 0 &

(6.i7)

and

k, = ——miJ for (6.is)

where m is the lowest of the constituent masses. Then, in a considerable range of center of mass domain (P~ =
~+

0, P+ =
2 to P~ = ~,P+ ) 4' ), when a cutoff constituent appears in a state, the internal mass of the state is

2~2 '

guaranteed to be at least A . This domain for physics with cutoff (mass)2 ) A is shown in Fig. 4.
At all stages of the calculation we will also want to provide a buffer zone outside this constituent momentum cutoff

boundary extending k~z roughly a factor of 2 and k+ a factor of 1j2. We can accomplish this by setting the outside
of the buffer zone at

P+ ( P+) for
m2 p+P+ (k+
4A2 0 i 2

(6.19)

and

k,~
——A —m for 0 (k+

2
'

~ (6.20)

The buffer zone allows the use of a smoothing cutoff in order to let interactions die gradually. In (6.17)—(6.20), the
cutofF A eliminates both ultraviolet transverse and infrared longitudinal degrees of freedom. In order to define such a
constituent cutoff which still limits the invariant mass of a state, however, we are forced to introduce a longitudinal
momentum scale P0+. Dependence on this scale must also be eliminated as part of the renormalization process.

We now have the boundary on the degrees of freedom kept in k~ and k+. This is shown in Fig. 5. These cutoff
boundaries are to be employed in the integrals over momenta in the momentum-space expansion of the field operators.
The quark field operator is

dk+d k
b (k) » *dt(—k). » *

16vr3
(6.21)

and the gluon field operator is

A
S2

FIG. 4. Cutoff region of center of mass mo-
menta.
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FIG. 5. Cutoff region of constituent mo-

menta.

g'(~) = ) [e&ap(k)e '"'*+e&'a&(k)e'"' j,
dk+d2kg„-.I6~sgk+

(6.22)

where color indices have been suppressed. . If we choose sh~p momentum cutofrs, the momentum integ als may be

explicitly written as

f
Io+/2 OO

dk+d k~= dk+ d k~8(2A x(1 —x) —m —kz)+ dk+ d k~8(——m —kz),
C xnin

'0+

(6.23)

2
where now k+,.„=q~, Po+.

With sharp momentum cutouts it is possible to develop nonanalyticities in the structure of counterterms. We

illustrate this with the following example.
Consider the type of transverse momentum integration that occurs in the gluon self-mass. In its simplest form this

integral is

I= d kqzd k2& Pz —kqz —k2& 8 A kate A —k

d kgb 8 A —k ~ 8 A —Pg —kgb

(6.24)

(6.25)

with A a very large parameter. Introducing the variable ~~ by k~~ ——K~ + 2P~, k2~ ———~~ + 2P~,

I = — dPd(;
2 0

(6.26)

with (for P~ && A)

Then,

1 1
cos4&, A+

I
P~

I
cos P .

2 2

Iaiwersent = +A

(6.27)

(6.28)

The sharp cutofF has given rise to a nonanalytic divergence. To avoid such nonanalyticities in the structure of
counterterms, analytic cutoK functions are preferred. For example, the momentum integrals can be cutoE as

OO k' +m'k~+ m l
~

k~2 + m' + 4A'x/(I + 4x)
~

' (6.29)
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where x = k+/Po+. C(y) is a cutofF function which equals
1 for y = 0 and decreases analytically to 0 for y = 1. The
integration over longitudinal momentum is thus cutoff at
a minimum k+,-„=2A2PO+. As long as C is analytic
the self-mass will have to be analytic in P~, the

~
P~

~

divergence will disappear.

VII. SIMILARITY RENORMALIZATION
SCHEME

The bare cutoff Hamiltonian will be solved in two
stages. The first stage is a renormalization stage in which
effects at relativistic momenta are computed using per-
turbation theory. These effects are computed to a spec-
ified order in g in perturbation theory. For the simplest
computation the renormalization calculation is limited
to second-order terms in g. To study the next level of
complexity, the similarity renormalization program can
be carried out to fourth order in g, but that is not at-
tempted here.

The output of the renormalization stage is an effec-
tive Hamiltonian which is dominated in weak coupling
by nonrelativistic relative momenta. The bound states
of the effective Hamiltonian in weak coupling are pure

qq, pure qqq, or pure gg states, exactly as predicted in
the CQM. All major efFects of gluon emission and ab-
sorption, or more complex processes, are absorbed into
the effective Hamiltonian for these states. Once the ef-
fective Hamiltonian is constructed, the computation of
bound state energies involves readily executed numerical
computations.

A new procedure for the renormalization of Hamilto-
nians has been developed by Glazek and Wilson to best
meet the needs of light-front computations [14,15j. The
new procedure is needed to simplify qualitative calcula-
tions leading to the effective Hamiltonian. Of especial
importance is an ability to handle linear potentials cor-
rectly. The problem with a linear potential is that even
if it has a small coefficient (even of order g ), the lin-

ear potential becomes of order 1 or even larger simply
by going to large enough distances. But once a linear
potential has become large enough it can no longer be
treated perturbatively and must instead be incorporated
into an unperturbed Hamiltonian, for either qualitative
or quantitative analysis. Since a crucial question is how

linear potentials do or do not develop, a procedure which
handles them sensibly is of critical importance.

Another requirement for the new renormalization pro-
cedure is that no small energy denominators should arise
in any order of perturbation theory. That is, energy de-
nominators of the form 1/(E —E') should never arise
with ~E —E'~ being far smaller that either E or E'. Nor-
mal perturbative treatments of field theoretic Hamiltoni-
ans lead constantly to such small energy denominators.
But for exploring the complex phenomena of light-front
renormalization, which will require crude and qualitative
analyses, it is desirable to avoid encountering the possi-
bly large effects resulting from such small denominators.
Such 1arge efFects are very diKcult to estimate using qual-
itative arguments. Large effects arise in particular when

kinematic constraints force E —E' to have a single sign
yet allow it to be small. A typical example is collinear
emission of gluons at large transverse momenta. In this
case, the incoming and outgoing constituents all have

large light-front energies due to their large momenta.
Nevertheless, the final state energy is only slightly above
the initial state energy, yet cannot ever be lower than the
initial state energy.

The third requirement we place on the new renormal-
ization procedure is that the efFective Hamiltonian should
have a Jacobi-type cutoff severely restricting internal mo-

menta while the center of mass momenta are restricted
only by the original bare cutoff. This will allow us to ver-

ify the restoration of longitudinal and transverse boost
invariance in the effective Haxniltonian itself.

The first stage computation also identifies all cutoff
dependences in the bare Hamiltonian, and therefore can
be used to identify all needed counterterms to eliminate
the cutoff dependence in perturbation theory, including
dependences that violate as well as conserve boost invari-

ance.

A. Similarity transformation of Hamiltonians

For now our discussion will be valid for any Hamilto-
nian with non-negative eigenvalues. Specialization to the
light-front case occurs below in Sec. VII B.The basic idea
of the "similarity renormalization scheme" is to develop
a sequence of infinitesimal unitary transformations that
transform the initial bare Hamiltonian H~ to an effective
Hamiltonian H, where o is an arbitrarily chosen energy
scale. When the transformations are multiplied together,
one arrives at a transformation S:

H = S H~St. (7 1)

S = 7 exp~ do'T
a )

(7.2)

where 7 puts operators in order of increasing o. Clearly,
this satisfies the above limit condition. Using

dSt dS~ t (7.3)

the differential form of (7.1) is

= [II,T ], (7.4)

The basic goal for the transformation S is that H
should be in band-diagonal form relative to the scale
o. What this means, qualitatively, is that matrix ele-

ments of H involving energy jumps much larger than
0 (other than jumps between two large but nearby en-

ergies) will all be zero, while matrix elements involving

smaller jumps or two nearby energies remain in H .
We require that for ~ m oo, H m H~ and S —+ 1.

The effective Hamiltonian we seek involves H with cr

of order the quark or gluon mass. The similarity opera-
tor S may be expressed in terms of the anti-Hermitian
generator of infinitesimal changes of scale T as
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which is subject to the boundary condition lim ~ H
H~ from above. We shall never need to explicitly con-
struct the similarity operator S in what follows.

We need to specify the action of T . We write H~ =
Hp + HI, H = Hp + HI, let E; and E~ be eigenvalues
of Hp, and denote any given matrix element of H as
H;z. The diH'erential equations of the similarity renor-
malization scheme [15] that determine both H and T
are

dH;~ d= foij [HIo~ To]ij + (ln foij )Hoij ~da 80' (7.5)

(lil foij )Hoij
do

J

where f,j = f(z;j) with

IE —E
I

E;+E~+ 0. (7.6)

These equations are consistent with (7.4). The function

f(z) should be chosen as follows:

1
0 & z & —,f(z) = 1 (near diagonal region);

1 2—& z & —,f(z) drops from 1 to 0
3 3'

(transition region);

2

3
—& x & 1, f(z) = 0 (far off diagonal region). (7.7)

f(z) is to be infinitely difFerentiable throughout 0 & x &

1, including the transition points 1/3 and 2/3.
It will be shown that with these definitions H, ~ is zero

in the far oE-diagonal region and T;~ is zero in the near-
diagonal region. The second claim is immediately obvi-
ous from the form of T;~ in (7.5), for 1 f and d (ln—f)
vanish when 0 & z & 1/3. To see that H;~ vanishes
when z & 2/3, we first note that since Hp is diagonal,
d (ln f)Hp;~ vanishes identically (f is 1 and d f is 0 for
z = 0), and from this result we can indeed declare that
the unperturbed part Hp of H does not vary with 0.,
with T being of order HI or higher. Now we can rewrite
Eqs. (7.5) as

We will see below that HI/f remains finite even when

f ~ 0. Solving the first equation with the stated bound-
ary condition at 0 ~ oo gives

HI 'i = f'i (&I'z « IHI r''I'i).
cr

(7.9)

where HP, =f;~HP an. d the linear operation R is

Ifo;j —do Xo;j.
cr

(7.11)

Using the equation for HI allows us to write

To —HioT + [Hio& ) To &] (7.12)

where

1 (d
IoTij E E I d foij I Iij (7.13)

Since f(x) vanishes when IxI & 2/3, we find that H;z
does indeed vanish in the far oK-diagonal region.

