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Noise and fluctuations in semiclassical gravity
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We continue our earlier investigation of the back reaction problem in semiclassical gravity with
the Schwinger-Keldysh or closed-time-path (CTP) functional formalism using the language of the
decoherent history formulation of quantum mechanics. Making use of its intimate relation with
the Feynman-Vernon inBuence functional method, we examine the statistical mechanical meaning
and show the interrelation of the many quantum processes involved in the back reaction problem,
such as particle creation, decoherence, and dissipation. We show how noise and fluctuation arise
naturally from the CTP formalism. We derive an expression for the CTP efFective action in terms
of the Bogoliubov coeScients and show how noise is related to the Buctuations in the number of
particles created. In so doing we have extended the old framework of semiclassical gravity, based
on the mean field theory of Einstein equation with a source given by the expectation value of the
energy-momentum tensor, to that based on a Langevin-type equation, where the dynamics of the
Buctuations of spacetime is driven by the quantum Huctuations of the matter field. This general-
ized framework is useful for the investigation of quantum processes in the early Universe involving
Huctuations, vacuum instability, and phase transition phenomena as well as the nonequilibrium
thermodynamics of black holes. It is also essential to an understanding of the transition from any
quantum theory of gravity to classical general relativity.

PACS number(s): 04.62.+v, 03.65.Sq, 05.40.+j, 98.80.Cq

I. INTRODUCTION AND SUMMARY

The central theme of this paper is to show how the
back reaction problem in semiclassical gravity [1,2] can be
viewed in the light of a quantum open system 3) and how

the concepts and techniques of nonequilibrium statistical
mechanics can be fruitfully applied to this theory for the
description of quantum statistical processes in the early
Universe [4]. This idea has been used recently to expound
the dissipative nature of effective quantum field theories
[5,6], some basic issues of quantum cosmology [7—11] and
quantum mechanics [12,13].

The primary aim of this paper is to elevate the theory
of semiclassical gravity from the old level based on the
semiclassical equation with a source given by the vacuum
expection value of the energy-momentum tensor of quan-
tum matter fields associated with particle creation [14]
whose back reaction leads to dissipation [15] in the dy-
namics of spacetime, to a new level based on an Einstein-
Langevin equation with a stochastic source given by the
fluctuations in the rnatter field, where the eR'ects of noise
and fluctuations are also incorporated in the processes of
decoherence and dissipation.

The main topics of investigation reported in this paper
are noise and fluctuations in quantum fields associated
with particle creation in cosmological spacetimes; and
dissipation in the dynamics of spacetime due to the back
reaction of these quantum processes.

The specific findings of this paper are: (i) explicitly
showing the relation of particle creation with decoher-

ence through the noise kernel in the inHuence functional
and the Bogoliubov coefBcients in the theory of quantum
fields in curved spacetime. (ii) delineating the character
of noise from the coupling of the quantum field to the
background spacetime, and (iii) deriving the noise terms
(in addition to the average of the energy-momentum ten-
sor) in the semiclassical Einstein equation as a stochastic
source and relating the Huctuations of energy density to
the Huctuations in the number of particles created.

The principal method used here is that of the
Schwinger-Keldysh or closed-time-path (CTP) functional
formalism [16]. This is the method we used before (with
a Bianchi type-I universe as model) [17] in deriving a real
and causal equation of motion for the cosmological back
reaction problem. There we identified a nonlocal kernel
in the dissipative term and showed that the integrated
dissipative power in the dynamics of sparetime is equal
to the energy density of the total number of particles
created. This clearly established the dissipative nature
of quantum processes such as particle creation [18]. We
now describe the progression of ideas and the evolution
nf the background leading to the present work, which
addresses the other part of this problem (which actually
existed in our original results, but was not the focus of
attention in our earlier investigation), i.e. , noise and fiuc-
tuations.

Two earlier papers written by one of us outlined the
usefulness of adopting the quantum open system point
of view for understanding the dissipative nature of quan-
tum fields and semiclassical gravity [5] and some basic
issues of quantum cosmology [7]. Paper [5] noticed the
missing role played by noise in the equation of motion for
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the effective system, and advocated that a I.angevin-type
equation should be used in place of the conventional semi-
classical Einstein equation. It was also predicted there
that for quantum fields under general conditions a col-
ored noise source should appear in the driving term. The
other two conjectures put forth in that paper, i.e., the ex-
istence of a fluctuation-dissipation relation for nonequi-
librium quantum systems which can be used to under-
stand back reaction problems in semiclassical gravity, and
the existence of dissipative behavior in effective field the-
ories, will be taken up in later investigations [19,20,6].

Paper [7] pointed out the interrelation of quantum and
statistical processes such as decoherence [21—27], corre-
lation [28], particle creation (as amplification of vacuum
Huctuations [14]), noise, Huctuation [29—38], dissipation
[8,15,17,18,39—41], and their role in the evolution of the
effective system (which can be the classical limit of quan-
tum mechanics [24] or the semiclassical spacetime dy-
namics from quantum cosmology [11,9]). The pairwise
relation of these processes have been explored since then
by many authors in various contexts. For example, that
noise governs decoherence was seen in all the analysis
of environment-induced decoherence [21]. This, together
with the fluctuation-dissipation theorem which relates
noise to dissipation, implies that there is a limit to the
degree of decoherence and the accuracy of defining the
classical trajectory [24]. There is also a balance between
decoherence and the build-up of correlation between the
canonical variables of a quantum system in reaching the
classical limit [9]. The relation of particle creation and
decoherence is explored in [42] as is also implicit in [9].
The relation of noise and fluctuations in particle number
is studied in [43] for the quantum statistics of cosmolog-
ical particle creation.

The main features of the quantum open system
paradigm are well illustrated by the quantum Brown-
ian model. Using the Feynman-Vernon [44] formalism,
and extending the work of Caldeira and Leggett [45] and
Grabert et al. [46] to a general environment, Hu, Paz,
and Zhang [30,31] looked into the nature of colored noises
&om the environment and the nonlocal dissipation they
engender on the dynamics of the system. In this formal-
ism the effects of noise and dissipation can be extracted
from the noise and dissipation kernels as the real and
imaginary parts of the influence functional, their interre-
lation manifesting simply as the fluctuation-dissipation
theorem [47] obtained as a categorical functional rela-
tion. If one views the quantum field as the environment
and spacetime as the system in the quantum open system
paradigm, then the statistical mechanical meaning of the
back reaction problem in semiclassical cosmology can be
understood more clearly [5). In particular, one can iden-
tify noise with the coarse-grained quantum fields, derive
the semiclassical Einstein equation as a Langevin equa-
tion, and understand the back reaction process as the
manifestation of a fluctuation-dissipation relation [19].

One gratifying by-product in this earlier process of
search and discovery is that the influence functional
method [44] used in the context of nonequilibrium sta-
tistical mechanics is largely equivalent to the Schwinger-
Keldysh, or the closed-time-path (CTP) method [16] de-

veloped in quantum field theory. This for us is particu-
larly useful, because not only does one recover from the
influcence functional (IF) the dissipation kernel in the
equation of motion of the CTP, but one can now clearly
identify the meaning of the noise kernel already existent
in the CTP effective action and find the corresponding
stochastic source in t'he semiclassical equation of motion.
We will indeed borrow the physical insight provided by
the IF formalism to analyze the results obtained by the
CTP method.

The character and function of noise in some common
quantum field processes have been studied before in a
different context. For example, [30] treated colored noise
from a non-ohmic environment [31] dealt with colored
noise from nonlinear coupling, [34] discussed particle cre-
ation as the result of parametrically amplified quantum
noise. The quantum origin of noise and fluctuations basic
to the gravitational-instability theory of structure forma-
tion is discussed in [32]. The relation of stochastic and
thermal field is explained in [48] while that between quan-
tum noise and thermal radiance in accelerated observers
and spacetimes with horizons for the Unruh [51] and
Hawking [52,53] effects is discussed in [49,50,54,33,34].
We will discuss the back reaction problem in semiclassi-
cal gravity in terms of the fluctuation-dissipation relation
in later publications [19,20]. Dissipation in quantum cos-
mology arising &om the neglected inhomogeneous modes
in a minisuperspace approximation leading to an effec-
tive Wheeler-DeWitt equation was discussed in [40,55].
One could extract the noise corresponding to the coarsed-
grained modes of spacetime excitations and define a grav-
itational entropy, as discussed in [4]. One could also de-
duce a fluctuation-dissipation relation in quantum cos-
mology, exemplified by the back reaction problem in a
Bianchi type-I universe [19]. Sharing the same goal as
this paper but taking a different approach is the work of
[56], in which the colored noise associated with quantum
fields is identified by means of a cumulant expansion on
the influence functional and an Einstein-Langevin equa-
tion for the back reaction problem was derived in semi-
classical cosmology. A recent paper of Kuo and Ford [57]
also addresses fluctuations in semiclassical gravity. They
work with the energy-momentum tensor in the canoni-
cal formalism. Their approach and results should have
points of contact with ours (see Sec. V below).

