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Algebraic and geometric aspects of generalized quantum dynamics
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We brie6y discuss some algebraic and geometric aspects of the generalized Poisson bracket and
noncommutative phase space for generalized quantum dynamics, which are analogous to properties
of the classical Poisson bracket and ordinary symplectic structure.
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Recently, one of us (S.L.A.) proposed a generalization
of Heisenberg picture quantum mechanics, termed gen-
emlized quantum dynamics, which gives a Hamiltonian
dynamics for general noncommutative degrees of &ee-
dom [1,2]. The formalism permits the direct derivation of
equations of inotion for field operators, without first pro-
ceeding through the intermediate step of "quantizing" a
classical theory. In a complex Hilbert space, generalized
quantum dynamics gives results compatible with stan-
dard canonical quantization. It is also applicable to the
construction of quantum field theories in quaternionic
Hilbert spaces, where canonical methods fail, basically
because the matrix element8 of operators are themselves
elements of the noncommutative quaternion algebra. It
is hoped that the methods of generalized quantum dy-
namics will facilitate answering the question of whether
quantum Geld theories in quaternionic Hilbert space are
relevant to the uni6cation of the standard model forces
with gravitation at energies above the grand uni6ed the-
ory (GUT) scale.

As applied to quantum theory, generalized quantum
dynamics is formulated by defining a Hilbert space V~
(based either on complex number or quaternionic scalars)
which is the direct sum of a bosonic space V~ and a
fermionic space V~. Next, following Witten [3], one de-
fines an operator (—1)+ with eigenvalue +1 for states in
VH and —1 for states in VH . Finally, one needs a trace
operation Tr 0 for a general operator 0, de6ned by

Tr 0 = ReTr (—1) 8 = Re) (n~( —1) C)~n). (1)

It is easy to show that the trace Tr vanishes for operators
0 which anticommute with (—1)+, and so Tr 0 acts
nontrivially only on the part of 0 which commutes with

(—1) .
Let (q (t)} be a finite set of time-dependent quan-

tum variables, which act as operators on the underlying
Hilbert space, with each individual q„of either bosonic or
fermionic type, de6ned respectively as coxnmuting or an-
ticommuting with (—1) . No other a priori assumptions
about commutativity of the q„are made. The Lagrangian
L[(q„j,(q„j] is then defined as the trace of a polyno-
mial function of (q„(t)j and its time derivative (q„(t)j,
or as a suitable limit of such functions. The action S

is defined as the time integral of L, and generalizations
of the Euler-Lagrange equations follow from the require-
ment that bS = 0 for arbitrary (same-type) variations of
the operators. Derivatives of L with respect to q„and q„
are de6ned by writing the variation of L, for infinitesimal
variations in the fq, },in the form

bL= T ) I
bq+(bL bL

) (2)

where cyclic permutations of operators inside Tr have
been used to order bq„and bq„ to the right. The momen-
tum p„conjugate to q„ is de6ned by

and the Hamiltonian H is given by

H= Tr ) p,q„—L. (4)

In complete analogy with the Lagrangian derivatives
defined in Eq. (2), for a general trace functional A, con-
structed as the trace Tr of a (bosonic) polynomial func-
tion of operator arguments, one can de6ne unique deriva-
tive bA/bq„with respect to the operator q„(and of the
same bosonic or fermionic type as q ) by the relation

bA = Tr bq„.
A

bq„

Again, cyclic invariance of the trace has been used to re-
order all bq„ factors to the right in the respective terms
in which they occur. Using this derivative, one can
then define generalized Poisson brackets, as follows. Let
(q„},(p, }be the set of operator phase space variables in-
troduced above, which for each r are either both bosonic
or both fermionic, in the sense that they commute or
anticommute with (—1) . Again, no further a priori as-
sumptions are made about their commutativity. If we
now let A[(q„j, (p„j] and B[(q„j, (p„j] be two trace
functionals of their arguments, then the generalized Pois-
son bracket (A, Bj is defined by
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with e„= +1(—1) according to whether q„and p„
are bosonic (fermionic). Using the generalized bracket,
the time development of a general trace functional
A[(q„}, (p, }, t] takes the form [1,2]

dA

dt

OA
+(A, H},

with H the total trace Hamiltonian. It was conjectured
in Refs. [1] and [2] that the generalized bracket obeys
the Jacobi identity,

0 = {A, (B,C}}+(C, (A, B}}+(B, (C, A}}, (8)

(1)(2) +TV +(2)O(1)

with the + (—) sign holding when Olil and 0~2' are both
bosonic (fermionic) .

Evidently the generalized bracket of Eq. (6) can be
viewed as an extension of the classical Poisson bracket,
which permits the introduction of noncommuting phase
space variables (q„}, {p„}.Our aim in this note is to
document a number of further algebraic and geometric
properties of noncommutative phase space, which closely
relate to the existence of the generalized Poisson bracket
that satisfies the Jacobi identity of Eq. (8), but which
do not enter into the proof given in Ref. [4].