That T;~ is zero in the near-diagonal region means
that a perturbative solution to H;~ in terms of HI, will
never involve vanishing energy denominators, which are
a potential source of large errors in other perturbative
reoormalization schemes. That H;~ is zero in the far
off-diagonal region will help identify divergent terms and
determine the form of counterterms necessary to remove
these divergences. In LFQCD, we are considering cutofFs
which severely break the symmetries of the canonical the-
ory. The renormalization process is therefore sure to be
quite complicated, and the advantage of the similarity
renormalization procedure is that it allows a clean iden-
tification and separation of divergences.

Finally, we have to discuss renormalization conditions.
The bare LFQCD Hamiltonian has a limited structure—canonical terms, an artificial potential, and renormal-
ization terms. The renormalization counterterms are to
be determined by fixing outputs: both physical masses
and renormalized coupling constants defined in terms of
measurable parameters, and a subset of the constraints
of Lorentz covariance. These outputs are to be obtained
perturbatively by solving the Hamiltonian bound state
problem. But for now we mainly want the functional
form of the counterterms, which has to precede deter-
mination of their strengths. The main requirement for
counterterms in HIj is that they remove divergences in
the integral over the commutator [HI i, T ].

We can summarize the equations for HI and T as

HI =HI +[HI, T ]

d 1
Hg 4) = IVI, T ]8,

oij

1
Toij = (1 foij )[HIo t To]ij

2

t'df. ..l

(7.8)

X
E~ —E; (do.

OO 1
do Xo'ij + (1 fcrij) Xoij.

CT

(7.14)

This equation structure saves us from writing the solution
for T separately because it is obtained by substitution
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from the equation for Hl~,. name y HI ~ I T and
all higher-order terms have the substitution ... . So~a~T
we can start writing the iterated solution for HI

HI —H, + [H, „H,,~]
R

+[[HI &s& HI ssT] & HI IT]
R'

R

(7.15)

R

The counterterms in HI must be chosen to cancel the
divergences which occur in integrals over intermediate
states at higher order in HI, and such counterterms must
also then be included in higher-order iterations. If a limit
to this process exists, the Hamiltonian is said to be renor-
maliz able.

B. Discussion of the scheme

Now we may discuss the similarity renormalization
scheme in more detail. The ultimate aim of this scheme
is to transform the Hamiltonian H~ into a manageable,
band-diagonal form H . H~ is the bare cutoff Hamilto-
nian, forced to be finite by the imposition of some cutoff
A. The differential transformation framework produces
a set of Hamiltonians H, where 0' ranges from O(A)
down to some scale 0 and thereby dresses the Hamilto-
nian. One step in this process is the determination of the
form of the counterterms which must be included in HB
so that each of the matrix elements of the transformed
Hamiltonian H, ~ has no large dependence on A. This is
the renormalization process: As we send A m oo, we get a

renormalized, scale-dependent effective Hamiltonian H
This does not finish the renormalization of the Hamilto-
nian, however, for the finite parts of the counterterms in

H~ will produce in H unknown constants and functions
of momenta which must be adjusted to reproduce physi-
cal observables and to restore the symmetries which were

broken by the cutoff A. These quantities are to be fixed,
then, by solving H, and one should be able to do this
with a combination of few-body Hamiltonian methods
and weak-coupling diagrams.

We show this renormalization scheme pictorially in Fig.
6. The grey area is the region where o is large enough so
that H is equivalent to the bare Hamiltonian H~. The
necessary condition is that [z,~[ & 1//3 for all i and j,
which is true for

A 5p
O ) ———

2 2' (7.16)

where A is the maximum and p, is the minimum energy
of the free states of the cutoff Hamiltonian H~. By low-

ering the scale o below this region for a given A, we

start transforming H~ —eventually producing a band-
diagonal Hamiltonian at some suKciently low scale. Thus
we form a new "triangle of renormalization, " as shown in

Fig. 6. First, we eliminate degrees of &eedom by fixing
the cutoff at some value Ai, and we denote the corre-
sponding bare Hamiltonian as HB. Now we perform the
unitary similarity transformation to bring the Hamilto-
nian to a band-diagonal form characterized by some scale

oo, which we denote as Ho in the figure. Next, we in-

crease the cutoff to some value A2 to get H& and then
transform via o to get Ho, defined at the same similarity
scale 00 as was Ho. As we increase AN in this way, we

end up with a sequence of band-diagonal Hamiltonians

o=A/2 —5W2

r-
0

lt

I! '

HR

HR
FIG. 6. K.iangle of renor-

malization.
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II&+. The renormalized Hamiltonian at scale oo is the
limit of this sequence, Ho ——limN~ Ho .

Of course, we could use the similarity transformation
to bring the effective Hamiltonian to any scale o„andob-
tain a set of sequences (H~) A.s we change cr, we change
the characteristic scale, but the physics is invariant with
respect to this change for large enough AN. The util-
ity of the similarity renormalization scheme is that the
transformation is invertible, as indicated by the double-
arrowed lines in Fig. 6. Thus, if we find a Hamiltonian
that is finite and A independent for any one scale cr„,the
differential similarity &amework guarantees that we can
obtain a Hamiltonian that is finite and cutofF indepen-
dent for all cr. Note that we require that each matrix ele-
ment of H be cutoff independent for external momenta
which are small in comparison to the cutoff, which is more
restrictive than just requiring this of the eigenvalues of
H .

We now discuss the choice of counterterms. We start
with the bare cutofF Hamiltonian II~, which consists of
the canonical Hamiltonian with cutofF A plus a set of
counterterms which have an explicit A dependence ar-
ranged so that physical observables obtained &om H~
are A independent. These counterterms are at the outset
undetermined. As we perform the similarity transfor-
mation, we get an effective Hamiltonian H, where the
scale o replaces A. This is done through a precise differ-
ential &amework. Qualitatively, we are separating high-
energy degrees of &eedom (of order A) &om low-energy
degrees of &eedom (of order o). In the language of the
phase space cell analysis of Sec. V, we have A trans-
verse (longitudinal) widths (by~) (by ), respectively,
and u transverse (longitudinal) widths (bz~) (bz ),
respectively. Thus, by varying A, we determine which di-
vergences have to be eliminated &om H . The countert-
erms which eliminate these divergences must be added to
II~, and so can have no dependence on O'. The structure
of each counterterm Hg, is limited by the structure of
the divergence it must cancel —namely, by the external
legs associated with states i and j. Along with the di-
verging part of each counterterm, we may in principle as-
sociate an unknown finite piece, whose precise form is to
be determined by fitting data and restoring symmetries.
These terms must be restricted so that a piece which re-
moves an ultraviolet divergence, for example, will have
a precise behavior with respect to external transverse
momenta, but may have a finite piece associated with
it which contains an unknown function of the external
longitudinal momenta —provided that function does not
break boost invariance. A similar rule applies to coun-
terterms for in&ared divergences. However, remember
that the individual constituents associated with external
momenta do not correspond to physical states, and so we
cannot include counterterms for apparent in&ared diver-
gences which would be eliminated upon integration with
a test function.

Finally, we need to fill in some details in order to
match the general presentation of the similarity scheme
given here to the particular choices of light-kont coordi-
nates and the cutofFs on constituent mornenta described
in Sec. VI. The bare LFQCD Hamiltonian has a cutofF A

which has the dimensions of transverse momentum. The
cutoff A of Sec. VI is designed to simultaneously elim-
inate constituents with large light-&ont energies due to
either large transverse or small longitudinal momenta.
We want to define the light-front similarity scale to have
the same dimensions as A and to be a true invariant-mass
scale. The scale 0 is defined through (7.6), which we now
redefine for the light &ont as

P +P +P (7.17)

Here, P, and P are the (off-mass-shell) light-&ont &ee

energies of the states i and j (namely, sums over the
states' constituents' light-front &ee energies), and

—2P2 + 02

p+ (7.18)

Since (P+, P~) is conserved in any process —that is,
II;z cc b(P,+ —P+. )b (P;~. —P~g) —we see that z,z as

given in (7.18) is independent of the total longitudinal
momentum P+ and transverse momentum P~. Defined
in this way, the light-&ont similarity scale 0 interpolates
&om a mass scale O(A) down to some final scale cr, which
sets the mass scale of the bound states of the effective
Hamiltonian. Moreover, &om (6.1) and (6.2) we see that
(7.17) reduces to

[M,
2 —M,2 i

M2 + M2
2

(7.19)

with M; and M~ the total masses of the states i and
j. So the similarity transformation replaces the cutoff
A, which explicitly breaks boost invariance, with a boost
invariant-mass scale o.

VIII. EXAMPLE CALCULATION:
SECOND-ORDER GLUON MASS CORRECTION

a~—--
000I F000

FIG. 7. Gluon mass correction from two-gluon intermedi-
ate states.

In this section we provide an example of the application
of the new regulator scheme and the similarity transfor-
mation perturbation theory to second order in the cou-
pling constant. We calculate the correction to the gluon
mass coming &om intermediate two-gluon states, which
is depicted in Fig. 7. This correction contains severe
divergences.

