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Strings, black holes, and Lorentz contraction
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Consistency of quantum mechanics in black hole physics requires unusual Lorentz transformation

properties of the size and shape of physical systems with momentum beyond the Planck scale. A simple

parton model illustrates the kind of behavior which is needed. It is then shown that conventional funda-

mental string theory shares these features.

PACS number(s): 04.70.Dy, 11.25.Mj

I. INTRODUCTION

't Hooft has argued that the consistency of quantum
mechanics in black hole evaporation will constrain high-
energy physics so much that it will determine most of its
features [1]. In this paper I will show that black hole
complementarity [2] implies a radical revision of the usu-
al kinematics of systems with very high energy. In par-
ticular, the usual Lorentz contraction of particles must
saturate when their momenta approach the Planck scale.
In other words, the physically measurable longitudinal
size of a particle must tend to a constant and not decrease
like its inverse momentum. Furthermore, the transverse
size of boosted objects must grow with momentum.
These requirements would certainly seem unbelievable if
it were not for one circumstance. They are found to be
true for the propagation of relativistic strings.

The plan of this paper is as follows. In this section I
will make some preliminary remarks about Lorentz
boosts and the behavi. or of the physically measurable di-
mensions of systems. Then I will define some concepts
which will be useful in discussing the spatial localization
of information.

In Sec. II some parton models illustrating possible
behaviors of boosted particles are presented. One of the
models is especially interesting because it necessarily con-
tains a massless graviton.

Section III reviews the principle of black hole com-
plementarity and the concept of the thermally excited
stretched horizon. We describe how complementarity
requires information, nearing the horizon, to spread
when viewed by an observer outside the black hole. The
same information does not spatially spread when viewed

by an observer in free fall alongside the particle. The
difFerence between these perceptions of events can be
traced back to the difference in "resolving time" of the
apparatuses available to the two observers. The require-
ments of black hole complementarity are satisfied in the
model of Sec. II which requires the existence of gravitons.

*Electronic address: susskind@dormouse. stanford. edu

In Sec. IV it is shown that string theory has exactly the
properties required by black hole complementarity [3].
While this does not prove that string theory is the only
possible description which allows black holes to be con-
sistent with quantum mechanics, it is very suggestive. Fi-
nally, in Sec. V, I discuss the conclusions and philosophi-
cal implications of the paper.

In classical field theory an object is described by giving
the values of certain local fields which are assumed to
transform as tensors under Lorentz transformations. It
follows straightforwardly that if the contours of constant
field strength (scalars) form spatial spheres at rest in one
frame, then in a boosted frame they form ellipsoids. The
transverse size of the ellipsoid is unchanged by the boost
and its longitudinal size is contracted according to the
famous formula of Lorentz and Fitzgerald. In conven-
tional quantum field theory the situation is more compli-
cated for a number of reasons, including the uncertainty
between position and velocity and the inability to localize
a particle within its Compton wavelength Quantum.

gravity may introduce other complications of an un-
known kind. Therefore I am going to introduce a
definition of size by operational procedures which could,
in principle, be used to measure it. We will primarily be
interested in objects moving with velocity near the speed
of light.

Consider an object moving along the z axis with a ve-

locity U =1. We also consider an apparatus at rest which
consists of an idealized surface of sensitive detectors such
as a fluorescent screen or a photographic plate. I assume
that the grain size and spacing is much smaller than the
object. When the object strikes the plate, it leaves a
mark. By the transverse size of the object I will mean the
size of the mark that is left. Defined in this way, it is not
clear that the transverse size remains constant as v~1.
For example, it is widely believed that the cross section
for proton-proton scattering logarithmically increases
with energy. The damage left by a high-energy proton on
a plate would also grow. The only requirement of
Lorentz invariance is that, if both the object and the ap-
paratus are boosted by a common angle, the transverse
size not change. Similar conclusions can be drawn about
the longitudinal size of objects.