The following is a brief description of the contents of
this paper. In order to demonstrate the stochasticity of
semiclassical evolution induced by quantum fluctuations,
we shall analyze a cosmological model in which a &ee, real
scalar field is coupled to the scale factor of a Friedmann-
Robertson-Walker (FRW) universe. One can think of this
as the semiclassical limit of the corresponding model in
quantum cosmology, this transition having been studied
by many authors (the latest complete work is that of [9],
in which are listed some of the earlier references). Using
the conceptual f'ramework of the consistent or decoher-
ent histories approach to quantum cosmology [22,23], we
consider histories where the matter field is fully coarse
grained. From this we obtain a closed, exact expression
for the decoherence functional between two such histo-
ries, that is, between two different specifications of the
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FRW conformal factor, as a function of time, this being
the only remaining degree of freedom. (This result was
obtained also in [9,56].) This expression will allow us
to show that decoherence is directly related to the dif-
ferential in particle creation between one and the other
history.

From this we shall then discuss the dynamics of Quc-
tuations in the scale factor around its expectation value,
as seen by an observer who does not have access to the
full information of the scalar field except for its overall
e8'ect on the dynamics of the system. We shall show
that this dynamics is aptly described by a Langevin-type
equation, where the usual semiclassical corrections to the
matter energy-momentum tensor are supplemented by
stochastic terms. Moreover, we shall deduce from the
formalism itself the noise autocorrelation function. We
stress that this is the correct way of treating Huctuations
of quantum fields as noise [58). Quantum Huctuations
in the in6aton field viewed as seeds for galaxy formation
is a very attractive program [59,60]. But the existing
practice is flawed in at least two respects [32]: (1) the
correct deduction of the origin and nature of noise from
quantum Huctuations; and (2) the correct treatment of
quantum to classical transition in the long-wavelength
perturbation modes via decoherence considerations. We
show how the quantum bath variables after averaging ef-
fectively contribute a stochastic source with a correlation
function determined by the nature of the bath and the
coupling. In the most general cases one expects colored
and non-Gaussian noises to appear. The habitual way of
simply reinterpreting the quantum scalar field as a Huc-

tuating classical Gaussian source with its mean square
value set equal to the corresponding quantum average
value is incorrect except at the coincidence limit.

As can be seen from the summary above, the moral
of our story is that the nature of semiclassical dynamics
can only be appreciated in full by combining concepts
and techniques from quantum and statistical field theory.
For this reason, we shall begin in Sec. II with a brief
summary of the closed time path effective action [16] and
the influence functional [44] formalisms. We shall show
how the decoherence functional formulation provides a
natural framework for the application of these concepts
to our problem. In Sec. III we apply these formalisms to
the cosmological model described above, arriving at an
exact expression for the decoherence functional in terms
of the Bogoliubov coefKicients. This expression makes
obvious the connection between decoherence and particle
creation.

In Sec. IV, we analyze the semiclassical dynamics ex-
perienced by an observer confined to one of the decoher-
ing histories. For definiteness, we shall focus on cosmic
evolutions which are close to a solution of the usual (de-
terministic) semiclassical Einstein equations. We shall
show how the structure of the decoherence functional im-

plies the presence of noise in this dynamics, and deter-
mine its statistical properties. In this light we issue a
warning that the usual procedure of treating the spon-
taneous fI.uctuations in the field as a classical Gaussian
stochastic variable [60] has only limited validity. In Sec.
IV C we analyze the nonlocal nature of noise and dissipa-
tion by examining a simple set of histories which depart
only slightly from the Minkowski space and discuss how
the colored nature of noise depends on the coupling of
the field to spacetime. In Sec. V, we explain the physical
origin of noise as Quctuations in particle creation number.
We show that the Quctuations in the energy-momentum
tensor calculated in the CTP formalism can also be ob-
tained from the fluctuations in the number of particles
via simple quantum field theory arguments. In Sec. VI
we summarize our findings and discuss the implications
of our results. A few technical details for the derivation
of the main results in the text are put in the Appendix.

II. METHODS IN QUANTUM AND
STATISTICAL FIELD THEORIES

As described in the Introduction, two methods have
been used efFectively for the description of the back re-
action problem: the closed time path e8'ective action
(CTP, or Schwinger-Keldysh) formalism [16] for obtain-
ing a causal and real equation of motion; and the in-
Huence functional (IF, or Feynman-Vernon [44]) method
for treating a quantum open system, in identifying the
noise in the environment and the dissipation in the eKec-
tive equation of motion for the system. We give here a
brief description of these formalisms and their intercon-
nection. We also sketch the decoherent history formula-
tion of quantum mechanics as we will use this conceptual
framework to apply the IF and CTP formalisms to the
analysis of semiclassical gravity theory.

A. The in8uence functional approach to
nonequilibrium Beld theory

The IF approach [44] is designed to deal with a sit-
uation in which the system S described, say, by the x
fields is interacting with an environment E, described by
the q fields (in another common statistical mechanical
nomenclature these are also called the relevant and ir-
relevant parts, respectively). The full quantum system
is described by a density matrix p(z, q;x', q', t) If we.
are only interested in the state of the system as influ-
enced by the overall effect, but not the precise state,
of the environment, then the reduced density matrix
p„(x, z', t) = f dq p(x, q; x', q, t) would provide the rele-
vant information. {The subscript r stands for reduced. )
It is propagated in time from t; by the propagator P„:

p„(z, x', t) = dx.- dx', g„(x,x', t
i x;, z,', t, ) p„(x, , *',, t, ). (2.1)

Assuming that the action of the coupled system decomposes as S = S,[z] + S, [q] + S;„t[x,q], and that the initial
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density matrix factorizes (i.e. , takes the tensor product form), p(z, q; z', q', &,) = p, (z, z', &t) pe(gy g y ti) y
the propagato~

for the reduced density matrix is given by

I
Xf Xf

w ( ~ ti I
g q D D I i(S, [z]—S,[x']+S»[~,~',g])~&(+) + ) ] +x) +j) z)

Ixi

where SIF (called bA in [30] ) is the influence action related to the influence functional & defined by

~[z z&] —eiS Ft[ e, e', tj

qf qf
z (S.[q]+Si~t [~~q]—S.[q'] —Si~t [~',q'])

&
Iq;

(2.2)

SpF is typically complex; its real part R, containing the dissipation kernel D, contributes to the renormalization of S„
and yields the dissipative terms in the effective equations of motion. The imaginary part Z', containing the noise kernel

N, provides the information about the fluctuations induced on the system through its coupling to the environment.
Since the connection between these kernels and their effect on the physical processes of dissipation and fluctuation
has been discussed at length elsewhere (cf. Ref. [30]), we shall limit ourselves here only to a schematic summary. ~

The main features of the influence action follow from the elementary properties Sip(z, z') = —SyF(z', z)' and

SiF(z, z) = 0, which can be deduced Rom its definition Eq. (2.2), and derived in the final analysis from the unitarity
of the underlying quantum theory of the closed system. If we decompose SpF in its real and imaginary parts,
S&F = R+iZ, then 'R(x, z') = —R(z', z), Z'(z, z') = X(z', x), and R(z, z) = Z(z, z) = 0. Keeping only quadratic
terms, we may write

(2.3)

where D and N stand for the real dissipation and noise kernels, respectively (D = 2rl, N:—2v, in the notations of
[30]). It is convenient to express D as D(t, t') = —cjt p(t, t'), and rewrite

Sip(z, z') = dt dt, '
~

—(z —z')(t)p(&, t')(z'+ z')(&') + —(*—z')(&)N(&, &')(z —z')(&')
~

(2.4)

The physical meaning of the p kernel may be elucidated by deriving the mean Geld equation of motion for the mean
value of the system variable x. It is

(2 5)

The term containing p represents the back reaction of the environment on the system. It causes the dissipation of
energy from the system by an amount (integrated over the whole history of the system)

AE= dtdt'pt, t'itzt'. (2.6)

Thus we see that the even part of the kernel p is associated with dissipation, while the odd part can be assimilated
to a nondissipative environment-induced change in the system dynamics. In quantum Geld-theoretic applications, the
odd part of p will contain formally inGnite terms which can be absorbed in the classical action for the system via
standard renormalization procedures [16]. For simplicity, we shall assume that only the even part of p is left after
renormalization has been carried out.