First, we need to find the explicit form for H~ ~ in
(7.15). After substitution from the previous equations
and use of the Hermiticity of HI, we find
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KI'.',, = [HI. HI. Tlv = ).HI;~Hi~,
"* +

i k k

(8.1)

where the sum over intermediate states k includes an integration over momenta. The function 9 is

9nijk = fcrij

CK3

«'f '~ f j),der'
(8 2)

and it serves to keep i and j in the near-diagonal and transition regions (z;j ( 2/3) and j and k in the transition
and far off-diagonal regions (x jI, ) 1/3). The identity f,j = f j, and integration by parts give

9nij12 + 9aji(2 = faij (1 foi(2foji2)) (8 3)

so that we can write

9crjik 9aij k

P,. —PL P. —PJ 2 " ' "' 1(P—P, , P, —P, ) . 2(P, —P„)(P,—P, )

(8.4)

The first term is the same as that obtained in the Bloch renormalization scheme [19], but now modified so that the
energy denominators never get small. The second term in (8.4) vanishes as P, ~ P . Diver.gences occur when P&

is much greater than P, and P, in which case the first term in (8.4) will give the dominant contribution to (8.1).
For the gluon mass correction, the initial and 6nal states have the same momenta, so that

g2
~(2) g JIB HB &erik

Icrij / Iik Ikj p — p —'

k i k

(8.5)

We denote the single gluon state as ii) = ~P, a, A), where P = (P+, P~), a, and A are its momentum, color index, and
helicity index. Using the diagrammatic rules for the canonical vertices [9], we have

KI,,= (P, b, A'iHI ~P, a, A)

1 1 2 ~,q qq, dk,+d kiz dk2+d k2& 8(k,+) t)'(k2 ) 16m. b (P —ki —k2)-

P" ~ k"
xeq", b,„., (k2 —ki') — (k2+ —ki+) + b,„,—(k2' + P") + + (k2+ + P+)

l

b'
+b (P*' + k", )

— ' (P+ + k,+)
2

2i 1 k"
k2+ —k,+ + i„.k", +P" — ' k,++P+

k'—(P" +k )+ ' (P++0,+)
1

2

b dk+, d'ki~dk2 d k2~b'(P —ki —k2)M2&i (P, ki, kz) (1 —f,l, ),2P+ 16+3
C

(8.6)

where the factor 2 is the symmetry factor, P, =&+., PI, ——ki + k2 —— „++' + &+
', f~, ) = f(&~,()

1 2

with f given by (7.7) and x;& given by (7.17)—(7.19), C~b b = f "f~ "=Nb ~, and M2&& denotes the two vertices
with the energy denominator.

To 6nd the mass correction, we set P~ ——0 and define

m2~(2)
~

b G b bah
I~i,-~I =o = P+ AA' (8 7)

where the mass shift is bmG ——bm&& + bmG
Integration over k2 and the cutoK scheme of Sec. VI lead to

g2N
bmG bye 1

16'~
dk+d kiddo, (ki)0, (P —ki)M2gg (P, ki, P —ki) (1 —f~,q), (8.8)
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where

k2 + 2 k2 + 2 2

k~ P+ —k~ k~ P+ —k+

(P+&' & P+
X4 klJ + l + + bye~ + 2klJ ep~klJ EA

( ki+ ) (P+ —k,+) (s.9)

and the cutoff function 8, (k) is defined via (6.23) as

8, (k):—8(k+ —e) 8 —k+ 8 2A + l 1 —
+

—m —kz +8 k+ — 8 ——m —kz, (8.10)
~ ) ) &

' ) &' )

m'I+
with e 2&,', A the bare cutoff, and m the smaller
of m~ and m~. We use sharp cutoffs here only for the
purpose of illustration. We stress that smooth cutoffs are
preferred so as to avoid nonanalyticities.

We write

P+
F2 ———mGlnA ——21n P+ (8.16)

F3 is the mixed ultraviolet- and infrared-divergent part:

g2N
bmgbpg = — Ipg,

4vr3
(s.ii)

,P+ P+, -P+ P+-
Fs —4A ln —2m& —ln ln A . (8.17)

po 2E' . E'

with F4 is the pure in&ared-divergent part:

x 2kiJ ' ep&k] J ep + —+ kigbpp&
(z2 (1 —z)2)

X
1 21 —f z'a (s.12)

Ipp~ —— dzd kg~8, zp+, kg~ 8, 1 —z P+, —kgb p+ p+
F4——2m~ ln

2 2PO
+

—m~ ln

2 &P+—2 m + m& + mG. ln
m~)

P+ 2 Po+—2m& 1 — —ln ln
p m~+ 2

(s.is)

with

ki ki~+m~(1 —z+z )
P+ ' k2 + m2 (1+z —z2) + o2'

(s.i3)

So we see that the external (total) momentum P+ enters
only through the cutoffs. The term independent of f;I,
in (8.12) gives rise to divergent contributions as the cutofF
A becomes large, as well as finite contributions, and the
second term involving f2,1, is a finite, o-dependent con-
tribution (f;I, cuts off the integration before it reaches
the bare cutofF A).

Evaluating I for the case P+ ) Po+, for example, the
divergent part of the mass shift is

Note that the mass shift is negative, as it must be in
second-order perturbation theory.

The coeKcients of the ultraviolet quadratic and log-
arithmic divergences are multiplied by functions of lon-
gitudinal momenta which are in accord with the power-
counting rules but which are not boost invariant. We
have to subtract them entirely, and the finite parts of
these counterterms are just arbitrary constants since
an arbitrary function of longitudinal momenta violates
longitudinal boost invariance. The divergences arising
&om small longitudinal momenta also violate longitudi-
nal boost invariance because of the cutoK scheme, and so
these divergences are also to be subtracted away, leaving
room for only an arbitrary constant.

The evaluation of the second term in (8.12) depends
explicitly on the choice of the function f. For qualitative
purposes, we may choose a step function, namely,

g
2

bm~g = —&
2 (Fi + F2 + Fs + F4).

Fi is the quadratic ultraviolet-divergent part:

(8.14) 1
f(z) = 0 ——z

)
(8.19)

1 Po
6P+

4P+ 4P+ (2P+
which results in the effective cutouts for the Jacobi mo-
menta:

2P+ —P+
x ln (8.15)

= (o. + 3m~)z(1 —z) —m~,
m2 m'&g(1—

(o' + 3m' ) o' + 3m' (s.20)

I'"2 is the logarithmic ultraviolet-divergent part: These yield a result bounded by 0. and finite as A ~ oo.
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Thus, with the cutoff theory, even if we set the bare
gluon mass to zero, the gluon mass correction bm& does
not vanish. After subtracting the infinite mass correc-
tion, there remains a finite contribution which depends
on the mass scale parameter 0. This dependence is al-
tered by spectators because x,.j changes when spectator
energies change.

pl P2 pl

P3

(a)

p4 P3

FIG. 8. Contribution to quark-antiquark scattering ampli-
tude from gluon exchange.

IX. INFRARED COUNTERTERMS IN
LOWEST-ORDER PERTURBATION THEORY

In Sec. IV we discussed the infrared counterterms in
the canonical Hamiltonian itself. Products of the interac-
tion Hamiltonian lead to light-&ont in&ared (small k+)
divergences in addition to the ultraviolet (large k~) di-
vergences. Note that we do not have the conventional in-
frared divergence (small k') since gluons are massive. As
we have pointed out there is a crucial difFerence between
these infrared divergences and ultraviolet divergences.

In constructing counterterms for the infrared diver-
gences in the products of the interaction Hamiltonian,
we find strong cutofF dependence already in tree level
amplitudes —for example, in the O(g ) quark-antiquark
scattering amplitude. Here, what one has in fact are
infrared singularities. When we diagonalize the Hamilto-
nian, these amplitudes are integrated with wave packet
functions, and nonintegrabte singularities in the ampli-
tudes give rise to energy divergences. Thus to find the
infrared counterterm it is not enough just to isolate the
infrared singular amplitudes; we have to integrate the
amplitude over the external leg with a wave packet func-

I

tion. For QED, in contrast, where the external legs cor-
respond to physical particles, all tree level singularities
have to cancel. No such cancellations will be assumed
here.

In this section we outline the construction of infrared
(small k+) counterterms up to order g . The infrared di-

vergences arise &om either an exchanged infrared gluon
or an exchanged in&ared fermion in the intermediate
state. The counterterms arising from infrared gluons are
of interest when looking for the origin of confinement,
and the counterterms arising from in&ared fermions are
of interest when looking for the origin of spontaneous
chiral symmetry breaking.

A. Counterterms from infrared gluons

Counterterm m8 in the quar k-antiquark eector

The interaction Hamiltonian Hqqg gives rise to an ef-

fective Hamiltonian in second order whose matrix ele-
ment for the qq states ~i) = ~pi, si, ni, p2, —s2, a2) and

~g) = ~p3 s3 (x3 p4, —s4, n4) (see Fig. 8) is given by

Hl'-, . = —g T, T-,-,M2~, p'2 f.,~(1 —f.,gf.,y)+O((Pq) )], (9 I)

where p„,s„,o'„are the momentum, helicity, and color index of the nth quark,

pi' —ps'
2 + +

—imp +
—

+ 0 — 0 + 0
pi —ps (pi ps ) ( p, ps

0
p2)

,, 0s ' P4s 0i P2i+, -" ' x-..
p4 p2 )

(9.2)

0A(p p ) +
1

p p 2 p p 9 p p

e~(ps —pi) I I 1
+ + +

— +
P3 Pg P2 P4 + 'V P3 P] + 9

(9.3)

aIld

~P+P; —P+P;
~~&j: ~f (~x~zj ~} with x~zj

The function 0, (k), which arises from the cutoffs on the intermediate gluon, is defined in Sec. VII:

rp+
e,'(k) =e(k+ —.) e~

2
, k+ r k+~, , r p+~

') E'
2g+

with ~ = 2»', A the bare cuto8', and m the smaller of mG and mp. Here we have also defined
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my+ p~
2 2

p p+ )

g+ (pii —ps')'
q

P] P3
(9.6)

P& denotes the intermediate state energy:

PI, =p3 +q +p2 p1 p3 and PI, =px q +p4 pz p3' (9.7)

The expression for T2 can be further simplified:

8A(p p ) + 8A(
+

Pl -P3 P3 q P4 P2
(9.8)

To identify the in&ared counterterms, we look for singular terms. We have, explicitly,

—Py +P2 ~~ —P3 +P4 (9.9)

The intermediate state energy is dominated by that of the infrared gluon: namely,

PI, q forpz &p3, P& —q forp3 Op] (9.10)

As the gluon longitudinal momentum &action reaches e, both 2:;I, and z ~g become greater than s, and as a conse-
quence 1 —f;I,f ~I, -+ 1. The leading singular term is

l m2
4g T, ,T, ,b»»b.„,~ 1 —, ,» + '+, [8, (pi —ps) +8, (ps pl)].