I believe there is a sense in which the transverse size of
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an object does approach a limit as U ~1 in ordinary rela-
tivistic field theory. Consider the difference between the
spots left by protons and neutrons. To be more exact,
consider a large number of marks left by protons and a
similar ensemble left by neutrons under otherwise identi-
cal circumstances. Careful examination of the two en-
sembles will reveal differences in the statistical properties
of p marks and n marks. In ordinary quantum field
theory (QFT) we do not have to study the entire area oc-
cupied by each mark in order to distinguish the ensem-
bles. Even assuming the mark size grows as v ~1, the re-
gion which contains the relevant distinctions between
particle types does not. Furthermore, the longitudinal
size occupied by these distinctions Lorentz contracts, al-
though the full physical extension may not.

To give an idea of what I mean by the transverse size
occupied by information, consider a conventional field

theory. Assume that the cutoff length is much smaller
than the size of the objects being studied. Now consider
two orthogonal states I

A ) and IB ), which I will call par-
ticles but which could be more general. Let us suppose
their transverse centers of mass are localized at the same
place. Now partition space into two regions. The first
region I is an infinite solid cylinder of radius R located at
the same transverse position as the centers of mass of
I
A ) and IB ). The second region II is its complement.

The statistical results of a11 measurements within re-
gion I can be described by a density matrix in which the
degrees of freedom in II are traced over. Thus we define

p' =Tr"I A )( A I,
psI j =Tr"IB &&BI, (1.2)

where Tr" indicates a sum over a complete basis of states
in II. A measure of the orthogonality of p„and p~ is

defined by

Tr I I

DII(A, B)=
[Tr(pI )2 TI (pI )2]1/2

As R ~oo, Ds(A, B) must tend to zero, indicating
that the two states are orthogonal and fully distinguish-
able. Furthermore, as R ~0, Dz will tend to unity since
the ultraviolet behavior of all states must be the same as
the vacuum. We can therefore define a radius R zz which
characterizes the transverse region in which the informa-
tion distinguishing A and 8 is localized. For example,
R „s could be defined by setting DII ( A, B ) equal to —,'.

AB

Similarly, given a collection of states A, B,C, . . . , we
can ask for the smallest region that needs to be investigat-
ed in order to distinguish these states. A simple
definition would be obtained by requiring the largest of
the quart&ties D~ ( A, B ),D~ ( 2, C),Dz (S,C), . . . to be
I
2

We can also use such density matrices to define the size
of an object. Consider the density matrix of the outer re-
gion II when a particle A is present and when the state is
pure vacuum. Define them by

p'o'= Tr'Io& &oI .

The quantity

(1.5)

Dn(A, O)=
[Tr(pII )2 Tr(pII )2 ]

1 /2
(1.6)

measures the distinguishability of the vacuum and parti-
cle A in the outer region II. The size of A can be defined
by requiring

D,"(A,O) =-,' . (1.7)

Generally, there is no reason the size of the particles
should be the same as the size of the regions carrying the
information distinguishing particles. For example, if all
particles in a certain class had some sort of long-range
field with equal strength, then the distinction between
particle types would be localized well within their full
sizes.

II. PARTON MODELS

To understand how an observer outside a black hole
describes the behavior of matter near the horizon, it is
essential to first understand ordinary field theory in the
light-cone frame [4]. I.et us introduce Cartesian coordi-
nates (x,y, z, t ) into fiat Minkowski space. The x,y
directions will be called the transverse directions and in-
dicated by (XI). The combinations r=(t —z)/~2 and
X+= ( t +z ) /&2 are called the light-cone time and the
longitudinal direction, respectively. The conjugates to z
and X+ are called the light-cone Hamiltonian and longi-
tudina1 momenta H, P. For a free particle, the light-cone
Hamiltonian is

qz+mH=
2P

(2.1)

(note that P is always positive), where m is the particle's
rest mass and qz is the transverse momentum. Light-
cone physics can also be thought of as the litniting
description of matter which has been boosted to very
large momentum.

The space of states of light-cone field theory is the
Fock space describing particles with transverse position
Xj and longitudinal momentum P. The states are gen-
erated by applying creation operators a+(XI,P) on a
vacuum Io) which is annihilated by a (XI,P).

Notice that quanta can have large energy either be-
cause q~ is large or because P is small. For the moment
let us ignore the possibility that q~ is large. Assume that
fluctuations in transverse momenta and the mass m are of
some common order of magnitude that characterizes the
theory.