In general, the p and N kernels are nonlocal; however, their main features are manifest already under the local
approximation p noh(t —t'), N Noh(t —t') The influen. ce action then takes the form

This simplified schematic discussion is really just for the illustration of main ideas, not for precision and completeness. The
reader is referred to [30—34] for details on the discussion of the process of decoherence in quantum to classical transition, the
origin and nature of quantum noise, the Huctuation-dissipation relation and the explicit derivations of the master, Fokker-

Planck, and Langevin equations for the models of a Brownian particle in a general environment and interacting quantum fields

in cosmological spacetimes.
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SIF(z, z ) = dt
~

(z z )(t)'Yo(z + z )(t) + (z z )(t)N0(z z )(t)(2 2 )
(2.7)

Assuming an action functional of the simple form S,[z] f(2z —V(z) },it is straightforward to derive the master
equation for the reduced density matrix [44,45]:

.Bp„( 1 2 l f 1 2 l po f B B l .No
~

--B.'+ v(*)
~

— --B.', + v(z')
~

—i—(*—*')
i

——,
~

—i (*—*')' p„.
Bt i 2 * ) i 2 *

) 2 iBZ Bz') 2
(2.8)

The object "closest" (see [28]) to a classical distribu-
tion function is the Wigner function [61]

fw(xpl = f, dp ~ 'p"p x+ —,x ——~,
u u~

2) (2.9)

where X:—(1/2)(z + z'), y—:z —z'. The master equa-
tion (2.8) implies (to lowest order in a Kramers-Moyal
expansion) the Fokker-Planck equation [62)

where T (T) stands for time (antitime) ordering. Observe
that the generating functional W is totally defined once
the in state ~Oin) is chosen and that W = 0 whenever
J = J'. Now introduce the path integral representation

z [J,J'] =.' ["j
e '(s[/] — ' [Q'j+ Q — Q ) (2 18)

(B B,B& f' B No B'l
I B

+ pBX
—V

B I
fw = yoB p+

2 B, I fw
[,Bt BX Bp) ( Bp 2 Bp2)

(2.1O)

bR'
bJ'

bW

b J'

The expectation values can be obtained as

(2.14)

(where V' = dV/dz). From this equation one can see
clearly the stochasticity in the semiclassical dynamics.
However, it is better to defer further discussion to Sec.
IIC below, until we have introduced the notion of the
decoherence functional. Suffice it to observe here that the
Fokker-Planck equation admits the equilibrium solution I'cTp[@,Q ] = W[J, J ]

—JQ + J g', (2.15)

The physically, relevant situation under consideration
corresponds to setting J = J' = 0.

The CTP e8ective action is just the Legendre trans-
form of W

f 'q —(»o/ivo) [(&'/2)+&(*)j (2.11)

&om which a fluctuation-dissipation theorem No

2po(p ),q can be derived. If the environment acts as a
heat bath, then (p ),q kBT, and this reduces to the
Einstein-Kubo formula for the dispersion coefficient.

br„, br„,
hg

'
b@'

(2.16)

where now the sources are thought of as functionals of
the background fields g, Q'. In particular, the equations
of motion are the inverses of Eqs. (2.14):

B. The closed-time-path functional formalism in
quantum Beld theory

In the CTP approach, our goal is not to follow the
dynamics of the full density matrix, or even the system
part, but only the expectation values of the fields as they
unfold in time. This evolution is governed by a real and
causal equation of motion, which is obtained &om the
CTP effective action by a variational principle.

Let g be the fields in the theory, and @ their expecta-
tion values for any given initial states. Consider pairs of
histories (g, g') defined on all spacetime, with the prop-
erty that g(T ) = g'(T ) for a given very large time T
(in practice, we shall implicitly take the limit T ~ oo).
Assume for simplicity (more general choices are also pos-
sible [63]) that the fields were originally in their vacuum
state [Oin). Then we can introduce external sources J, J',
and construct the CTP generating functional

z(J JI] i w [J,J']

The physical situations correspond to solutions of the
homogeneous equations at Q = g'. These equations are
real and causal. Moreover, rcTp[g, g ] = —rcTp[Q Q],
and I cTp[vj, g] = O. As the generating functional itself,
the CTP effective action is totally defined once the initial
quantum state is given.

To apply this formalism to the situation above, we

should substitute the Q field by the pair (z, q). When
the physical situation requires treating the x and q fields

asymmetrically, as is the case when, say, only the system
Geld x is relevant, we do not couple the q Geld to an ex-
ternal source. (In a perturbative evaluation of the CTP
generating functional, this means discarding all graphs
with q fields on some external leg. ) Comparing the path
integral expression for the generating functional with the
IF approach described earlier, we find

iR'[J,J']

Dx Dx I i(S [m] —S [m']+J~—J'~'+SIF [~)~ +~])D D

= (Oin~T(e '~ +)T(e*~ ~)[Oin), (2.12) (2.17)
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Conversely, we may describe the infiuence action as the
CTP eHective action for the quantum q fields interacting
with external c-number z fields specialized to the expec-
tation values of its arguments.

In the semiclassical approximation, one can neglect
Feynman graphs containing closed z field loops, corre-
sponding to quantum effects of the x fields. Then the
path integral and the Legendre transformation may be
computed explicitly, yielding

I cTp[z z ] S [z] S [z ] + SIF[z z +~]~ (2.18)

This equation shows the connection between the CTP ef-

fective action and the influence functional. From this we

may derive the semiclassical equations of motion for the
expectation values of the z field. We see that the noise
kernel does not contribute to these equations, because,

it being even under the exchange of z and z', its varia-

tion vanishes at the coincidence point. However, we shall
show below, as is also clear from the master equation
point of view [30], that the noise kernel determines the
dynamics governing the deviations &om the expectation
value.

As a simple example of the foregoing, let us consider
a model where the system variable z is coupled to an
array of environment coordinates (q„},the action being
S[z, q„] = S,[z] + P„(S,[q„] + f dt =[q„]z}(models of
this kind were considered by Schwinger [16] in his analy-
sis of quantum Brownian motion, and by many authors
afterward).

The CTP efFective action takes the form I'cTp[z, z'] =
S,[z] —S,[z'] + I'[z, z'], I' being related to SiF through
Eq. (2.18). Keeping only quadratic terms in the CTP
effective action, we write

Ii'[a, «] i f dt dt' (G++(t,t')z(t)a(t')+G+ (t,t')z(t)a'(t')+G +(t,t')z'(t)a(t')+G (t,t')a'(t)«'(t')I (2.19)

On the other hand, under the semiclassical approximation for the system variable, we find

e"~*"I = oin i f d—t:[q„]a')-T( i f dt [q„]z) 0i"n
~ h 4 h

(2.20)

Taking the variational derivatives of these equations with
respect to z and z' at z = z' = 0, we find

G (t, t') = ) t'(OinlT(:"[q„(t)]:-[q„(t')])lOin). (2.24)

G++(t, t') = ) i(0inlT(:-[q„(t)]:-[q„(t')])l0in), (2.21)

G(t t) ) t(0inl[=[q (t)) =[q (t))]l0in) (2.25)

G+ (t, t') = ) (—i)(0inl(:-[q„(t')]:-[q„(t)])l0in), (2.22)

G +(t, t') = ) (—i)(0inl(:-[q„(t)]:-[q„(t')])l0in), (2.23)

Gi(t, t') = ) (Oinl(=[q„(t)], :-[q„(t')l}10in), (2.26)

where, as usual, square (curly) brackets denote (anti)
commutators, we find

(2.27)

(8 being the step function) which assumes the same pat-
tern discussed above in the &amework of the in8uence
action approach [cf. Eq. (2.3), after identifying D = 2G
and N = Gi].

C. The consistent histories formulation of quantum
mechanics

Let us now relate these concepts and techniques in
statistical field theory to the more recent studies of the
quantum to classical transition problem via the consis-
tent histories formulation of quantum mechanics [22—24].

In the consistent or decoherent histories approach, the
complete description of a coupled x, q system is given in
terms of fine-grained histories z(t), q(t). These histories
are quantum in nature; i.e., it is possible in principle
to observe interference effects between different generic
histories. A classical description is acceptable only at
the level of coarse-grained histories, and to the extent
that interference effects between these histories become
unobservable. Let us adopt the simple coarse-graining
procedure of leaving the q field unspecified. Then each
coarse-grained history is labeled by a possible evolution of
the 2; field, and the interference effects between histories
are measured by the decoherence functional (DF)
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Dq Dq' i(S [q]+S; t[x,q] —S.[q]—+' t[& q])+ (
. ' t ) (2.2S)

which is the fundamental object of the theory. (For a
more formal definition see [22,23].) The coarse-grained
histories z(t) can be described classically if and only if the
decoherence functional is approximately diagonal, that
is, 'D[z, z'] 0 whenever z g z'. The conditions leading
to this in quantum mechanics is the focus of many cur-
rent studies, to which we refer the readers for the details.
For quantum cosmology the issue is complicated by the
problem of time, and there even the definition of the de-
coherence functional can be ambiguous [11].In the prob-
lem of transition &om quantum cosmology to semiclassi-
cal gravity, a WKB time is usually assumed. In a work
thematically related to this Paz and Sinha [9] showed
that an inQuence functional appears naturally from a re-
duced density matrix by tracing out the matter fields.
They discussed the decoherence between WKB branches
of the wave function and tried to relate it to the notion
of decoherence between spacetime histories. We assume
in this work that this essential step can be taken in some
satisfactory way and start our discussion at the semi-
classical gravity level with the form of the decoherence
functional2

~[ I) i(s, [x]—s, [x']+sgF[x,x', co])

ircTp[x, x j (2.29)

Notice that aleady at this formal level decoherence can
occur only when the noise kernel is nonzero, which signals
the presence of spontaneous Huctuations in the system.