(pii —ps')'+mg) pi —ps ' (9.11)

To find the in&ared divergence we integrate over ps with a test function $(ps, psJ ), which we may assume is nonsero
only in the range where f;~ = 1. This evaluation is complicated by the cutoff function. Using the definition of 8, in
(9.5), we find a divergent piece

f'm' /k+'), , ) k'I = d k~P(p+ k)8 k+ 1 —
+

—m —k&p ) )k~+ (9.12)

where k = ps —pi, and a similar piece for p+i —ps+ ) e, which is the same as (9.12) except that P(p+k) ~ P(p —k). To
find the small-~ dependence in I, we write k+ = ez, switch the order of integration, and expand in e. The divergence
has the form

2m
d2k

k +
L(k2 +m2)(k2 +m2)q(P1 rP1J +" ) ~ (9.13)

Hence we need to include a counterterm for this linear divergence in H~.

(9.14)

Without our cutoffs and for zero gluon mass we would
find exactly the same counterterm but with the oppo-
site sign as the counterterm for the instantaneous four-
fermion interaction in the canonical Hamiltonian, and
hence no O(g ) counterterm would be necessary for the
linear in&ared divergence. But our cutoff scheme, which
is dependent on the choice of massive constituents and
thereby eliminates zero modes, does not allow complete
cancellation to occur.

There are also + type singularities which lead to log-
arithmic in&ared divergences. But these divergences are
canceled &om the two 8 functions in (9.8). Thus there
is no counterterm necessary to remove a logarithmic in-
frared divergence in qq scattering to second order [45].
However, as discussed in Sec. IVB for the canonical

Hamiltonian counterterms, the use of a symmetric cut-
off to ensure the cancellation of divergences &om small
positive and negative longitudinal momenta excludes any
possibility of finite contributions &om exact zero modes.
To counter this elimination of zero modes, we can include
a finite term analogous to (4.17). Here the transverse
structure in M2, for example, the product of the first and
last terms in (9.2), inay keep such terms from vanishing,
in contrast to terms corresponding to instantaneous zero-
mode gluon exchange. The finite counterterms also in-
volve a product of two fermion color charges as one needs
to start building true confining potentials. True confin-
ing potentials confine only nonzero color charge states
as opposed to the artificial potential which confines all
states.
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2. Counterterms in the quark-gluon sector

Now we consider the qg states. The effective Hamiltonian in second order (see Fig. 9) is given by

Hl ——ig f ' T,M2, ,- [E2 f;, (1 —f,I,f,g) + O((P„) )],

for the states ~i) = ~kq, Aq, a; pq, sz, az) and ~g) = ~k2, A2, c;p2, s2, n2), where

(9.15)

k" k&1

JH2'2=64" b"" k1+q" —
+ q +kl' +b"" k2 —q" —

+ k2 -q'
2 1

2q
Xg

+b"" —k1+ k2 "
fi

gamp

(pz

(k~+ + k,+) e'„'

t', «pi«i p2i;, ~

p2)
(9.16)

0, (pg —Ps) + 0, (ps —pg) 1 1 1
2=

k, —k2 2 k, -k, -q-'p,--p,--q- (9.i7)

and

mG+ k„~
A k+

m~2 + (kg~ —k2~)'
k+ k+

1 2

(9.is)

Again, to identify the infrared counterterms, we look for singular terms. As in the case of the quark —antiquark
sector, the intermediate state energy is dominated by the infrared gluon and the factor (1 —f,I,f ~~) is replaced by
1. The most singular term (leaving out the factor f,~) is

2

(9.19)

To 6.nd the divergence we must again integrate over k2
with a test function, which again yields a linearly diver-
gent term as above. Here also the cutoffs and nonzero
gluon mass spoil any complete cancellation of this diver-
gence with the counterterm for the two-quark —two-gluon
instantaneous interaction.

After the subtraction of the linear divergence, a lin-
early singular term (proportional to m&2) survives, but
as in the case of the qq scattering amplitude, there is
no divergence after integrating the amplitude with a test
function. There are also other 1/q+ terms in (9.18), but
the logarithmic divergences they produce are canceled
from the two 0, functions. However, as with the qq sec-
tor, even though the logarithmic divergence for small q+
is canceled by that for small —q+, we need to include a
counterterm to account for the possibility of finite efFects
from exchange of gluons with exactly q+ = 0.

B. Counterterms from infrared fermions

In this subsection, we consider the contributions to
the matrix elements of the efFective Hamiltonian in the
quark-gluon sector arising &om quark exchange. First,
we discuss the contribution from an intermediate one-
quark —two-gluon state, as is shown in Fig. 10(a). The
matrix element is given by

P2

pl P2 pl P2

ki k2
(~)

ki k2
(~)

FIG. 9. Contribution to quark-gluon scattering amplitude
from gluon exchange.

FIG. 10. Contribution to quark-gluon scattering amplitude
from quark exchange.
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HI, —
g (T T ), , JH2, ~ [X. g fa;, (1 —f;gf ~g) +O((Pq ) )], (9.20)

where

(I » & o~ p.
Ep 2 + + LmF + + Oi Oi

&i .P2i+ oi
P2

(I 11 t' o p, o~p,x 2 + +imF +
—

+ loi — oi + + i
&P, ge, ) (9.21)

r=eA + —I+ —„,+
1 1 1

(9.22)

with p3 = pl —~2 ) p3i —pli k2i ~
+ + +

In the limit p3 ~ 0, we have

H(2) 2TaTb f( J ~J)( J J) ~( 1 2)gA( + k+)

Pl —
2

(9.23)

which leads to a logarithmic divergence when we integrate the efFective Hamiltonian with wave packet functions which
are functions of external momenta.

Next we consider the contributions to the matrix elements of the effective Hamiltonian in the quark-gluon sector
arising from antiquark exchange, that is, &om an intermediate two-quark —one-antiquark state, as is shown in Fig.
10(b). The matrix element is given by

HI, —g (T T——), ,M2;~ [P2 fa;~ (1 —f;i,f ~1,)+O((Ps ) )], (9.24)

where

k)J . (1 11 ~ OJ p3J OJ 'p2J
+ +1m+ + + + +J — oJ + + + o

(p J ) ~ J p

k2J . ( 1 1 l ( O, .p, J OJ p3J
X 2 +

—xmF + + + 0'i — oi + + + &i») (9.25)

gA(k+ + 3 +2 — eh 2 Pl/2 (9.26)

with p3 = k2 —pl, p3i ——k2i —pli .+ + +

In the limit p3 m 0, we have

2TaT~~t(OJ- ee L)(O L eJ )
e ( 2 1 )gA(k+ p+ ~

2 Pl

(9.27)

which leads to a logarithmic divergence when we inte-
grate the efFective Hamiltonian with wave packet func-
tions which are functions of external momenta.

Note that if we keep both types of intermediate states,
the singularity acquires a principal value prescription
since the 8 functions sum to j., and thus no counter-
term is needed. This is because the singularity occurs
when the intermediate state energy is dominated by the
exchanged quark or antiquark, in which case it does not
matter if the other particles in the intermediate state
are quarks or gluons. However, it is clear that the fi-
nite part of these diagrams will be afFected difFerently,
for the function 1 —f;I,f ~g in (9.23) will now cut ofF

the two diagrams difFerently since the intermediate state
energies are difFerent when the exchanged quark and an-
tiquark have finite energy. Thus we expect that at higher
order there will be diagrams which contain quark or an-
tiquark exchange of finite energy and have divergences
associated with another process. Counterterms for these
diagrams will have a difFerent dependence for the inter-
mediate qgg and qqq states and so a logarithmic diver-
gence will not acquire a principal value prescription as
here in second order. The counterterms necessary to re-
move such higher-order divergences will provide a possi-
ble source for explicit-chiral-symmetry breaking terms in
the renormalized Hamiltonian.

Moreover, as with gluon exchange above, despite the
cancellation of near-zero k+ logarithmic divergences, we
must include a finite term which might restore any
physics lost by the elimination of exact zero modes. As
discussed in Sec. IVB, there are finite noncanonical
terms which have the structure of these logarithmic di-
vergences and which satisfy the requirements of power
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counting and boost invariance yet break chiral symmetry.
Since such terms necessarily contain the effects normally
associated with the vacuum, it is no surprise that they
provide a source for chiral symmetry breaking (see the
discussion of the sigma model in Appendix A).

Finally, a similar result applies for the matrix element
describing quark-antiquark annihilation into two gluons,
which involves the quark exchange shown in Fig. 11(a)
and a similar diagram with an intermediate antiquark.
We should here include a finite term so as to counter the
removal of zero-mode fermion exchange, and this may
include a piece which explicitly breaks chiral symmetry.
It follows that the chiral-symmetry-violating term in the
qqg coupling will have an arbitrary size due to renormal-
ization &om such a qqgg counterterm, as is depicted in
Fig. 11(b). This term then need not vanish in the limit
of only spontaneous chiral symmetry breaking.

C. Many-body infrared counterterms

While we provide no thorough discussion of higher-
order counterterms, we need to clarify one qualitatively
new feature that arises beyond second order. In Sec. IX A
we showed that the matrix elements for gluon exchange
include pieces that diverge like 1/(q+)2, where q+ is the
longitudinal momentum exchange. This leads to diver-
gences even at the tree level. These divergences require
counterterms, and we have argued that the finite part
of such counterterms may contain confining interactions
unless boost invariance precludes this.

One example should adequately illustrate what hap-
pens at higher orders. In Fig. 12(a) we show a fourth-
order tree diagram in which two gluons are exchanged
between three quarks. To evaluate the matrix elements
that arise in the effective Hamiltonian we must integrate
over small q+. Keeping only the most singular parts of
the matrix elements, we encounter longitudinal integrals
of the form

('b)

FIG. 12. Higher-order multifermion processes requiring
counterterms.

(9.28)

The entire product of matrix elements is relatively com-
plicated, but this integral is easily analyzed. There is
a ln (eMi2/M22) divergence, and a ln (eM22/Mi2) diver-
gence. There is actually a nested divergence in this di-

agram, which would be subtracted if one adds the ap-
propriate third-order diagram; however, even after this
subtraction one is left with ln (e) divergences.