Let us suppose we are not interested in, or cannot
resolve, processes taking place on time scales shorter
than a resolution time 5~=a. It is then appropriate to in-
tegrate out all degrees of freedom with energy greater
than 1/e. According to (2.1), this means we integrate out
quanta with

p'„' =Tr'
I A ) ( A

I
(1.4) P(m e. (2.2)
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The effective description has no quanta of longitudinal
momenta less than m e. Furthermore, in the description
of a system with total longidinal momentum P„„there
can be no quanta with P & P„,.

Under a longitudinal boost the P value of each parton
rescales by a common amount. For example, a Lorentz
boost which doubles P„, also doubles each constituent P.
However, if the resolving time e is kept fixed, the lower
cutoff in P is not doubled. This means that in the boosted
system there will be no partons in the allowed region
M E & P & 2m e. The partons in the region P -m E' must
be dealt with separately from the rest when a boost is per-
formed. They can be thought of as new partons which
come into existence solely by virtue of boosting the sys-
tem. Feynman called these the "wee partons. "

In certain very well behaved and uninteresting field
theories, the parton distribution rapidly diminishes to-
ward low P once P„,»m. In that case essentially no
new partons are created by increasing P„,. In these
theories the boost properties of objects are very conven-
tional.

In more interesting theories such as QCD the parton
distribution is singular near P =0. In these cases, boost-
ing a system requires adding partons at low P. If those
partons are located at an ever increasing transverse dis-

tance, then the transverse size appears to grow with P„,.
Similarly, the longitudinal spread of the object will fail

to Lorentz contract because the constantly renewed par-
tons are of low momentum [5]. Nevertheless, there is a
sense in which particle properties behave conventionally
under boosts. The size and shape of the regions which
contain the information necessary to distinguish particles
undergo Lorentz contraction and no transverse spread.
This is because the distinctions are carried by the high
momentum partons which carry finite fractions of the to-
tal momentum. The low momentum cloud is universal.

The transverse size of an object depends both on its
longitudinal momentum and the resolution time. Howev-

er, Lorentz invariance requires it to depend only on the
combination P„,/e.

We have ignored effects having to do with large trans-
verse momenta. These effects are interesting but do not
lead to further momentum dependence in the size of ob-
jects. Instead, they introduce fine detail in the structure
of the partons themselves [6].

As we shall see, quantum gravity requires an altogether
different description when the momenta of particles begin
to exceed the Planck mass. The new type of behavior can
be illustrated by a simple model. Let us suppose that a
particle with longitudinal momentum P can be described
as a bound state of two quanta when the resolution time
6~ is of order P in some natural units. For simplicity, the
quanta can be assumed to have approximately equal lon-
gitudinal momentum and a transverse separation of order
unity. If the parent particle has longitudinal momentum
P, the constituents have P/2. The configuration is de-
scribed by a wave function

Q=P(X, —X, )5(P, P )/2(P53P/2)5(X—, +X3),
(2.3)

where X, and X2 represent the transverse 1ocations of the
constituents.

Suppose that when the resolution time is decreased by
a factor of 2, each constituent is itself resolved into a pair
of new constituents with the same wave functions g ex-

cept that the constituents now have longitudinal momen-
tum P/4:

f(yi, +y2 y3 y4 Ql Q2 Q3 Q4)

Xi+&2 &3+&4
2

—
2

P P P PX5 Q
——5 Q

——5 Q
——5 Q ——

I 4 2 4 3 4 4 4

X5(y, +y3+y3+y4) . (2.4)

The first factor represents the original wave function
(2.3) with X, and X3 replaced by (y~ +yz)/2, (y3+y4)/2,
respectively. The second and third factors represent the
compositeness of the original constituents.

Let us continue this process so that each time we im-
prove the resolution by a factor of 2. The previous con-
stituents are resolved into pairs with the wave function f.
After n iterations, the resolving time is

pl n
a (2.&)

the number of constituents is 2", and the longitudinal
momentum of each is P/2".