The first of these involves the algebraic structure of the
trace functionals, under the product operation used to
construct the antisymmetric bracket of Eq. (6). Letting
A and B be any two trace functionals defined on phase
space, a product A o B that remains a trace functional
can be defined by

and this conjecture has recently been proved by Adler,
Bhanot, and Weckel [4]. The key observation is that de-

spite the absence of both commutativity and the product
rule, and the lack of a definition for the double derivative,
pairwise cancellations still occur in the right-hand side of
Eq. (8) because of cyclic permutability inside the trace
Tr. The proof of Eq. (8) is, in fact, independent of the
Hilbert space arena on which the operators (q„}act. All
that is used are the definition of derivative of Eq. (5), and
the assumptions that operator multiplication is associa-
tive, and that there exists a graded trace Tr permitting
cyclic permutation of noncommuting operator variables,
according to the formula

vanishes. It is flexible if the associator obeys

(A, B,C) = —(C, B,A),

and it is Lie admissible if the associator obeys

0 = (A, B,C) —(A, C, B) + (B,C, A)
—(B,A, C) + (C, A, B) —(C, B,A). (14)

Evidently, any associative algebra is Lie admissible, but
the converse is of course not true. Now by substituting
Eq. (12) into Eq. (14) and rearranging using Eq. (11),
we find that Eq. (14) is equivalent to

0 = (A, (8,C}}+ (C, (A, B}}+ (B,(C, A}}, (15)

( bA b
X~ =—Tr ) ( "bq„bp„

bA

bp„bq. )
(16)

and defined operationally by its action on any trace func-
tional B,

which is true by virtue of the Jacobi identity for the gen-
eralized Poisson bracket. To see that Eq. (12) does not
vanish and that Eq. (13) does not hold, it suffices to
consider the special case in which the variables (q, }and

(p„}are commuting (bosonic) c numbers. This is just the
classical case in which (A, B}is proportional to the stan-
dard Poisson bracket, and a simple calculation of multiple
derivatives (see, e.g. , Ref. [5], Sec. 7.3) shows that both
the vanishing of Eq. (12) and the identity of Eq. (13)
are false for the product defined by Eq. (10). Hence the
algebra A, is neither associative nor fiexible, and there-
fore is only of secondary interest. But as in the case of
its classical analog, A, is Lie admissible by virtue of the
Jacobi identity, and hence the resulting Lie structure de-
fined by Eq. (11) is of primary importance. Thus, the
trace functionals form a Lie algebra under the general-
ized Poisson bracket of Eq. (11) and, in particular, the
total trace conserved symmetry generators that commute
with the total trace Hamiltonian form a Lie subalgebra
[4]

The second aspect to be discussed relates to the tan-
gent vector fields associated with the generalized dynam-
ics. Let X~ be the tangent vector field associated with a
trace functional A, defined as a formal derivative opera-
tor by

bA bBAoB—:Tr ) "bq„bp„ (10) X~B = BX~+ (X~B),

with (X~B) given by
in terms of which the generalized Poisson bracket takes
the form of a commutator:

(A, B}= AoB —BoA.

The algebra A of trace functionals under the product o

can now be characterized in terms of the standard clas-
sification [5] of nonassociative algebras. It is associative
if the associator (A, B, C) defined by

(XAB)= Tr

=Tr )

6A bB bA bBI
( "bq. »-

(bA bB bB bA l
"Ebq. ».

(18)

(A, B,C) = (A o B) o C —A o (B o C)
In terms of this operator, the time development of a gen-
eral trace functional B[(q„},(p„}],under the dynamics
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governed by A as total trace Hamiltonian, can be rewrit-
ten as [cf. Eq. (7)]

dB = —(XAB). (19)

Thus the tangent vector field XA can be viewed as (xni-
nus) the directional derivative along the time evolution
orbit (called the phase flow in Ref. [6]) of the point
((q„),(p„)) in phase space, which is determined by the
Haxniltonian equations of motion [1]

dq„bA
dt "bp„'

dp„bA
dt bq„' (20)

with A acting as the total trace Hamiltonian. Following
Ref. [6], we call a tangent vector field of the form of Eq.
(16) a Hamiltonian vector field, the same name as for its
classical counterpart.

We note that with respect to the product defined by
Eq. (10), the directional derivative XA does not obey
the Leibniz product rule:

(XA(B o C)) P (XAB) o C + B o (XAC). (21)

(It is easy to verify that the same is true in the classical
case. ) However, it does obey the Leibniz product rule
for the generalized Poisson bracket or the commutator
defined by Eq. (11),

(XA(B,Cj) = ((XAB),C) + (B) (XAC)), (22)

([XA) Xg]c) = (XA(Xxxc)) —(Xxx(XAC))

= (A, (B,C)) + (B,(C, A)).