Another simple example is shown in Fig. 12(b), in
which there is a gluon exchanged between two quarks
while one quark interacts through an instantaneous po-
tential with a spectator. Regardless of the form of the
instantaneous interaction, this diagram diverges logarith-
mically unless a symmetric cutoff on longitudinal mo-
menta is used. As argued above, the presence of this
potential logarithmic divergence indicates that the elim-
ination of zero modes may produce an interaction with
the operator structure in Fig. 11(b). This three-body
interaction may be long range in the transverse direc-
tion, and it may be as strong as the two-body confining
interactions. As we pointed out earlier, such long-range
many-body interactions are required to cancel unphysi-
cal van der Waals forces if there is a confining two-body
interaction [41].

kI
QQQQQQQ

QQQQQQQ
I

kI

I
I

Ib)

FIG. &&. Quark-antiquark annihilation and contribution to
qqg vertex renormalization.

X. LF+CD BOUND STATE COMPUTATIONS

Consider how bound states are handled in /ED [46].
There one includes in the unperturbed Hamiltonian an
instantaneous potential whose form is obtained from the
general two-fermion four-point function. The precise
choice of the potential to include in the unperturbed
part is a matter of some art, since one must weigh the
competing demands of making the unperturbed calcu-
lation as simple as possible while at the same time in-
cluding a large part of the relevant physics and ensuring
that perturbative corrections are small. Invariably, the
bound state calculation reduces to the usual nonrelativis-
tic Schrodinger equation in the appropriate limit, and the
corresponding nonrelativistic states are used in the per-
turbative expansion. The precise details of any particular
calculation will vary, and the most eKcient methods can
only be arrived at after some experience.

We want to take the same approach to bound states
here, but we know &om phenomenological constituent
quark models that the confining potentials we need for



49 NONPERTURBATIVE QCD: A WEAK-COUPLING TREATMENT. . . 6755

the bound state calculation are far different from the
Coulomb-like potentials that arise at low order in the
usual relativistic perturbation theory. We expect coun-
terterms for the light-&ont infrared divergences to be the
ultimate source of the needed potentials. For artificially
small coupling, however, the artificial potential is the
dominant confinement mechanism. The similarity renor-
malization scheme and massive constituents with cutoffs
allow us to treat this confining potential in a weak cou-
pling framework.

In this section, we outline the construction of the ef-

fective LFQCD Hamiltonian for low-energy hadrons and
discuss the increasing levels of complexity in the LFQCD
bound state computations in this formulation.

A. EfFective LFQCD Hamiltonian and bound states

In the similarity renormalization scheme, the effective
LFQCD Hamiltonian that will be used to compute the
hadronic bound states is

1 B gH'~ = "m~ ~ j H*, +).2';~HI&,
k

'
gcrij X

i P —Pq
+ ger jiA;

P* —P. )
(10.1)

) 4ij 4 Ncrj = ~N4 Nai & (10.2)

where the sum over j includes a sum over Fock space sec-

H causes transitions only between states staying "close
to the diagonal" due to the factor f;~, and the effects
of transitions to and &om intermediate states which are
"far off diagonal" have explicitly appeared in the effective
Hamiltonian H as a perturbative expansion.

Recall that H+ has the cutoff A which violates both
longitudinal and transverse boost invariance. First we
identify the counterterms that must be included in H+
so that the matrix elements of the effective Hamiltonian
H;~ have no divergent dependence on A. Then we send
A ~ oo so that cutoff dependence is removed from the
effective Hamiltonian H . As in standard perturbative
renormalization theory, A dependence will be removed
order by order in g, where g is the running coupling
constant at the similarity scale in Hamiltonian matrix el-
ements. This avoids having to solve the nonperturbative
bound state problem to identify and remove A depen-
dence.

There is a question whether H;~ satisfies boost in-
variance after A -+ oo. There can be finite terms in
H which violate boost invariance, yet cannot justifi-
ably be subtracted. Such terms might result, for ex-
ample, as a by-product of divergent terms of the form

Aln ~ f(P+), where P~ and P+ are external momenta.P~
The lnA divergence must be subtracted. But the finite
term lnP&2 f(P+) cannot be subtracted because no ar-
guments exist that would justify such a nonanalytic P~
dependence resulting &om the effects of states above the
cutoff. In this case violations of boost invariance can only
disappear at special values of g where the coeKcient of
the boost-violating terms vanish. Clearly one such spe-
cial value has to be g = g„aspart of the restoration of
covariance at g, .

In the following it is assumed that the effective Hamil-
tonian H has boost invariance simply as a result of tak-
ing the A ~ oo limit. H is generated as the first step
in solving the bare cutofF Hamiltonian H~. The second
step is to construct bound states &om H . We may write
the bound state equation as

I

tors and integrals over momenta. The light-&ont energy
of the Nth eigenstate is

~iv = (Me+ PNi)le ~ (10.3)

H o;, ——f;j(HO;, + Vo;j). (10.4)

and write the unperturbed bound state solutions as
These bound states will be pure qq, pure qqq,

(o)

or pure gg, as in the CQM.
The starting Hamiltonian is determined &om the

Fourier transforms of

where PN and PN~ are the total longitudinal and trans-
verse momenta of the eigenstate and MN is its mass.

We will solve this field theoretic bound state problem
in the standard fashion, using bound state perturbation
theory. This requires us to identify a part of H, H o,
which is treated nonperturbatively to produce bound
states. The essential simplification that makes further
calculation possible is that H o does not contain any in-
teractions that change particle number, so that the meth-
ods of few-body quantum mechanics can be used to solve
this initial nonperturbative problem. All field theoretic
corrections that arise &om particle creation and annihila-
tion will then be treated perturbatively, as in /ED. The
potentials that appear in H o must be chosen to make it
possible for bound state perturbation theory to converge,
and as stated above, this requires some art even in /ED.

The bare cutoff Hamiltonian is divided as H~ = Ho +
HI . For the determination of the effective Hamiltonian
H, the unperturbed part of the bare Hamiltonian Ho is
chosen to be that of free massive quarks and gluons with
the standard relativistic dispersion relation in light-front
kinematics. The interaction part HI then contains the
canonical interaction terms H;„t,renormalization coun-
terterms H&, and the artificial potential V~. The artifi-
cial potential is itself separated as V~ ——Vo + V&, with
Coulomb and linear parts, Vo ——V~ + VL„and countert-
erms V&~ which remove unphysical effects resulting from
the choice of a massive gluon. For the bound state cal-
culation, we want to choose the starting Hamiltonian to
contain as much of the physics in as simple a form as
possible. So we define
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1,-; ~ —02+m2 \

H, = dx d'x~ —(0*A'.)'+ m~2A'.2+('

1
Vp —— dx dz~dy dy~ — j+ xV~x, y j+ y +j+xVl, x, y j+y

47r

(1o.5)

(10.6)

where V~ and Vl, are given by Eqs. (2.6) and (2.7), j+
j+ + j+ is the color vector charge density, and j+ =
j+ + j+ is the color singlet charge density. This starting
Hamiltonian determines the spectrum to order g and
produces the zeroth-order bound states that are used to
analyze radiative corrections starting at order g .

The interaction part of the effective Hamiltonian can
now be analyzed perturbatively, and it includes effec-
tive potentials that contain the effects of interactions in-
volving far off-diagonal states as well as renormalization
counterterms, which are determined order by order. Con-
sider the effective Hamiltonian H generated to second
order in the renormalized coupling constant. The coun-
terterms H& up to this order have been discussed in the
Secs. IV B, VIII, and IX. They are the counterterms for
the canonical instantaneous interactions, which can be
combined as

g2
HB, = — d'*& d* z+ (*,«)

47re
(1o.7)

and the counterterms from one-gluon exchange given in
momentum space in (9.14) and (9.19), plus a similar term
in the gluon-gluon sector. There are also quark and gluon
mass counterterms, some of which we have given explic-
itly in Sec. VIII. The effect of these counterterms is to
completely cancel the leading radiative corrections from
instantaneous gluon exchange, all of which diverge or pro-
duce pathologies. In addition, as has been discussed in
Secs. IV and IX, we need to include terms which counter
the elimination of zero modes, such as (4.24):

H3 =g dx d zgdy d yg og Ag Oy' x, y

x (0 ~ A~)(. (10.8)

Such a counterterm can break chiral symmetry, for ex-
ample, if Og m+ (0~ B~). At this order, Og must
be determined phenomenologically; it remains to be seen
whether coupling coherence and/or the restoration of
Lorentz covariance will completely determine it at higher
orders and as one lets g -+ g, . As discussed in Sec.
IX, there may be many more such counterterms result-

I

ing Rom the elimination of zero modes. We have not
written them down explicitly, but this must be done to
compute order g shifts in the hadron spectrum.

What is the dependence of this effective Hamiltonian
H on the scale 0? Suppose we restrict the states to only
a qq pair. Then only number-conserving (potential-like)
terms in H contribute. Now if we let the scale o. ap-
proach a very large number, only the original interactions
in H~ survive since the factor (1 —f,~f ~y) +0. T-hus

the canonical four-fermion interaction together with all
counterterms survive, whereas the transversely smeared
four-fermion interaction diminishes in strength. In the
limit 0 ~ oo we are recovering Hg which is no surprise.
In this limit the effects of higher Fock sectors (for exam-
ple qqg) can be recovered only by including them explic-
itly, and so it clearly becomes a poor approximation to
include only the qq sector when 0. becomes too large.

By lowering the similarity scale o, we reduce the al-
lowed range of gluon momenta which can contribute, for
example, to the binding of a quark and antiquark in a
meson. These effects must appear elsewhere, and we

see that through the similarity transformation they are
added directly to the Hamiltonian via the second- and
higher-order terms in H~ in (10.1). Thus by lowering o,
we put the bare gluon exchange effects of H~ into a qq
potential in the effective Hamiltonian H perturbatively.
This clearly changes the character of the bound state cal-
culation. It changes from a field theoretic computation
with arbitrary numbers of constituents to a computation
dominated by an effective qq potential. If we choose the
similarity scale o to be just above the hadronic mass
scale, the major effects come from the qq sector. The
resulting nonrelativistic calculation will not see the scale
0. in first approximation, since only states close to the
diagonal, for which f U

= 1 in (10.4), will contribute.
Consider Coulombic bound states with a Hamiltonian

1of the form H = "——~. p — and the energy of the
bound state scales like g . Since r scales like —,, if we

add to the Hamiltonian a linear potential of the form o. r
and insist that the energy still scales like g we infer that

g
6

The bound state equation for the unperturbed effective
Hamiltonian H p can be written as

2 I2
+p + (+pp p'

g mF mp g s m~r m~r

)
4mpf+ + +

47r p+r p'+r' 4~ p+ p'+ P+ (10.9)

where P+ is the center of mass longitudinal momentum. Using p+ -P+ and p'+ zP+, the fully nonrelativistic
bound state energy is

3
t'

+P m~r
m~ 47rr

~
4vr )

(10.10)
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Now as expected, the uncertainty principle shows that E
is minimized when r is of order —,, and p is of order g
and hence 8 is of order g . Numerical computations can
easily give precise results.