As the resolving time decreases, the transverse spread
of the configuration tends to a Gaussian probability dis-
tribution for finding a constituent at a given transverse
distance. The width of the Gaussian grows like the
square root of the number of iterations. Thus the trans-
verse size R is given by

' 1/2
P P

R —— ln— (2.6)
E 6'

This formula describes a growth which is similar to
that of the proton that I described before. However, this
time the information is spread over the entire area. To
see this, we can consider constructing a second state, re-
placing (2.3) by

g'=Q'(X, X3)5(P, P3)5—P~ ——5—(X, +X~),P

(2.7)

where P' is orthogonal to g. In each iteration we still re-
place each constituent by a pair with the original wave
function g. After any number of iterations, the two wave
functions are orthogonal. However, the density matrices
for bounded regions of fixed size Ro are indistinguishable
as P/e~~. To detect the orthogonality of the two
states, a region of size R (P /e) -ln(P /e) must be inspect-
ed. As we shall see, this is a fundamental property that
quantum gravity must have if black hole evaporation is to
be consistent with quantum mechanics.

The longitudinal size of the distribution can also be es-
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timated. Since the individual constituent longitudinal
momenta are of order the resolving time e [7], the uncer-
tainty principle suggests that the longitudinal size hz
satisfies M —1/e. In conventional terms this is
equivalent to an absence of longitudinal Lorentz contrac-
tion as P~ ~ with fixed e.

I will now argue that if such a Inodel can be consistent
with special relativity, it must contain a graviton. To see
this, let us consider the scattering of two particles. %e
take one particle to be at rest and one moving along the z
axis with large momentum P. The fast particle has longi-
tudinal momentum P and the scattering can resolve inter-
nal motions with 5r= 1 so that the fast particle must be
described as a number N-P constituents. Now consider
the low-momentum-transfer elastic amplitude. Let q be
the transverse momentum transfer. Such the target can
scatter off any of the constituents, the amplitude will be
proportional to N. Furthermore, since the spatial distri-
bution of constituents is Gaussian with width of order
(lnN }',we find the amplitude to be

ds =dt (—dr') —(r*) dQ

Near the horizon, it locally behaves like
r

r */2m

(3.2)

61$ [—(dr*) +dt )
—dXf, (3.3)

r*+t =0 (3.4)

as t ~ 00, and its longitudinal extension hr ' will satisfy

r /4m g e —t/4mear e (3.5)

where X~ are Cartesian coordinates transverse to the ra-
dial direction.

As the particle falls toward the horizon, its longitudi-
nal momentum increases like exp(t/4m ). If the system
behaves like a conventional classical object, it will appear
to have fixed transverse size and Lorentz contracted lon-
gitudinal extension. The center of the object will move
on a trajectory which approaches

g( 2}-e ~~"+~9 N —P~ (2.8}

The reader will recognize this as a Regge behaved
scattering amplitude corresponding to a linear Regge tra-
jectory,

J(q )=2—
q

from which one deduces the existence of a massless spin-2
particle.

The above argument is not meant to be a serious
mathematical proof. It is a paraphrasing of string theory
which we will see has the properties of the model. The
main features to remember in this model are that the spa-
tial extension of the cloud of information carried by a
particle has longitudinal and transverse extension which
depends on the ratio of the longitudinal momentum and
resolution time. The pattern of transverse growth that
occurs as the resolution time is decreased is a common
feature of many systems and is called branching diffusion

III. IMPLICATIONS OF BLACK HOLE
COMP LEMENTARITY

hr* —1 . (3.6)

Eventually, the particle and all its structure disappears to
r'= —00 and is lost. At best the information can be re-
trieved at the very end of the Hawking evaporation. It is
this picture that is implicit when conventional quantum
field theory is studied in curved space-time.