We now arrive at the crucial point of our analysis,
namely, the proper description of the dynamics of a sin-

gle decohered history (that is, one particular decohered
history chosen at random from the heap of all possible
consistent ones). For an observer confined (by necessity

or by choice) to the level of coarse-grained descriptions,
dynamical evolution must be described in terms of mu-

tually exclusive histories, all interference eKects having
been suppressed below the accuracy of his observation
devices. For example, if he chooses to describe the evo-
lution of the system in terms of its Wigner function f~
(introduced in Sec. II A), he will now interpret it as an
actual ensemble average, describing the joint evolution of
the bundle of coarse grained histories. Correspondingly,
he will regard Eq. (2.10) as a classical Fokker-Planck
equation. Now the classical random process described by
Eq. (2.10) is not deterministic; rather, it describes the
evolution of an ensemble of particles whose individual
orbits obey the Langevin-type equations

z=p, p= —V' —pp+(, (2.30)

where ( represents a noise term with autocorrela-
tion (((t)((t')) = N(t, t') (The. ordinarily assummed
Gaussian and white nature of the noise follows only from
a quadratic and local noise kernel, which describes rather
special cases in cosmological situations, see [32,33]).
Thus, the observer confined to a coarse grained history
will conclude that semiclassical evolution is stochastic.
Note that the statistical properties of this random evolu-

tion are totally determined by the decoherence functional
(or equivalently, the closed time path effective action, or
the infiuence functional); no ad hoc assumptions on the
behavior of quantum Buctuations are necessary.

As noticed by Feynman and collaborators ( [44]), there
is a shortcut to Eqs. (2.30): One can rewrite the part in

the in8uence action containing the noise kernel as

In coarse graining away the environment variable q as in the
simple Calderia-Leggett-type models [21], there is no decoher-
ence in the decoherent history sense [22,23] unless one makes
a further coarse graining of z(t), such as specifying the ranges
of values of x at different times. This is necessary to ensure
the consistency or decoherence condition which requires the
validity of the probability sum rules for a set of histories. For
the condition for a set of histories to decohere is that the non-

diagonal elements of the decoherence functional vanish for all
pairs of histories in the set. This extra coarse graining on x
was explained in [24,26]. In so doing the simple form of the
decoherence functional (2.29) may become more complicated
than necessary for the analysis of the semiclassical gravity
domain. However, Gell-Mann and Hartle [24] had offered a
partial solution to this problem, which we will assume for the
purpose of using the decoherence functional in the semiclassi-
cal gravity form. We thank Juan Pablo Paz for stressing this
point.

Therefore the action of the environment on the system
may be described by adding the external source term
—f zf to the system action S„and averaging over ex-
ternal sources with the proper weight [29,31,34]. Varia-
tion of this efFective action directly yields the Langevin
equations (2.30). This is how noise can be understood
as a stochastic force from the environment acting on the
system.

We are now ready to explore the consequences and im-

plications of these methods and ideas in the context of
semiclassical gravity. As a first observation, and in order
to connect with the more familiar language of quantum
Geld theory in curved spacetime, we show that decoher-
ence and noise are closely linked to particle creation, this
being the main dissipative mechanism in our problem.
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III. DECOHERENCE FUNCTIONAL IN TERMS
OF THE BOGOLIUBOV COEFFICIENTS:

PARTICLE CREATION AND DECOHERENCE

We shall now carry out an analysis of noise, fluctu-
ations, and dissipation with the well-studied model of a
Friedmann-Robertson-Walker (FRW) universe filled with
a quantum scalar Geld.

The metric for our model is

this last factor being the "volume" of a surface of homo-
geneity, and mi the Planck's mass (in full consideration
of renormalization, a factor p,",where p is the renor-
malization scale, should also be included).

Consider a real scalar &ee field with arbitrary mass m
and coupling to curvature („. In terms of the canonical
Geld variable 4, the action is

Sf ———
2

d"x —g g""0„40„4+m + nR 4

dsz = a (i7) —drl +) (dx') (3.1) (34)

where il = J'dt/a is the conformal time. (We assume
spatial flatness only for definiteness, this plays no role in
the analysis below. ) We shall use the conventions of [64]
throughout.

The scalar curvature for this model is
1 gn 2 ~ 2 M2 2 (3.5)

Specializing to our model, introducing the conformally
related field variable C = a P, and discarding some
total derivatives, we find

2(n —1) t a (n —4) f a)
a (a 2 (a)

where an overdot means a derivative with respect to g,
the conformal time, and n denotes the spacetime dimen-
sion. We are interested in the four-dimensional case, of
course, but for the time being we may leave n unspecified.

The Einstein-Hilbert action for general relativity is

(3.3)

where the dimensional constant is mz&(n —1)(n —2)L"

where

M = m +~(„— ~R a.(
4(n —1))

(3.6)

From the discussions in Sec. IIC one can adopt the
necessary procedures linking semiclassical gravity with
quantum cosmology or follow the spirit of quantum Geld

theory in curved spacetime and begin the discussion of
semiclassical gravity with (2.29). Thus we assume that
the decoherence functional between different histories

a+(rl), a (rt) of the conformal factor, after p is totally
coarse-grained away, takes the form

J gy Dy s'(s, l 1 s, l Iss(I,S 1 srt, S Ij— —
(3.7)

Here in the gravitational action S~ = S, + Sq, we have
included the trace anomaly-generating terms St, arising
Rom the Jacobian of the C -+ P transformation. As usual
[65]

iai' (a)'
St, —— de —3

2880+2 &a) Ea)
(3.8)

The histories are assumed to match at some point
g = g in the far future, and the integration is over field
histories such that P+(go) = P (rl ). Further, we must
choose the boundary conditions (and/or the measure) in
the distant past to ensure convergence of the path inte-
gral. For the purpose of this paper we shall adopt the
simplest procedure of assuming that for either evolution
a+ and a, M vanishes in the distant past. Thus the
boundary conditions can be fixed by the same procedure
as in a Bat space time path integral, where again we shall
use the simplest criterion of tilting the path of integra-
tion in the complex g plane, in such a way that the +
branch acquires a negative slope, and the —branch a pos-

itive slope. If we think of the integration path as a closed
time loop, going from past to future on the + branch, and
returning on the —one, this means that the imaginary
part of rl is nonincreasing throughout [66].

To continue, let us decompose the Geld in plane waves

(or other spatial modes compatible with the symmetry
of space):

dn —lk
P(x, t)=,e'" "P„(t), (3.9)

where k = ]k~. The amplitude of the kth mode obeys a
wave equation of the type

4i +~i4i =o, (3.1O)

where ~& ——k + M . We shall omit the subindices k
henceforth.

As is well known [1,14], the quantization of the scalar
field proceeds by further decomposing each Fourier am-
plitude in its positive and negative frequency parts, de-
fined by a suitable choice of time parameter. This is
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+[~ u 1 eilsg[a+) —sg[a ]+I'[a+,a jl
1) {3.11)

where I is the influence or effective action for the scalar
field, evaluated at vanishing field background, and the
conformal factor being treated as an external field.

Since the CTP effective action is independent of the
out quantum states, we have more freedom in choosing
an out particle model. It is convenient to choose a com-
mon out particle model for both evolutions (that is, the
Cauchy data on the matching surface g = g are the
same although the actual basis functions will be differ-

accomplished by developing the corresponding mode on
a basis of solutions of the Klein-Gordon equation Eq.
(3.10), so normalized that the positive frequency func-
tion has unit Klein-Gordon norm, the negative frequency
function has norm —I, and they are mutually orthogonal
in the Klein-Gordon inner product. Such a basis of so-
lutions constitute a particle model. Properly normalized
particle models are related to each other through Bogoli-
ubov transformations. Let us observe that, each function
of the particle model being a solution of Eq. (3.10), the
particle model may be defined by simply giving the cor-
responding Cauchy data on an arbitrary Cauchy surface.
Further identification of the coefBcient of the positive fre-

quency function in the development of the Geld, as a de-
struction operator, allows for the second quantization of
the theory. The particle model is also associated to a vac-
uum state, which is the single common null eigenvector of
the destruction operators, and to a Fock basis, built from
the vacuum through the action of the creation operators.