Using Eq. (14) with A replaced by (A, B) and B re-
placed by C, we also get

because, in view of Eq. (14), this equation is equivalent
to the Jacobi identity of Eq. (8).

What is the algebraic structure of the Hamiltonian vec-
tor fields? Let us compute the action of the commutator
of two tangent vector fields X~ and X~ on a third trace
functional C:

ized Poisson bracket, which is the generalized quantum
dynamics analogue of a standard result [6] in classical
mechanics.

Finally, we address the geometric structure underly-
ing generalized quantum dynamics. As is well known,
there is a geometry which underlies classical Hamiltonian
dynamics, namely the symplectic geometry of ordinary
phase space. Can we generalize symplectic geometry to
noncommutative phase space? If a generalized symplec-
tic structure exists, is it preserved by phase space Bows
(or Hamiltonian time evolutions) as in classical mechan-
ics [6]? In the following we present a discussion of these
questions with afhrmative answers, which is readable to
physicists who are not familiar with difFerential forxns [7].

Ordinary symplectic geometry is defined by a stan-
dard (constant) antisymmetric metric in the tangent or
cotangent spaces of a phase space. (By way of contrast,
Riemannian geometry, which is perhaps more faxniliar to
physicists, is defined by a symmetric metric in the tan-
gent or cotangent spaces of a manifold. ) To avoid differ-
ential forms, let us consider the cotangent space, which
is known to be spanned by covariant vectors whose com-
ponents form the gradient (or difFerential) of a function
on phase space. The standard (antisymmetric) symplec-
tic metric, or the inner product, between two covariant
vectors that are the gradients of two classical functions
A(q„,p„) and B(q„,p„) on phase space, is provided by
the classical Poisson brackets (A, B). In a noncommu-
tative phase space, the analogues of functions are trace
functionals, and the analogues of the differentials of func-
tions are the differentials of trace functionals, i.e. , Eq. (5)
adapted to phase space:

(27)

With the generalized Poisson brackets of Eq. (6) avail-
able, we can use it to define a generalized symplectic
structure 0 on the noncommutative phase space, through
defining the inner product between two cotangent vectors
bA and bB as follows:

O(bA, bB) = (A, B)

(X(A ix) C) = ((A, B),C),

and subtracting Eq. (24) from Eq. (23) gives finally

(([XA, Xxx] —X(A B))C)
= (A, &B,Cyy+(B, (C, Ay)+ {C,(A, B}y
= 0.

(24) (bA bB bB bA)
" gbq„bp„bq„bp„)

To see that such a symplectic structure is preserved
by any Hamiltonian phase flow of Eq. {20), we observe
that the time derivative of the inner product along the
phase-Bow orbit is

Hence validity of the Jacobi identity for the general-
ized Poisson bracket implies that the Hamiltonian vector
fields XA defined by Eqs. (16)—{18)obey the commuta-
tor algebra

O(bB, bC) = —„(B,C) = ((B, Cj, A),
d d

(29)

while that of the difFerential bB along the same Bow is

[XA, Xxx] = XIA sl, (26)
—bB —= bB
d

dt

and, therefore, form a Lie algebra that is isomorphic to
the Lie algebra of trace functionals under the general-

where the dot abbreviates the time derivative. Therefore,
we have
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B(bB, bC) + O(bB, bC) = (B, C) + (B, C)

=((» &) C)+(» (C &)) (»)
Therefore the Jacobi identity of Eq. (8) implies

—O(bB, bC) = O(bB, bC) + B(hB, bC);
dt

that is, the symplectic structure is invariant under Hamil-
tonian phase Bow. This statement can be viewed as a
(dual) form of the generalized quantum dynamics ana-
logue of the Liouville theorem.

Thus, generalized quantum dynamics, albeit with non-
commuting operator phase space variables, has an under-

lying generalized symplectic geometry which is preserved
by the time evolution generated by any total trace Hamil-
tonian. Basically this is due to the existence of a (graded)
trace Tr that permits cyclic permutation of noncommut-
ing operator variables, which implies the validity of the
Jacobi identity for the generalized Poisson bracket. As
in classical mechanics, we expect that the basic concepts
and theorems of generalized quantum dynamics will be
invariant under the group of symplectic transformations,

i.e. , under transformations which preserve the general-
ized symplectic structure.

To conclude, we have seen that in many algebraic and
geometric aspects, the generalized quantum dynamics
proposed in Refs. [1] and [2] is analogous to classical
mechanics. It is really surprising that with the help of
a cyclically permutable (graded) trace alone, so many
features of classical mechanics can be generalized to a
noncommutative phase space. (We remind readers once
more that in Ref. [1] and in our present discussion, no
phase space variable commutation relations such as com-
mutativity, anticommutativity, or q commutators are as-
sumed. ) Further developments in generalized quantum
dynamics, paralleling to some extent aspects of existing
quantization schemes, are expected.
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