B. Potential instability problem

As we have argued in Sec. IIE, we add an artificial
potential to our effective Hamiltonian to ensure that the
bound state structure is similar to that of the CQM. An
additional benefit of including an artificial potential is
that it allows the removal of a potential resulting &om
the choice of a massive gluon which might otherwise cause
an instability in the bound state calculations.

We have shown in the previous sections that the intro-
duction of a nonzero gluon mass leads to the incomplete
cancellation of the linear interaction in the longitudinal
direction between the canonical instantaneous interac-
tion and the interaction arising f'rom one-gluon exchange.
The resulting interaction between the color charge den-
sities is proportional to

(10.11)

In the nonrelativistic limit, the transverse momentum
difference in the denominator can be neglected in corn-
parison to m&, and this part of the effective Hamiltonian
reduces to a pure linear interaction in the longitudinal
direction. This linear interaction may cause an insta-
bility in the bound states when they are expanded to
include higher pock space sectors. Taking the expecta-
tion value of this term in a color singlet state consisting
of a quark and an antiquark, namely, ~s2) = b'td; ~0),
we obtain the linear potential contribution to the energy.
But the expectation value of the same interaction in a
color singlet state consisting of a quark, an antiquark,

and gluon, namely, ~ss) = T . b'td a t~0), is the same
as the previous case except that it is multiplied by the
factor —

2 C~+ CF = —
s for SU(3). This results in an lin-

ear potential which gives a negative contribution to the
energy. This negative contribution leads to a possible
instability for many-body bound states.

To remove the above instabilities in hadronic bound
states, we need to subtract this linear interaction, as dis-
cussed in Sec. II E. We add this subtraction to the artifi-
cial potential with the form

6
" z&dz ~y j+ (z z&)lz y Ij+ (y ~zi).

4 g6) (10.12)

Here we multiply by a coefficient (1 —gs/gs) rather than
(1 —g /g, ) to ensure that the order-gs linear artificial
potential in (10.7) is always dominant for weak coupling.
The introduction of an artificial linear potential in both
the longitudinal and transverse directions then stabilizes
the bound states for small running coupling constant g.
It is not known yet whether this instability recurs for g
near g, and if so how to counter it.

C. Sources of complexity in the +CD computations

A basic goal of this paper is to structure a sequence of
computations in LFQCD with growing levels of complex-
ity. The major sources of the complexity will be reviewed
here.

All computations envisioned here have two stages. The
first stage is a computation of an effective Hamiltonian
H . We have defined o. to be a mass cutoff parameter,
a mass above which states diminish in importance for
further computations. The goal of the first stage is to
compute H with o. being just above the hadronic mass
scale. In the simplest computation, H consists of a trun-
cated version of the canonical Hamiltonian (namely, Hl )
combined with further corrections [from the commutator
in (7.10)j computed only to order g2, as in (10.1). From
this, then, bound state energies are to be computed only
to order g . This is a straightforward computation with
the main concern to fix free parameters through a com-

parison with physical spectra after setting g4 equal to g4.
The fit at this stage is extremely crude.

At this point the results are analogous to those for
positronium with only a Coulomb interaction. There are
additional terms in H coming &om one-gluon exchange
that are order g2, but because of their dependence on r
they do not correct the energy until order g or higher.
They produce spin and orbital splittings, but before these
splittings can be fully computed one must determine cor-
rections to the kinetic energy of order g, corrections to
the Coulomb interaction of order g4, and one must allow
corrections to the artificial linear potential of order g in
H . Just as in /ED, operators must be classified both
on the basis of explicit powers of g multiplying them and
on their implicit dependence on g arising from the fact
that r scales like 1/g2 in the bound states. At each stage
one must consistently retain all terms in H that produce
corrections of the same order in g after both explicit and
implicit dependence on g is determined. This is standard
bound state perturbation theory, with a linear potential
added and forced to contribute at the same leading order
as a Coulomb interaction, and with the underlying field
theory producing additional interactions.

Actually there is an important subtlety here. One-
gluon exchange falls exponentially fast at large r because
of the gluon xnass. To obtain an order g spin splitting
the gluon mass in the exchange interaction xnust be of
order g or 0, not of order 1. We allow the artificial
potential to contain spin-dependent interactions at weak
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coupling that vanish as g ~ g„with a range governed by
a mass that is order g ~ At no point do we allow the intro-
duction of unphysically light constituents to obtain mass
splittings, because there is no mechanism to prevent co-
pious production of such light constituents in all hadrons
as g ~ g„and there is no evidence for the proliferation
of light hadrons such constituents would necessitate even
at weak coupling.

The calculation of all the terms in 8 required to com-
pute binding energies to order g is complicated because
of the large number of perturbative diagrams involved
and the complexity of the cutoffs. However, there is a
very interesting question that arises. The question is
whether longitudinal boost invariance will be irretriev-
ably violated by the fourth-order results. If the fourth-
order results include logarithmic divergences due to the
infrared cutoff, divergences which also have nontrivial de-
pendences on transverse momentum, then there will be a
boost invariance violation. The reason is that the loga-
rithm will involve a ratio of an external longitudinal rno-
mentum divided by the cutoff momentum. While the cut-
off dependence can legitimately be subtracted, the finite
part of the logarithm cannot, and so results in a violation
of longitudinal boost invariance. This violation would be
similar to the violation of scale invariance of canonical
equal-time QCD at zero mass. The scale invariance vio-
lation is never eliminated; it instead results in asymptotic
freedom. A violation of boost invariance would likewise
be irretrievable in weak coupling, and could only go away
at a special value of g. Clearly, this special value would
have to be g, .

In addition, if the fourth-order computations turn up
such logarithmic longitudinal divergences, then there
would have to be finite subtractions accompanying the
subtractions of the logarithmic cutoff-dependent diver-
gences. These finite subtractions would involve arbitrary
functions of transverse momentum —functions that could
conceivably be the source of transverse linear potentials.
Certainly, these finite subtractions would be direct re-
Hections of vacuum effects, which means linear potentials
would not be a surprise.

However, the most challenging problem to resolve is
the computation of the effective Hamiltonian H beyond
fourth order. The major concern is the computation of
higher-order corrections caused by removal of "wee par-
ton" states. By "wee parton" states we mean states of
high mass due to the presence of constituents in the in-
frared region and without large transverse momentum.
The simplest example is a state with two equal-mass
constituents but one having a far smaller longitudinal
momentum (smaller z in Feynman's language) than the
other. Their transverse momentum will be set to p~
and —p~, respectively. If one constituent has longitudi-
nal momentum p+, the other has momentum xp+, with

m +p+x small, then the states mass squared is about
where m is the constituent mass. The problem is that
when p~ is small, masses count, which means there can
be major corrections associated with actual values for
bound state masses. This is a problem once the binding
energies are themselves of order the constituent masses,
namely, when g is near its relativistic value g, .

This challenge will not be resolved easily. It is un-

likely that it can even be seriously addressed until after
the fourth-order computations are complete, and one can
start estimating higher-order terms and determine the
extent to which strong binding energies result in large
higher-order terms in H . This challenge is further en-
hanced by the problem of avoiding instabilities in 0
itself for g near g, .

XI. CONCLUSION

We have presented a framework for the computation of
bound states in QCD that is based on Hamiltonian meth-
ods. The essential ingredients of our formulation are the
use of light-&ont coordinates, nonzero quark and gluon
masses, severe cutoffs on constituent momenta, and the
similarity renormalization scheme. We have argued that
this formulation of the theory removes all barriers to a
treatment of hadrons in QCD which is analogous to that
of bound states in QED. In particular, we have shown

that in our formulation it is natural to choose a starting
Hamiltonian which contains many characteristics of the
constituent quark model, and therefore we expect that we

may fashion this unperturbed Hamiltonian to model the
basic physics well already at the outset. We take the view

that the general principles of the CQM are true and pro-
pose to proceed &om there. To achieve our perturbative
starting point we must introduce artificial stabilizing and
confining potentials to reproduce the necessary physics at
small values of the coupling g, and we must extrapolate
to the relativistic value of the renormalized coupling g, .
At g„the artificial potential must vanish, and the true
dynamics will appear. The essential point to realize is
that our formulation allows the possibility that this true
dynamics may be discovered perturbatively.

Thus the price we pay for our new formulation-
renormalization problems from severe light-front infrared
divergences and the breaking of both gauge and Lorentz
covariance —may eventually turn out to be relatively
small in comparison to what we gain: Both confine-
ment and chiral symmetry breaking may be studied with
bound state perturbation theory. Moreover, the eventual
restoration of Lorentz covariance, which requires the cal-
culation of physical observables so as to complete the
renormalization process, will be made easier by the ex-
pectation that bound states will be well approximated
by nonrelativistic, few-body wave functions. The most
daring aspect of this approach is the assignment of zero-
mode contributions to counterterms for infrared diver-
gences. There is no precedent for our analysis, and its
worth can only be proven by obtaining satisfactory and
relativistic results as g —+ g, .

The possibility of combining phenomenology and field
theory at weak coupling opens a wide range of interest-
ing computations. One feature essential for the feasibility
of the entire enterprise is our contention that a massive
gluon prevents the unlimited growth of the running cou-

pling constant in the in&ared domain. For this to happen
all pure light-front infrared divergences (due to k+ get-
ting small) need to be canceled in the coupling constant
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renormalization calculation. This needs to be demon-
strated. Then there is the computation of bound states
and hadronic observables. The use of an artificial poten-
tial and massive quarks and gluons makes this possible to
leading order in a perturbative expansion, with more and
more of the true physics being included as one moves to
higher orders. As discussed in the context of lattice gauge
theory by Lepage and Mackenzie [47], we must extrapo-
late to the relativistic value of the renormalized coupling
in order to make the perturbative expansion legitimate.
One can also readily conceive other instructive calcula-
tions which would not involve all the complications of
low-energy /CD, such as the application of the frame-
work developed here to the study of scalar field theory,
QED, and especially heavy quark systems.