It is also well known that in a generic dynamic space
time, there is no single particle model which can be iden-
tified outright with the physical concept of "particle";
however, oftentimes it is possible to employ a variety of
criteria (such as minimization of the particle number as
detected by a free falling particle detector, Hamiltonian
diagonalization, conformal invariance, analytical proper-
ties in the Euclidean section of the space time, if any,
etc. ) to single out a preferred particle model in the dis-
tant past (or "in" particle model), and another in the far
future, or "out" particle model. In general, these rnod-

els are not equivalent, the vacuum of one model being a
multiparticle state in the other.

In our problem, the choice of boundary conditions for
the path integral above amounts to a definite choice of
the in particle model, and the in quantum state, in each
branch of the closed time path. Indeed, because M m 0
in the distant past on either branch, the field becomes
conformally invariant there, so that quantization can be
carried out as in Minkowski spacetime. Now our proce-
dure of deforming the time path into the complex plane
would pick up the Minkowski vacuum; so in a generic
spacetime, we are defining the initial state to be the con-
formal vacuum, and the in particle model to be the con-

formal one. As shown in the previous section, the choice
of initial state defines the CTP effective action. Making
the provisos discussed there we may write

ent). The positive-frequency time dependent amplitude
functions fy for the conformal model in each branch are
related to those F of the out model by f~ = a~F+ PyF'
at g = g, where ay, P~ are the Bogoliubov coeffi-
cients in each branch, obeying the normalization condi-
tion ~n+~ —~P+ = 1. The CTP effective action in Eq.
(3.11) is found to be

(3.12)

We give two independent proofs of this formula in the
Appendix (Secs. 1 and 2). We also show that it leads
to real and causal corrections to Einstein's equations in

Appendix Sec. 3. This expression is exact. (A similar

expression can be obtained &om the influence functional
for cosmological models [56].)

The lesson for us is that there can be decoherence
(ImI' ) 0) if and only if there is particle creation in dif-

ferent amounts in each evolution. (This is also implicit
in [9].) Indeed, we can always choose the out model so
that n+ ——1, P+ ——0, yielding I' = (i/2) inn . The con-

dition for decoherence in this case is then ~u
~

) 1. But
since ~o.

~

= 1 + ~P ~, this can only happen if there is

particle creation between these two particle models.
For this simple model this result suggests that the

physical mechanism underlying decoherence in the de-

coherent history scheme of Gell-Mann and Hartle [22,23]
is the same as in the environment-induced scheme [21]
based on a reduced density matrix obtained by project-
ing [67] from the full density matrix and tracing over the
environmental degrees of freedom. (For the connection
between these two schemes see [26].) If the system and
environment are correlated (i.e. , that the full density ma-

trix cannot be decomposed into a tensor product of sys-

tem and enviromment states), this tracing procedure will

leave the system in a mixed state.
The correlations between the system and the environ-

ment may be present in the initial conditions, or they
may arise dynamically. Since in our initial condition the
system (a) and the environment (P) are uncorrelated, de-

coherence occurs only when correlations are generated in
the dynamics. For &ee Gelds, as in this model, correla-
tions between the scale factor and the fields are generated
through particle creation. (For example, consider a com-

bined tensor product quantum state where the field is in

its vacuum state for some value of the scale factor. Al-

though the field state would react to adiabatic changes
in a, the combined state will remain a tensor product
unless particle creation occurs. ) The problems of cor-
relations engendered by particle creation and interaction
and their role in entropy generation have been considered
in [68,69,43].

One may observe that since I' becomes identically zero
when its arguments coincide, one seems to get the same
probabilities for all coarse-grained histories. In actual-
ity this only means that further coarse graining may be
necessary to obtain a set of histories compatible with the
actual description of our Universe.
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IV. EQUATION OF MOTION, NOISE, AND
FLUCTUATION

A. Equation of motion

construction, the Cauchy data for fy are the same as
for f, therefore the correction terms must vanish in the
distant past.

Introduce the notation

Recall &om Sec. II that the expectation value of the
conformal factor obeys the equation

b~2dg', ha~ g'
ba rI'

(4.2)

6Sg bI'[a+, a ]+
ba 6a+

= 0. (4.1) 6b, (d2

6ba(r'l)

6(d2

6a((7)
(4.S)

for the correction to u due to the perturbation. The
identity

Being causal and nonlocal, this equation cannot be de-
rived from an action functional. Let us now consider the
dynamics of small Huctuations 6a~ around a solution a
of the semiclassical equations above. To do this, we shall
start by computing the CTP effective action for the field.

As in the previous section, we shall choose as particle
model that which reduces to the conformal model in the
distant past. Since the unperturbed evolution is the same
on either branch of the closed time path, this condition
defines a single unperturbed in particle model. Project-
ing this model to the far future, we obtain also an out
particle model. We shall adopt this choice, which reduces
the unperturbed Bogoliubov coefficients to 1 and 0. Since
we just want the effective action up to quadratic order in
the perturbations, with this choice we only need the per-
turbed Py coefficients to linear order, and the perturbed
o,~ ones to second order.

Let f be the positive frequency function of the un-
perturbed particle model defined above, and let fy be
the positive &equency functions of the perturbed con-
formal particle models. Then fy has an expansion
fy = f + f+i + f+~~ + . in powers of the perturbation
(denoted here by the superscript Roman numerals). By

I

follows from this definition. In terms of 6(d2, we find

(4.4)

where G is the retarded propagator

( Tf

f~ ——
I

1 —i

(4.6)

From this we can read off the )gy coefficients to the de-
sired accuracy

(4.7)

Iterating this procedure, we get the o, coefficients [70]

which is of course independent of the actual choice of
particle model. Using the explicit expression for G, we

obtain

+OO +oo
ay = 1+ d(7 f'(rl) A(d+(g) d(7' f(rI') A(d+(rl') + O[(her+) ] exp

I
i d(7 If()7)I b,~+(g) I

. (4.8)

+OO

I'[ba+, ba ] =—
2

drr f(rr)rdrwrw(rr) f drr' *(j')'re (ww')rr

drr f*(rr)'drw'(rr) f drl' f(rr')'Aw'(rr')

Observe that indeed the normalization condition is satisfied. Inserting these expressions back in the formula for
the efFective action, we find a term of first order in the perturbation, which is canceled by the variation of the
classical action (since we assume the background evolution is a solution of the semiclassical equations of motion for
the expectation values), and a quadratic term

drr f(rr) drw (rr) f drr' f'(rl') drwr. (rr') (4 9)

leading to the equations of motion for the expectation
value of the perturbation

b2Sg

2 I

bag
(4.10)

I

where

(4.11)

As expected, this equation is real, causal, and nonlocal
[17]. The boundary conditions are that 6a must vanish
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+—
2

de dg' [A~ (rj)]D(r), g')(A~ (r)'))

drI dq' [Au&'(g)]X(r), rI') [A(u'(q')], (4.12)

where

in the distant past. However, this is the equation only
for the expectation value of the perturbation, and since
we are perturbing around a solution of the semiclassi-
cal equations of motion, the only solution with those
boundary conditions is the trivial one. What we want
to describe is the effective dynamics of the conformal
factors alone, which, as we discussed in detail in Sec.
II, is stochastic in nature and described by a Langevin
equation. This equation, in turn, is best derived fol-
lowing Feynman's procedure [44]. To implement Feyn-
man's method, it is convenient to introduce the symbols
(Xj—:(X+ + X ) and [X]—:(X+ —X ). In this nota, —

tion, the effective action reads

the second term, the noise kernel, does not affect the
equations of motion, but is responsible for decoherence.

It may be argued that, if one summed over all modes,
one could get exact decoherence, since the decoherent
terms could diverge [9]. This effect is, however, generally
believed to be unphysical. Indeed, more physically rele-
vant coarse-graining strategies seem to avoid this pitfall
[25].