Black hole complementarity requires a different
behavior from the viewpoint of the external observer.
The information carried by the object should get deposit-
ed in a layer called the stretched horizon which is located
near r' =0. This is the layer where the local temperature
of the Unruh radiation is of Planckian magnitude. Fur-
thermore, the information is supposed to be distributed
among the hypothetical stretched horizon degrees of free-
dom as if it were being thermalized. In the final state of
thermal equilibrium, the information should be delocal-
ized over the entire horizon. A reasonable guess is that
the information diffuses so that its transverse spread
grows like

r*=r+2m ln(r —2m ) . (3.1)

Far from the horizon, the metric has the Bat space form

Consider an object falling toward the horizon of a
black hole. From the view point of fiducial observers at
fixed static position, the momentum of the object in-
creases without bound and its internal motions slow
indefinitely. In effect, the fiducial observers outside the
black hole see the object with increasing powers of reso-
lution. To follow this process into the stretched horizon
at a few Planck lengths from the event horizon, the
Lorentz boost properties of matter must be thoroughly
understood.

The black hole can be described by external observers
in terms of tortoise coordinates which cover only the ex-
terior region. Tortoise time is identical to Schwarzschild
time and the tortoise radial coordinate r * is defined by

R-
4M

(3.7)

t /4M (3.8)

This is equivalent to the condition that no Lorentz con-
traction takes place once the particles falling into the
black hole reach momenta of order the Planck mass. In
other words, the longitudinal extension M should satisfy

(3.9}

we use t /4M because the proper time on the stretched
horizon is red-shifted relative to Schwarzschild time by a
factor of order 4M.

The longitudinal spread of the information implied by
complementarity is also unconventional. The region oc-
cupied by the system must continue to overlap the
stretched horizon near r*=0. This requires (3.5} and
(3.6) to be replaced by
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in Planck units.
The conditions (3.8) and (3.9) are just those satisfied by

the branched diffusion model of Sec. III. Of course, the

model was cooked up for just this purpose. However, it

is interesting that is also leads to the existence of a mass-

less spin-2 graviton.

key to understanding the curious properties of strings un-

der Lorentz boosts.
The divergence in R. ~ is due to a summation over

modes of arbitrarily high frequency. The frequency of the
lth normal mode in light-cone time ~ is

IV. STRINGS NEAR A HORIZON
V)—

Ptot
(4.5)

lp =gl, , (4.1)

so that if g is very small, the new physics begins at length

scales appreciably larger than l~. In this case the

stretched horizon should be placed a distance —l, from

the event horizon. At this distance the Unruh tempera-
ture is the same as the Hagedorn temperature and the

properties of the vacuum become markedly different [8]
from the zero-temperature vacuum seen by a freely fal-

ling Minkowski observer. This is also the place where

the standard rules of Lorentz contraction begin to fail

and where information begins to transversely spread [3].
The Planck length is where perturbative string theory
fails but the interesting physics seen by the outside ob-

servers takes place between l, and lz.
Let us compute the properties of free strings in the

light-cone frame. Points of the string are described by a
transverse location Xi(o ) and whatever internal degrees

of freedom are implied by supersymmetry and

compactification. In the light-cone frame the internal de-

grees of freedom are decoupled from Xi(o). Thus the

normal-mode decomposition of Xj is the same as for free

bosonic strings:

String propagation in a Schwarzschild background has

not been completely analyzed. However, the region near

the event horizon of a very large black hole is enough like

Minkowski space that much of what we need to know

can be determined. In particular, as long as the region
under study is small in all its dimensions compared with

the Schwartzschild radius, the external region of the hor-

izon is isomorphic to Rindler space.
In the previous sections we assumed that the standard

laws of physics hold down to the Planck scale. In string

theory, however, the new physics begins at the string

scale which differs from the Planck scale by factors of the
dimensionless coupling constant g. If l~ is the Planck

length and l, is the string length, then

where P„, is the longitudinal momentum of the string.
In (4.5) the frequency is defined in string units. If an ex-
periment is performed by an observer with a resolution
time e, then the modes with v) 1/e should be cut off.
Hence we define a resolution-dependent size 8 i(e) by

tot/E j P
R,'(e) = g —=ln

l
(4.6)

aX'
BcT

BXy BXj

Bo 07
(4.7)

where I represents the contribution from compactified
modes, fermionic modes, etc. We can rewrite (4.7) in

terms of Virasoro generators:

BX y L(t )
ilu I (I )

ilv-
Bo

(4.8)

which can be integrated to give

X+=X+(c.m )+ g . + e
il il

Using the standard Virasoro algebra, one finds

(0~[X (o ) —X+(c.m. )] ~0) —g t,
I

(4.9)

(4.10)

which diverges quadratically. The cure is as before.