The possibility of constructing low-energy bound
states in /CD through a combination of relativistic per-
turbation theory and many-body quantum mechanics de-
fines a start-up phase with a wide range of new and
tractable calculations. We have tried to emphasize those
computations which are most immediately relevant and
to define how these calculations can be carried out. The
final demonstration of the feasibility of our approach
awaits these computations.
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= 0 [
—p2 + A(0.2 + 7r )] = 0,

= n [
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Then the symmetry is said to be spontaneously broken.
The conserved current associated with the symmetry

of the Lagrangian is

J~ = ~a~n —no~~. (A6)

The associated charge is

1
Q = — dx d'z~[oB+n—nB+0.]..

2
(A7)

From the canonical commutation relations for o and n

fields, namely,

For p & 0, the minimum of the potential is at cr2+ vr

o.2 = ~&. There are an infinite number of degenerate
vacuua. We can pick any one of them to be the true
vacuum. For example, we can pick
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we have

Q, n(0) = —io(0),

Q, a(0) = in. (0). (Alo)

Thus we have

(o I [Q, n(0)] I o) = -i~„po. (All)

Starting from 8"J„=0, we have

d
dx+

From (All) it is also easy to verify Goldstone's theorem
and assert the existence of a massless pion.

In the theory we have considered, zero modes are
present, and as a result there is spontaneous symmetry
breaking, the vacuum is nontrivial, (0 I 0(0) I 0) g 0,
and a massless pion is predicted.

Next we discuss the 0 model with the zero modes re-
moved. To construct the effective Hamiltonian we cannot
use the symmetry (A3) as a guide but can rely on power
counting and locality. The Hamiltonian is

~(*) ~(~) I-+=.+= --e(* -~ )~'(*'-u') (A8)—y 4

(*), (v) I. =,.=-- (* -v )~'(*'-w'), (A9)z —y 4

0 M 0 = 0' cos(2 + 7l sin&)
m M ~'= —cr sin o; + m cos n. (A3)

The extremum of the potential V is determined by

This Lagrangian has a continuous symmetry correspond-
ing to the transformation

P = dx d x~ 2 8~ . 8~ +8~x. O~K +V-

(A13)

Since the symmetry is broken only in the cr sector, we
insist that V is even in the m field so that the symmetry
under m ~ —m remains. Thus, since no inverse powers of
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mass are allowed, we can write

V = —m~P y m—7r y Aig y Azx y As/ n. + AgP + Assr P. (A14)

Since there are no zero modes, a term of the form As/ vanishes upon integration in (A13) and so is not included.
The equations of motion are

—0+0 vr y O~z~= m'vr y 4Az7r' y 2Asp'sr+ 2A, 7rp,

—0+cj p + 0&$= m&p + 4Aip + 2A37l f + 3A4$ + A57T (A15)

Next we construct the covariant current operator
J". First we determine the canonical dimensions of
the components J+,J and J+. Since the charge Q
(= z

J'dz dzz~J+) is dimensionless, the canonical di-

mension of J+ is J+ —,. Since each term in
X (Z~)

8"J„[=z(0 J+ + 0+J )
—0 J ] should have the

same dimensions, the canonical dimensions of the other
components are

a1+ c1 a~ + cg1=
2

'
2

2 (A19)

Since the zero modes are dropped, we have the charge

1
Q = — dz d zg[azrtiO+sr y asill9 P].

2
(A20)

Further, from the structure of the equations of motion,
we also have

JJ X

XJ XJ
(A16) Insisting that Q generates the correct transformation

laws (A10), we arrive at

J+= aiO+ir+ ag(ct+7r)P y as(8+/)7r,

~1 9J + + ~2(~J 4') ir + l 3(~J +)4'~

J = ciB 7r + cq(B vr)P+ cs(B P)~. (A17)

Next we compute 0"J„andset the coefficients of terms
involving derivatives which cannot be replaced by the
equation of motion to be zero. Then we get

a~ ———c3, a3 — cQ bg
———b3. (A18)

The components of J" are to be constructed from the
operators vr, P, 0+, 8, and 8 and constants. The con-
stants are allowed to have dimensions of negative power
of z~ (as masses do) but no power of z . Since the op-
erator &+ does not appear in the canonical scalar field

theory, we do not allow the operator + to appear in the
canonical current operator. We also implement the sym-
metry that J" has to change sign under vr m —vr. Then
the allowed structure of components of J" is

a3 a2 (A21)

Without loss of generality we set az ——1, and so

J+= a, 8+or y &8+m. —7r8+rt

J = Ci8 7I + rtiB 7r —7I 0
1

JJ — (ai + cl)~J & + 4'~J ir 7r~J 4'
2

(A22)

(A23)

(A24)

Further, if J+ and J are to transform as components
of a covariant four-vector, we also have to set c1 ——a1.
Then

J" = QB"7r —vrB"P y aiO"m.

Since our effective Hamiltonian (even with explicit sym-

metry breaking) is supposed to give rise to the same

physics as that of spontaneous symmetry breaking, we

demand that the current is conserved. Using the equa-
tions of motion (A15),

8"J„=—(P+ ai)(m sr+ 4Agvr + 2Asg m+ 2As7rg) + 7r(m&rti+ 4AigP + 2Asir Q+ 3Agg + Assr ) = 0.

Setting the coefficients of the diferent combinations of field operators separately to zero, we have

(A26)

m a1 ——0, m —m& + 2A5a1 ——0, 4A& —2A3 ——0, 4%1 —2%3 ——0,

The solutions are

2A5 —3%4 + 2a1A3 ——0, —A5 + 4Apa1 ——0. (A27)

A1 AQ A3 ) A5 Aa1, A4 ——Aa1, m = m + 2%a& (A28)

and

a1 ——0 or m = 0. (A29)

If we take a1 ——0, then the potential is reduced to the

I

canonical forin (A2), and the current is also of the canon-
ical form. This corresponds to the full canonical theory
with a symmetry-preserving vacuum and a doublet in the
spectrum. If we choose m = 0, we have



49 NONPERTURBATIVE QCD: A WEAK-COUPLING TREATMENT. . . 6761

(p2 2)2 4 (y2 2)y

(A30)

Now the potential explicitly breaks the symmetry, and
the current is difFerent from the canonical one. The
charge Q does not commute with the Hamiltonian, and

d

d + (A31)

This corresponds to full canonical theory after a shift of
cr to remove its vacuum expectation value. Thus we see
that the power-counting rules allow us to reconstruct the
theory without reference to the zero modes.

Thus in the theory with zero modes dropped and the
zero pion mass, the Hamiltonian explicitly breaks the
symmetry, the vacuum is trivial, and there is no longer
the notion of spontaneous symmetry breaking. Current
conservation is preserved and vastly reduces the number
of free parameters present in the eHective Hamiltonian
constructed &om power counting and forces the pion to
remain massless.

Of course, we should emphasize that the a model we

have discussed is only at the tree level. For a complete
understanding, we need to consider radiative corrections
and the subsequent renormalization effects.

APPENDIX B:MORE ABOUT CHIRAL
SYMMETRY ON THE LIGHT FRONT

= . + ni (i8&+gA&)+p mF Q+. (Bl)

The normal chiral transformation is de6ned by

vP: /+ 6' with 6$ = i8p—sg (B2)

However, in light-&ont coordinates, only Q+ is a dynam-
ical variable, so that the chiral transformation acts only
on Q+

0+:0+ + 60+ 64+ = i8'Ysl+— (B3)

and the transformation on g is given by the equation
of constraint,

In this appendix, we show that the normal chiral trans-
formation on the quark 6eld is inconsistent with the light-
front constraint equation, where the latter is a result of
the light-front equations of motion. We also show that
chirality is the same as helicity on the light front. For
further discussion, see Ref. [34].

Recall that in light-front coordinates, the quark 6eld
can be separated into the plus and minus components:

Q = g+ + g, where g~ = zp p+g, and only g+ is a
dynamical variable. The minus component g is deter-
mined by the light-front constraint

1
6$ = . ng (iBg+gAg)+p mF 6$+zB+

1
Q

1
i8ps . n~ (i8—~ + gA~)g+ —i8mFp ps . (B4)

Thus, the chiral transformation on g on the light front is

6$= 6g++ 6$
1 p 1

i 8psg+ —i8ps . n—g . (i Bg + gAg) g+ —i 8mF p ps . (B5)

If we naively use the form 6$ = i8psg = i8ps(g—+. + g ), —

1 Q
1

6$ = i8psg+ —i8—ps . ng (i8g + gAg) g+ —i8mppsp
iO+ i + (B6)

This is obviously inconsistent with (B5), which is a con-
sequence of the light-front equation of constraint.

For the massive quark theory,

O„jf= 2imFgpsg,

qiF = J ~* ~'*~i '(*) (B8)

Explicit calculation using the 6eld expansions and normal
ordering leads to

where jf = @p"ps@is the axial vector current. The axial
vector charge on the light-front is then

d~+d'a
QrF =

s ) A b~(k)b), (k) + di(k)dg(k) .

(B9)

Thus QzsF measures the helicity.
In the canonical theory the chiral current is conserved

for zero fermion mass. In the theory with the renor-
malized efFective Hamiltonian we expect to observe the
consequences of spontaneous symmetry breaking, signals
of which are a conserved axial vector current and a zero
mass pion. However, we do not expect to generate a
massless pion unless the coupling g exactly matches its
renormalized value g, . Hence the issues of a massless pion
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and a conserved axial vector current (which we expect to
be noncanonical in form) can be addressed meaningfully
only after we reach the relativistic limit of the theory.

APPENDIX C: NONRELATIVISTIC LIMIT OF
MASSLESS GLUON EXCHANGE

In this appendix we discuss the nonrelativistic limit
of one-gluon exchange; however, we insist on maintain-
ing the separate dimensional assignments for longitudinal
and transverse coordinates when taking this limit, and we

I

0"'.= 0"'. 0'".
1 + (C1)

where

arrive at results that differ substantially from other anal-
yses which allow longitudinal and transverse dimensions
to mix. Our entire program is based on separate power-
counting analyses for these dimensions, and if they mix
our power counting fails.