The failure of our observer to reduce the first term to a
difference between functionals of each history separately
was expected, since we knew that no such functional
could lead to the proper equations of motion. Physi-
cally, it is the dissipative nature of semiclassical evolu-
tion which precludes its formulation in terms of an ac-
tion principle. We shall see an example of this below.
However, an observer in the coarse-grained history could
still think of this erst term as arising from both a classi-
cal action and a dissipative function (see Ref. [71], entry
121),

&(9,9') = —,'(f(~)'f*(n')'+ f*(~)'f(~')') (4»)
We can see a sort of "division of labor" here: the erst
term, the dissipation kernel, determines the equation of
motion, but does not contribute to decoherence, while

B. Noise

To understand the meaning of the second term better,
recall that the decoherence functional has the form [44]

(4.14)

Performing the functional Fourier transform

D( P[(] i J dq—[A~ ](q)t'(q) (4.15)

the decoherence functional may be understood as the result of averaging the functional

e;* f ~ndn'[&~'](n)D(n, n')(&~'l(n') —* [' ~a[&~'](n)t(n) (4.16)

over all possible values of a stochastic external source (, with probability distribution P[(]. To this order of expansion

( is a Gaussian variable which produces a stochastic source on the right-hand side of the equation for ba: namely,

b2Ssdr), ba(r) ) + , b~2(q')

ba(r))
dq" D(q', g")A~ (q") = drj' ((rI').

ba r)
(4.17)

Because of the nonlocality of the noise kernel, the noise
is generally nonwhite; it is also generally non-Caussian
[32,56,58]. Indeed, its Gaussian nature in our example is

merely a result of our having stopped at quadratic order
in the expansion of the effective action. The important
thing to notice here is that the formalism itself saves one
the trouble (or embarrassment) of making ad hoc and
oftentimes inconsistent guesses about the nature of the
noise. For linear perturbations, the noise is Gaussian,
with autocorrelation

c(g, g') =

C is, of course, the expectation value of the product of
the noise at times r) and g'. Equation (4.18) follows from
taking two derivatives of Eq. (4.15) with respect to Aw2,
then setting this to zero.

It is a remarkable fact that, for histories, the more clas-
sical they become, the noisier they are. This point was
emphasized in [24,9]. Mathematically this follows from
decoherence and noise being determined by the same ker-
nel X. Physically, in our context, it follows from the fact
that noise and decoherence are both related to particle
creation and back reaction. Indeed, noise is just the dif-
ference between the stochastic process of particles as they
are actually created, and the smoothed-out average effect
represented by the expectation value.
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C. Fluctuations one gets

2 bSf
~g hagi'"

(4.19)

The assumption that quantum Buctuations in the fun-
damental fields can somehow transmute into classical
stochastic fluctuations is central to the stochastic infla-
tion program [59] and underlies most theories of galaxy
formation via the perturbation of quantum fields [60].
Although widely accepted and applied, the crucial point
in this program, this transmutation or transgression, has
never been satisfactorily proven. (For a critique of this
view, see [32].) The usual prescription is to consider P
as a classical stochastic Gaussian variable, with an au-
tocorrelation chosen to match the quantum two point
functions. Let us see what can go wrong with this ad hoc
assumption.

It is helpful to again look at this problem &om a
slightly difFerent angle. As is well known, the single
equation for the conformal factor we have derived here is
equivalent to the trace of the full Einstein equations [72].
More concretely, &om the de6nition

= —a T".
ba

(4.20)

T"()= d' " 0'(')
2as ba( )

(4.21)

Comparing these formulas to Eq. (4.17 ) we see that the
stochastic source f corresponds to the random Huctua-
tions &(gP —(P )v), where ( )v denotes the expectation
value of an observable with respect to the in vacuum,
computed &om the usual rules in quantum field theory.
In our approach, the expectation value (gP) z is automat-
ically included in the nonstochastic part of the efFective
action.

Let ( ), denote the classical ensemble average over the
different values of the source. Since ((), = 0, we find
(P2), = (gP)~. Moreover, from (((g)((g')), = N(g, g'),
we 6nd

Therefore, as a Heisenberg operator, the trace of
the energy-momentum tensor (not counting the trace
anomaly terms already included in Sg) is given by

(&'(&)&'(&')) —(&'(&)) (&'(9')).= 4N(& &')

= (f(~)'f'(~')'+ f'(~)'f (~')')
(4.22)

(4.23)

If we compare this result to the corresponding quantum
average, we 6nd

(P(U)P(U')). = —G, (U, &')

= —.'(f(~) f*(~') + f'(~) f(~') ) (4.25)

(we use the subindex c' to distinguish these averages from
those discussed above). But then the Gaussian character
of this variable implies

(&'(&)&'(&'))" —(&'(&))- (&'(&'))" = 2Gi(» &')'

(4.26)

which fails to reproduce the quantum average, even after

The need to symmetrize the quantum average could be
expected, since there is no analogue of noncommuting
variables in classical stochastic dynamics.

Before discussing further the implications of this equa-
tion, let us try to recover this result by simply viewing
the field P as a classical stochastic field, as is done in
almost all discussions on this subject (for a review, e.g.
[60]). As the autocorrelation (P(g)P(rl')) should be real
and even in its arguments, the only choice is to identify
it with the Hadamard function, yielding

symmetrization [cf. Eq. (4.24)]. On this count it can be
seen that the conventional view on quantum Buctuations
is Hawed. (It also misses out the full complexity of the
issue of quantum to classical transtion, see [32].) Fortu-
nately Eq. (4.26) can yield the correct result in the coin-
cidence limit g' = g. For this reason, the usual scenarios
for the generation of primordial Buctuations in inflation-
ary cosmology can remain valid if the proper form of the
noise correlator is used.

The equality between the speci6c kinds of classical
and quantum averages defined in Eq. (4.24) warrants
that several familiar results f'rom quantum field theory
in curved spacetime will also be valid in the semiclassi-
cal approximation. For example, the mean square value
of the spontaneous Huctuations of a massless, minimally
coupled scalar field in de Sitter spacetime will grow lin-
early with cosmological time [73]. This result is consis-
tent with the view that these Buctuations can be repre-
sented as white noise [33,34], associated with the thermal
radiation at the Hawking temperature of the de Sitter
universe [52,53]. We shall demonstrate this equivalence
between quantum and semiclassical results for a more
complex example in Sec. V.

On consideration of self-interacting quantum field the-
ories, which would not be one-loop exact (as is the case
for the f'ree field theory we are discussing here), the quan-
turn to classical correspondence would not necessarily
hold beyond one loop. In these conditions, however,
it is possible to improve systematically the accuracy of
the semiclassical approximation by a suitable choice of
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coarse-graining procedure, as in the "correlation histo-
ries" approach. We have discussed these issues elsewhere

[25].

D. Nonlocal kernels and colored noise

In the massless case, the last integration is trivial,
yielding

(4.33)

1 —i~k 9e
2' A.

(4.27)

where the natural frequency is u&2 ——I(:2 + m2 (because
of the spherical symmetry the modes can be labeled by
k:—!k!).The sum over all modes, with the dirnensionless
measure Vdsk/(2x) can be conveniently expressed in
terms of the positive frequency Wightman function

G+((g, x), (rl', x')) =

In the above we have derived an expression for the dis-
sipation D and noise kernel N in terms of the positive
kequency components of the amplitude functions of the
conformal in particle model of a given consistent cosmol-

ogy. To examine the structure of these kernels, we shall
now specialize to a particularly simple but illustrative ex-
ample, by choosing the background-consistent evolution
to be just the Minkowski spacetime. That is, we are inter-
ested in the physics of small departures from the special
case of Robertson-Walker conformal factor a = 1 under
the inQuence of, say, a real, massive, free scalar field.

In this simple case, the unperturbed positive frequency
modes are just

W(q, rl') = h(rI —rl'). (4.34)

Thus we see that a massless free field is associated
with a purely white noise (which makes physical sense,
since there is no dimensionful scale to define a mem-

ory time). This result is relevant more generally to the
study of near-conformal fields on arbitrary background
Robertson-Walker spacetimes. As long as the departure
from conformal invariance is small, we can use the con-
formal modes in the formal expressions from the previous
subsections which are equivalent to those of a Minkowski
massless field.

For m g 0, the integral is not easily done, but we can
reason as follows (see Ref. [74]): When the lapse rj —g' is

small, the integral will be dominated by high frequencies.
But in this regime, the mass is unimportant, so we still
get the b functionlike singularity. The mass begins to
play a role for finite time separation. In particular, for
very large time separations g —g' )) m, the integral
is dominated by the low frequencies (close to the branch
point). In this regime, the noise kernel becomes

Since the noise kernel is just one half of the real part of
this expression, we get immediately

We find

(4.28) V
X(il, rI')

4

fx(x)fj (x):f d xd x G~((x x) (x x)).

(4.29)

which, by virtue of translation invariance, becomes

It is tempting to conjecture that the b-functionlike sin-

gularity in the noise kernel is due to the contribution of
those x such that (rl', x) lies close to the past light cone
of the point (rt, x). Indeed, for rI ) )7' we have the exact
expression

V d x G+((il, 0), (g', x)). (4.30)

The positive frequency Wightman function also admits
the representation

G ( ~2) —1/20(2) [m( ~2)1/2]8' (4.36)

G+(x", z'
)

(27r) 4
l2~b(p' + m')e(p, ) (4.3i)

from which we get the well-known relation

Vd3k
, fk (~)fk'(n')

(4~) 2

(4.32)

where o is the four-dimensional geodesic distance be-
tween the arguments of the propagator. As 0 ~ 0, this
yields a mass independent leading singularity, which is in-
deed equivalent to the whole massless propagator. Thus
the integration over x of this term alone reproduces the
b functionlike behavior of the noise kernel.