Averaging X+ over a resolution time e cuts off the sum at
t -P/e. Thus,

Evidently, the transverse size grows exactly as in the
branched diffusion model of Sec. II [3,9]. The
phenomenon of transverse growth with decreasing resolu-
tion time has been noted previously but its connection
with black hole horizons has not. The longitudinal

behavior as a function of resolution has not, to my

knowledge, received any attention. To compute the mean

longitudinal spread hz, we use the constraint equation

X (cr l=X (c m )+ g e' +
I

(4.2)

p2
& 0~ [X'(o )

—X+(c.m. ) ]'~0)—
62

(4. 1 1)

The transverse size of the string can be estimated by corn-
puting the quantity P (4.12)

R'" = ( [X,(o)—X,(c.m. )]-'), (4.3)

(4.4)

which diverges logarithmically. This divergence is the

where the expectation value is calculated in whatever
state is under consideration. From the ground state one
easily finds

Equation (4.12) indicates that no Lorentz contraction
of the string distribution takes place. The two properties
(4.6) and (4.12) are precisely what is needed in order that
an infalling string appear to spread over the stretched
horizon without escaping to r *= —~.

The spreading process begins to occur when the string
reaches the stretched horizon at distance l, from the

event horizon. The process is very similar to the stochas-
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tic evolution of a scalar field in an inAating universe. In
both cases more and more modes enter the description
with time. These modes enter with random phase and
amplitude. In each case the growth and spreading over
the target space can be described by stochastic interac-
tions with a heat bath. In the string case the heat bath is
provided by the Unruh effect.

If no other effects take place, the string would grow to
a size comparable to the Schwarzschild radius in a time
given by

t=g M (4.13)

V. PHILOSOPHICAL IMPLICATIONS

Black hole complementarity and its realization in
string theory imply profound changes in our current

in Planck units. If g is small, this is a short time by com-
parison with the evaporation time of the black hole.

As the string replicates, its transverse density in-
creases. At the center of the distribution the average
number of strings N passing through a region of area 3
(measured in string units) is of order exp(R~) —e'~

However, this enormous density of string certainly leads
to new effects once it becomes of order I/g . At this time
the probability for string interactions becomes unity and
perturbation theory breaks down. One attractive possi-
bility is that the growth of string density is cut off at this
point. The result would be that the density grows until
there is about one string per unit Planck area. This is
also suggested by the fact that the entropy of a black hole
is proportional to its area as measured in Planck units.

Perhaps the most remarkable aspect of the above
description is that none of it is seen by an observer who
falls through the horizon with the string. Such an ob-
server sees the string with a fixed time resolution and
therefore sees a constant transverse and longitudinal size
as the horizon is crossed.

views of matter and space-time. These concepts further
erode the classical realism of the Newtonian picture of
the universe. They entail a new degree of relativity and
observer dependence of reality. The special theory of re-
lativity destroyed the invariant meaning of simultaneity.
Quantum theory introduced the idea of incompatible
measurements and eliminated the classical concept of a
well-defined trajectory. What was left intact is the invari-
ant event, occurring in a well-defined space-time location
even if that event can only be predicted statistically.
Now, however, even that can no longer be relied upon.
Consider, for example, that the destruction of an indivi-
dual falling into a black hole takes place in a space-time
region and in a manner which appears entirely different
to observers in free fall and those supported outside the
horizon. To those in free fall, the individual easily sur-
vives the passage through the horizon but is destroyed by
infinite tidal forces much later. The outside observer
witnesses death by heat at the stretched horizon. Which
is correct? In my view there is no more an answer to this
question than to whether two events really are simultane-
ous or to which of the two paths a photon traveled.

All of this is possible only because matter is not an-
chored in space-time as in classical or quantum field
theory. The more precisely one tries to resolve the loca-
tion of the constituents of matter, the more they fiuctuate
to large distances. Probing strings with infinite time reso-
lution reveals that each bit of string fills space out to
infinite distances. Only because finite energy implies
finite time resolution do we see localized matter.
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