In second-order perturbation theory, the effective in-

teraction Hamiltonian in the qq sector due to massless
gluon exchange is

(2) 2 a a 1 1
~u1 4g T~3~ T~ ~2»33 828 + + 22 (pi -»3)'

g ~3~$ ~4~2 2tg + + w m2 + 2

pl

m p+p3~ (pl~ —p3~)'
+ + +

(C2)

Iaido 2 g cIgc1y c14c1& 8yB3 8/84 + +)22(pi -p3

T TCX3a& a4a2 2ij + + ~ 2 +
p4

mP+P2J (Pl J P3J )
p' Pl P3

(C3)

and

2
P1

—P3'

-P3

xg 2t

P1

rl—zmF ———cT

»

p', —zmF +
—

+ 0

Pii &Z Ps&
0 + + + CT

)
', &~ P4~

0 + + +
0' g 84.

P4 P2 j
(C4)

Let us denote the total momenta by (P+, P~). For simplicity, we consider the case P~ ——0, that is, p2~
P1J p4 J — P3~ . To get the form of the effective Hamiltonian in the nonrelativistic limit, as an example, we

consider the matrix element for si ——s2 —s3 —s4:g. Then

(P1L P3L)
2 P1J(P2 Pi) 2 PBJ (P3 P4) 2 ( ) I R

where kL k1 ik2 and ka k1 + i k . This gives, after simplification,

1 r4mF (P+)2 I R) 1 1 r4mF (P+) I Rl 1
T T + + +2 + + + +P1P3 E +

2 + + + + + + +Plp3
2

I pl 3 pi p2p3p4 ) 1 kp2 4 1 2p3p4 ) 2

where

(P+)2 Pli P3J
EE

~
++ ++

2 2 2

Ei (plJ p3J ) + + +(pi p3) (p] p3)2 F + + 2 + + P1J P3+

»i»3 (», », )
(C7)

and

2 /'

F + + 2 + + ' P3J P1JE2 = (plJ p3J ) + + +(pi ps) (pi p3)
P2 »'4 ( P4 P2 )

(C8)

In the nonrelativistic limit, the term involving p1p3 is negligible compared to the mass term; in both E1 and E2
2 2

the third term is negligible compared to the first two terms; furthermore, ™+~+ ~ (™+~)and ™+~+ ~ ( + ) . Thus
Pl P3 Pl P2
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in the nonrelativistic limit, the effective interaction in the qq sector due to massless one-gluon exchange reduces to

1 (mF 1 mg 2 1

The Coulomb interaction has the form —,in momentum space. If we further make the approximation for (C9) that

pz = m~ + pz and pz = m~ + pz, we arrive at the familiar Coulomb interaction in momentum space

2 1
&cij = —4g (C10)

with (pq —ps)2 = (pqz —ps~)2 + (pz —ps)2. The Coulomb potential in position space is then obtained by the
Fourier transformation

1 1 3;. . .1
d pe(P —P)

(pg —ps)' 4n r ' (C11)

2
with r = ~x —x'~ the separation between the two fermions. Obviously, H, = —jdszd z'j (x) 4w j (x') has lost boost
invariance but has recovered rotational invariance.

We wish to represent the interaction 'R2' in a form where longitudinal boost invariance is kept. To do so, we use
an interpolating Fourier transformation

('m. i '
1

(»i —»i)'+ (,+ )'(pi —ps )'
+ 2

& p+ ~, '((g(w', w.+)) (~w -) (w,. w--) -w. ) (-mp& 1
g d pie4x (mp ) L~ J g'+("

*' (w.+ w+)w (ski —wai) w—~)—
P]. y2 + ~ 2 y

—2
(C12)

where y~ ——zq~ —z2~ = bz~ is the transverse sepa-
ration of the two constituents, but the longitudinal sep-
aration y—:hz is more complicated since the above
expression is not a complete Fourier transformation to
light-&ont coordinate space. But for qualitative pur-
poses we may define a light-front "radial" coordinate

+ x, and we see &om C 12
that Hz' has the form of the light-&ont Coulomb po-
tential (2.6) which we have introduced in the artificial
potential in Sec. IIE. This light-front radial coordinate
is invariant under longitudinal boosts. However, it is not
invariant under transverse boosts. For more physical re-
marks, see Sec. IIE.

Relativistically, the spinor matrix elements are differ-
ent in different helicity sectors. In the nonrelativistic
limit this helicity dependence vanishes, and we get the
same interaction in all helicity sectors.

APPENDIX D: PHASE SPACE CELL DIVISION:
EQUAL- TIME CASE

Hp —— d k (ug a„ag, (Dl)

with id/ = gp y k
Next consider interactions. For illustrative purposes,

we will choose a gP-type interaction,

Let us try to motivate why a phase space cell analysis
is useful for the study of Hamiltonians. Recall free field
theory in equal-time coordinates. A &ee field is diago-
nalized in terms of momentum eigenstates. Thus it is
customary to express free fields in terms of creation and
annihilation operators for particles in plane wave states.
The free Hamiltonian is

Hj~g: d x d ky d k2 d k3at kq a k2 a k3 e (D2)

Before trying to solve the Hamiltonian quantitatively,
it is important to make qualitative estimates of various
terms in the Hamiltonian. For this purpose, the creation
and annihilation operators ap and a& are quite inappro-

I

priate. For example, the operator a&~ creates a particle in
a plane wave state and hence creates a state of infinite
norm. Thus when we try to estimate the "order of mag-
nitude" of a& we get infinity. What can be done to avoid



6764 KENNETH G. WILSON et al.

ag = ) u;(k)a, ,

at„=) u,*(k)at . (D4)

The coefBcients of this expansion are themselves creation
and annihilation operators for particles in normalizable
"wave packet" states. Now

(D5)

this catastrophe?
It has been suggested [38] (also see [39]) some time ago

that the creation and annihilation operators which de-
pend on a continuous variable k be expanded in terms of
a discrete, complete, orthonormal set of functions u, (k).
Specifically,

Ho is now the Hamiltonian of an infinite number of
oscillators coupled to each other (no longer diagonal).
Now making Hp diagonal means making self-interactions
of the individual oscillators more important than interac-
tions between different oscillators. Consider the matrix
C. If the u~'s are orthogonal, C would be diagonal except
for the factor ~I, . Even with the factor ~A. , one should
be able to keep the off-diagonal elements small. If the
u, 's are "properly chosen" (that is, as localized in mo-
mentum space as possible), then for distinct momentum
shells iq and i 2, the functions ui, and ui, do not overlap
very much. If u;, and ui, are in the same momentum
shell but different spatial cells, this fact will be reHected
in a rapid phase variation of u,*. ui, as a function of k,
which again makes the integral small. Thus with a prop-
erly chosen set of u, 's, for order of magnitude estimates
we need to consider only diagonal elements Ci„-,of C.

The interaction Hamiltonian in terms of wave packet
states is

where

Ci„,= d k erg u,
" (k)u, , (k) . (D6)

with

rr.j~t g +i +i2 i 3 Di i2i3 )

Il 1223

D;, ,„,= d z d kq d k2 d ksu,
'

(kq)u, , (kz)u„(ks)e ' "'+"'

d zv,*, (z)v, , (z)v, , (z). (D8)

If the u's are as localized as possible in momentum space,
then the v's are as spread out as possible in coordinate
space and hence the off-diagonal elements of D are as big
as the diagonal elements of D. Thus if we want to approx-
imate D by its diagonal elements for order of magnitude
estimates, we need v's to be as localized in coordinate
space as possible. Thus we clearly have to satisfy almost
mutually exclusive requirements, which means that we
have to settle for a compromise.

A qualitative implementation of the compromise is as
follows. We choose u, (k) such that if Ak, is the momen-
tum width of the function u;(k) and Az, is the width
of the Fourier transform v;(z) of u, (k), then the prod-
uct Ak;Ax; is near the lower limit set by the uncertainty
principle, that is,

(D9)

(3.0)

(0.2)

(0,1)

(2,0)

{'1,0)

(0,0)

For each momentum cell separately, divide the position
space linearly into cells of the appropriate size. The po-
sition space coordinate is chosen to be It ( 2 'z & L+ 1.

Let us give some examples. Consider i = 0. Then
1 ( k & 2, and the length of the momentum cell is
Ik ——1. The position cell division is I, ( x ( l+ 1.
Thus the position space coordinates are, for example,

The set of functions (u, } is chosen to be complete and
orthonormal. What does this mean? Think of ui as occu-
pying a cell of unit volume in phase space. Completeness
means that the total volume occupied by the u,. 's must fill
all space. Orthogonality means that the regions occupied
by different u, 's do not overlap.

How are we going to divide the phase space into cells?
Consider a one-dimensional example for visualization.
Divide the momentum space into an infinite number of
cells, the ith cell being

.25 .5

(-1.2)

k
(-1,0)

(-2,0)

(-3,0)

(-4,0)

2 (k(2 + (Dlo)
FIG. 13. Example of phase space cell division in one di-

mension.
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(Dll)

—2 & x & 0)

0&K &2,
2&K &4,

(D12)

and so on, so that each position space cell has length
L = 1. Thus the "volume" of each phase space cell is
LgL = 1.

Consider i = 1. Then —,
' & k & 1, and the length of the

momentum cell is LI, ——2. The position cell division is

l & zx & l + 1. Thus the position space coordinates are,
for example,

and so on, so that each position space cell has length
L = 2. Thus the "volume" of each phase space cell is

again LI L = 1.
One can label each phase space cell by (l, i). An illus-

tration of the division of phase space into cells is given
in Fig. 13.

Why have we chosen a logarithmic scale for momen-
tum cells? One would like to have each momentum cell
correspond to a distinct energy scale so that order of mag-
nitude estimates become meaningful. A linear choice ob-
viously fails for this purpose, while a logarithmic choice
is the most obvious one that fulfills it. Note that there is
nothing sacred about the factor of 2; for a specific exam-
ple where the factor of 2 appears as the optimum choice,
see Ref. [39].
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