This result in turn suggests that the b-functionlike be-
havior will be common to all Hadamard vacua in curved
spacetimes, as these share the singularity structure of the
Minkowski propagators [i.]. The details of the particular
evolution are coded in the nonsingular tail of the noise
kernel.

The dissipation kernel for a scalar field in Hat space
time is analyzed in Ref. [32], where the fluctuation-
dissipation theorem is also stated.
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V. STOCHASTIC SOURCES IN THE ENERGY
DENSITY

The established theory of semiclassical gravity is based
on the Einstein equation for classical metric with a source
given by the vacuum expectation values of the energy-
momentum tensor of a quantum Geld. A major proposal
we advance in this paper is that noise terms should be
added as a stochastic source to the semiclassical Ein-
stein equation beyond the usual order of approximation,
turning it into an Einstein-Langevin equation. These
noise terms arise &om the difference between the aver-
age amount of vacuum polarization and particle creation
(measured by the expectation value of the energy mo-
mentum tensor) and the actual value of the same quan-
tities in a specific history. By comparison to our general-
ized semiclassical theory the usual semiclassical Einstein
theory can be viewed as a mean-field theory. It is well
known that mean field theory is inadequate in addressing
the full effect of fiuctuations and instability, as in studies
of critical phenomena [75]. To the extent the transition
f'rom classical general relativity to quantum gravity may
involve instability and phase transitions, the old theory
is ill prepared for such an analysis. We will discuss the
ramifications of this generalized theory in future works.

In this section we shall explain the nature of noise by
relating it to Huctuations in particle number and vac-
uum polarization, using simple models in introductory
quantum field theory in curved spacetimes. We shall cal-
culate the amount of particle creation in a cosmologi-
cal evolution with asymptotically static regions. Simpler
still, we assume that the evolution never deviates much
f'rom Minkowski spacetime. We shall do this in two ways,
first by deploying the machinery from the previous sec-
tions, and then by a straightforward analysis based on el-
ementary quantum Geld theory. We shall show that both
analysis give the same result in their common range of
applicability. This will explain the meaning of the noise
term in the Einstein-Langevin equation.

A. CTP efFective action and the energy-momentum
tensor

To ()7) = —
~

const+ d)7' a aT„"
~

.
a4 (5.1)

Let us now consider an asymptotically static, near-Bat
evolution, where the mode &equencies u are composed
of a constant part coo, and a small time varying compo-
nent b,u2 (we retain this notation for the fiuctuating part
for simplicity, although properly speaking we do not treat
it as a perturbation, but as part of the background).

In the out region, where a = 1 again, the energy density
has a "deterministic" part

dA(u2
pg

——const — dydee' g D g, g' A~ g' 5.2
dn

which, after integration by parts, becomes

pg
——const + dydee'A~ g

' Du g, 5.3BD(&, )7')

(9'g

and a "stochastic" part

p, = — dg A(u g
~&(~)

(97]
(5.4)

Consequently, the mean deviation from the average value

ls

(p, ) = drtdrt' b, (d ((7) ', b,(d2((7').
rl 7l'

(5 5)

The dissipation kernel D is given by

D(rt, )7') = —Im
~

V d x G' (()7,0), (r)', x))8()7 —)7')
~

.
)

(5.6)

Using the representation

semiclassical equations for the conformal factor is equiv-
alent to a random component in the trace of the energy
momentum tensor of the field. In a FRW universe we also
know that the trace determines the full energy momen-
tum tensor [72]. In particular, the energy density can be
related to the trace by

In the last section we have seen how the variation of
the CTP effective action with respect to the conformal
factor yields the trace of the stress-energy tensor. We
also noted that the presence of a stochastic source in the

e(q —q') = i/
and the formulas from Sec. IVD D reduces to

(5.7)

OO dt 4m2
D( &) d

—xw(q —q')
64m'3 ~ t —(~+ ie)2 t (5.8)

which yields the average energy density where

V 4m2
pg = dv v 1 — ~Bur (v)~2,32'. V

(5.9) s~'(v) = f dq e ' "dw*(q) (5.10)
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In turn, the noise kernel N(rI, iI') is 4~Vk'dk

(2vr) s
V m'

1 — v ALP
27t-2 pI 2 (5.18)

N(g, g') = 4Re
I

V d x G+((i1, 0), (g', x)) I
(5.11)

) so that the average energy density becomes

and reduces to

V
N(rj, q') = 4m2

der e' !" "l 1 — 8(l~ —2m)~2

(5.12)

V
Pd—

m'
dvv' 1 —,I@I'

V
(5.19)

and the fluctuations in energy density are given by

which yields the fluctuations in the energy density
OO m2

&c'.) = —,
V

(5.2O)

OO 4m2
, l&~'(v)l' (5»)32%' 2- V

Since in the asymptotic region there is no vacuum po-
larization, these fluctuations can be ascribed solely to
fluctuations in the number of created particles. We shall
show now that it is indeed so, by computing these fluctu-
ations independently. In this way, we shall demonstrate
the consistency of our approach with familiar results from
quantum field theory in curved spaces, in this simple ex-
ample.

B. Fluctuations in particle number

(2n)!
22" (nt)2 I~I2"+'

' (5.14)

With the help of the elementary series

(2n)! i „1
(22n (n)) 2 )I

(5.15)

it is immediate to get the average number of created par-
ticles

Let us study the same problem, that is, fluctuations
in the energy density in the out region of a near-flat,
asymptotically-static evolution, by using simple argu-
ments &om quantum field theory in curved spacetimes.

Physically there is energy in the out region because
particles have been created. Indeed they are created with
a definite spectrum. The probability of finding (2n +
1) particles in mode k vanishes, and the probability of
finding 2n particles is [14]

Although the particle number for a particular mode is
certainly not a Gaussian variable, the energy will be, by
virtue of the central limit theorem.

In the simple case in question, the Bogoliubov coefIi-
cients are (see Sec. IV) approximated by o. = 1, and

P(v) =
I

—
I

&~'(2v)
i2v)

(5.21)

Introducing this expression in the formulas above, we im-

mediately recover the results &om Sec. VA. Of course,
we already noted in Refs. [17,18] that the energy dissi-

pated from the conformal factor is equal to the energy
of the created particles. The new ingredient found here
is that fluctuations in energy density, which constitutes
noise in the semiclassical Einstein equation, also have a
simple physical interpretation.

The above analysis is only a trivial application of a very
powerful tool, designed to illustrate the meaning of some
new aspects in these methods. Of course, one does not
need such heavy formalisms to treat these simple mod-
els. In a more complex problem the new method we are
proposing here not only allows us to compute the fluc-
tuations in the asymptotically static regions, it also tells
us how to feed back those fluctuations into the evolu-
tion of the conformal factor, even at intermediate times,
where there may not be a well-defined particle number
operator. It is also very important that once the phys-
ical situation is defined (e.g. , what is the initial state,
and what will be coarse grained over), the formalism will

generate the correct results with self-consistency without
the need of making ad hoc assumptions or adjustments
along the way. In some examples given in Sec. IV we

have seen the danger of taking a problem at face value
in seeking convenient solutions to deeper issues.

&n) = I&l'

and the fluctuation in nuDiber

(5.16)
VI. DISCUSSION

&n') —(n)' = 21~1'I&l' (5.17)

(We could also obtain these results by computing the in
vacuum expectation values of the out particle number
operator. )

Observe that all modes have (positive) frequency
greater than m, and that the number of modes with fre-
quencies between v and v + dv is

Our earlier papers [17,18] showed how the Schwinger-
Keldysh (CTP) method can be successfully applied to
treat particle creation and back reaction in semiclassical
cosmology. We obtained a real and causal equation of
motion and showed how particle creation can be viewed
as a dissipative process. In this paper we have devel-
oped further this method to incorporate the treatment
of noise and fluctuations, relating them to decoherence



49 NOISE AND FLUCTUATIONS IN SEMICLASSICAL GRAVITY 6651

and particle creation. With the help of the Feynman-
Vernon influence functional method we can understand
better the statistical mechanical meaning of the quan-
tum processes involved and expound the origin and na-
ture of noise and fluctuations associated with quantum
fields (and eventually that of spacetime) in semiclassical
gravity. Our findings lead us to propose a generalized
theory of semiclassical gravity where stochastic source
terms corresponding to the fluctuations in the number
of particle creation appear in addition to the usual term
corresponding to the vacuum expectation value of the
energy-momentum tensor.

As is shown here explicitly through some simple exam-
ples, these new methods make it possible to display the
full interconnections between particle creation, decoher-
ence, noise, Huctuation, and dissipation [7]. Our analysis
also confirms previous hints on the connection between
decoherence and particle creation [9,42], and the balance
between decoherence and the stability and predictabil-
ity of classical evolution [24]. Perhaps the most impor-
tant finding of this work is that semiclassical evolution
is inherently stochastic, and that its statistical proper-
ties may be rigorously derived &om the closed-time-path
effective action or the influence functional.

From a theoretical point of view these new methods
are essential in gaining a fuller understanding of the in-
tricacies of the relation between quantum and semiclas-
sical physics, and in particular, semiclassical gravity and
cosmology. Two aspects stand out. First, their formal
structure bestows upon us a complete description of the
system and its environment, with almost no room for any
ad hoc assumptions or piecemeal adjustments. Its logi-
cal extension leads us to new discoveries and insights,
such as the noise terms in the equations of motion or
the entropy of the open system &om the reduced den-
sity matrix. Second. , their intrinsic power makes it pos-
sible to treat complex problems such as the quantum to
classical transition and cosmological back reaction which
requires a self-consistent description of particle creation,
decoherence, noise, fluctuations, and dissipation on the
same footing.

Extending the examples given here to more realistic
situations, this formalism points the way to a more com-
plete and accurate treatment of problems involving quan-
tum processes in the very early Universe, such as struc-
ture formation and phase transition problems. The con-
cept and methodology can also be applied to the study of
black hole thermodynamics in a dynamical setting. The
CTP effective action and the nonequilibrium IF are par-
ticularly suitable to address the back reaction problem of
semiclassical black hole collapse. There, at the verge of
the domain of validity of the semiclassical gravity theory,
we expect to see similar stochastic behavior associated
with the quantum field vacuum becoming more promi-
nant as the gravitational field increases in strength. As is
known &om critical phenomena studies, the prominance
of the fluctuation terms signals the onset of instability
(of the ground state) of the old phase, here described by
Einstein's gravity, and the transition to the new phase
possibly described by a theory of quantum gravity [75].
We will discuss these issues in future works [56,19,20].

In a broader light, recognition of this unavoidable sta-
tistical feature of semiclasical evolution may affect drasti-
cally our understanding of these "medium energy" phe-
nomena, which can be viewed in a more general sense
as "mesoscopic" physics. A sketch of these ideas can be
found in [33,6]. The actual application of these methods
to concrete model building in gravitation and cosmology
or other subjects usually hinges upon the identification of
meaningful coarse-grained descriptions adequate to each
particular setting [24,41]. The results of this paper can
help to explicate these issues as well.

On general grounds, the consistent histories approach
to quantum physics assumes that one has at his/her dis-
posal a fine-grained description of the system of interest,
which is subsequently coarse grained to leave only the
physically relevant variables. However, what constitutes
a meaningful choice of fine-grained histories depends on
the scale of the problem: a nucleon may be regarded as
an elementary" particle at energies of MeV's, while it
will reveal its composite character at energies of GeV's.
Strictly speaking, there is no ground to believe that an
ultimate absolute fine grained description of the Universe
exists, which would seem to void the application of this
approach in cosmological problems.

Our results suggest a practical test to choose the cor-
rect level of description for a given problem, namely,
that a description of a physical system may be consid-
ered fine grained insofar as the ever-present dissipative
and stochastic elements in the dynamics are small com-
pared to the characteristic scale of energy and dimension
of observation. This happens for finer scales of measure-
ment and higher degree of accuracy. At a coarser scale of
measurement or with a lesser degree of accuracy one ef-
fectively averages over certain set of (irrelevant) variables
and would necessarily recognize the appearance of dissi-
pation and fluctuations phenomena in the coarse-grained
description (see [41] for further discussions on this point).
Thus, for a given accuracy, it is possible to show rigor-
ously that a given set of histories can indeed be treated as
fine-grained, even if the underlying levels of description
are unknown.

The application of this criterion along with a gener-
alized concept of what constitutes a "history" (e.g. , al-
lowing for collective [41] or hydrodynamic [24] variables,
and/or correlations [25] as parts of the specification of
a history) may help us focus on the key issues for un-
derstanding the nature and origin of the semiclassical
regirn. e.
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APPENDIX

((2n+ 1)out~Oin) = 0 (A2)

(2n)!l & P"
(2nout~0in) =

2n(n)) ) (c„(2ra+1)I2) (A3)

(we have chosen the relative phases of the in and out
vacua to match the results &om perturbation theory; this
choice fixes all the rest).

Using this in the formula for I' and applying the sum-
mation formula Eq. (5.15) we get the desired result
(3.12).

In this appendix we shall analyze the exact expression
(3.12) for the closed time path effective action given in
Sec. III. We first give two independent proofs of it (Secs.
A 1 and A 2), and then show that the resulting contribu-
tion to the semiclassical equations of motion is real and
causal (Sec. A3).

1. Proof based on elementary field theory

This proof is based on the observation that the de6ni-
tion of the CTP effective action, as given in Sec. II, may
be reduced to

e' = ) (Oin~nout) (nout~Oin)+. (Al)

Manipulating the Bogoliubov coefBcients it is easy to
show that

2. Proof based on functional analysis

This proof is based on the functional integral expres-
sion

e'( ~[ + 4'+] ~[ 4-—])—(A4)

Remember that the positive branch has a negative slope
in the complex g plane, and the negative branch has a
positive slope. Also that the CTP histories are continu-
ous across the turning point.

Let 4) be the common value of P+ and P at the Cauchy
surface in the future, and let P~ be the classical solution,
in each branch, that vanishes in the past and matches (()

in that Cauchy surface (we are assuming we have already
decomposed the integral by Fourier modes, so we have a
zero-dimensional field theory). Then each history can be
written as P~ = Py + yy, where p~ vanishes both in the
past and the future, and we get

e 'r (si [ 4'++] sf [ —0——]) e'( yI + ~+])V'+ e
—i (sg ta, (p j) (A5)

Sy [a~, Pg] = —,[PpP~ (+oo) —P+(t'~ (—oo)]. (A6)

Because it is quadratic, the action on a classical solution
reduces to (h, (&o)

2vri (h+(i)') h (i)o))

The remaining functional integrals are of the usual in-out
type. Following Ref. [76], we know that, e.g. ,

But because of the boundary conditions, this yields

Sf[a, p ]
—Sf[a, p ] = 2@[/+ —p ]. (A7)

S'S, i '"
D&p~ e*(sg[ P,yP])

~

Det

And that, in turn

(A10)

+(n)
~«+(~') r

(AS)

The integral over P in the expression for I' is then an
ordinary Gaussian integral, which yields

Let h~ be solutions of the Klein-Gordon equation on
each branch, vanishing in the past (i.e. , h+ is negative
frequency and h is positive frequency) and satisfying an
arbitrary normalization (e.g. , having unit Klein-Gordon
norm). If the turning point is located at i) = r),

b'Sy ')

i
Det

[

= const x h~(rI ).
~&'+ )

(A11)

Using these expressions for the remaining functional
integrals we are led to

I' = —
i

ln[h (r) )h+(g )
—h+(rI )h (rI )]+const.

2)
(A12)
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3. Proof of the causal and real property

We now present the argument why the equations of
motion deriving &om the effective action are necessarily
real and causal. The contribution from I' to the equations
of motion takes the form

i f Ba' BP' l
2 ( Ba(rl) Ba(rl))

' (A13)

Reality follows &om the identity [a[ —]P] = 1, which
implies

Finally, rewriting the in functions hy in terms of the out
particle model and the Bogoliubov coefficients, we get
the desired formula.

a = ai nn'aV', o tu+ Pin, n'PV~, „tl (A15)

P ain, v'Pv', out + Pi ,n'va&v, out (AI6)

Using this in the equations of motion, observing the g'-
out coeKcients do not depend on the metric before g', we

get

that they are not changed if we perturb the evolution
at the future of time g. To see this, assume we choose
a particle model at some time rl' ) rl, but still earlier
than the time when perturbation sets in. Then the in-
out Bogoliubov coefficients can be expressed in terms of
the Bogoliubov coeKcients between the in particle model
and the g' model, and those linking the g' model to the
out one:

( Ba' BP' i
B() B() (A14) 2 ( '"'"

Ba(rl)
'"'"

Ba(rl) )
(A17)

Thus, the equations of motion are i times something
purely imaginary, and therefore themselves real.

To see that the equations are causal, we need to show

which in turn does not depend on the metric after g'.
Since g' may be chosen arbitrarily close to g, this proves
causality.
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