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Two techniques for computing black hole entropy in generally covariant gravity theories including
arbitrary higher derivative interactions are studied. The techniques are Wald's Noether charge
approach introduced recently, and a field rede6nition method developed in this paper. Wald s results
are extended by establishing that his local geometric expression for the black hole entropy gives the
same result when evaluated on an arbitrary cross section of a Killing horizon (rather than just
the bifurcation surface). Further, we show that his expression for the entropy is not affected by
ambiguities which arise in the Noether construction. Using the Noether charge expression, the
entropy is evaluated explicitly for black holes in a wide class of generally covariant theories. For
a Lagrangian of the functional form L = I(g, 7' Q, g s, R s,s, V,Roy, s), it is found that the
entropy is given by S = —2z'$(Y ' —V, Z" '")i ss,ss, where the integral is over an arbitrary

cross section of the Killing horizon, s s is the binormal to the cross section, Y ' = BL/BR s,s,
and Z" ' = BI,/BV, R s,s Furth. er, it is shown that the Killing horizon and surface gravity

of a stationary black hole metric are invariant under field rede6nitions of the metric of the form

g ~ = g ~ + 4 &, where A p is a stationary tensor field that vanishes at infinity and is regular
on the horizon (including the bifurcation surface). Using this result, a technique is developed for

evaluating the black hole entropy in a given theory in terms of that of another theory related by field

redefinitions. Remarkably, it is established that certain perturbative, 6rst order, results obtained
with this method are in fact exact. A particular result established in this fashion is that a scalar
matter term of the form V rgb ~P in the Lagrangian makes no contribution to the black hole

entropy. The possible signi6cance of these results for the problem of finding the statistical origin of
black hole entropy is discussed.

PACS number(s): 04.70.Dy, 04.50.+h, 04.70.Bw, 05.70.Ce

I. INTRODUCTION

Black hole thermodynamics seems to hint at some pro-
found insight into the character of gravity in general, and
quantum gravity in particular. The hope is that further
study will reveal something about the nature of quantum
gravity. One direction to pursue is to investigate the sta-
bility of black hole thermodynamics under perturbations
of the classical (Einstein) theory that are expected on
general grounds as a result of quantum effects.

Whatever the ultimate nature of quantum gravity,
there should be an effective Lagrangian that describes
the dynamics of a classical "background Beld" for suffi-
ciently weak fields at suKciently long distances. Such a
low energy effective action will presumably be generally
covariant, and will have higher curvature terms, and also
higher derivative terms in the metric and all other mat-
ter fields. For example, such interactions naturally arise
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&om renormalization in the context of quantum field the-
ory [1],and in the construction of an effective action for
string theory [2]. While such actions are pathological if
taken as fundamental, they can define benign perturba-
tive corrections to Einstein gravity with ordinary matter
actions. Let us also add at this point that many of the
recent candidates for a theory of quantum gravity, espe-
cially those which attempt to unify gravity with other
interactions, are theories in higher dimensional space-
times. Thus in the following investigation, we will allow
space-time to have an arbitrary dimension D.

The question we would like to address is whether the
laws of black hole thermodynamics are consistent with
all such effective actions, or whether perhaps consistency
with these laws picks out a preferred class of poten-
tial "corrections" to classical gravity. Most recent ef-
forts have been devoted to calculating the entropy S
for explicit black hole solutions in various theories. It
is well known that, in general, the standard relation
S = /A(4G') of Einstein gravity no longer applies [3, 4].
Until recently though, it had not even been established
(except for special cases, e.g. , Lovelock gravity [5]) that
the entropy can be expressed as a local functional evalu-
ated at the horizon. Now several researchers have shown
that S is indeed local in general, and have provided vari-
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ous techniques to compute it [6—8]. In this paper, we will

coiIipute S for a wide class of theories, using both Wald's
Xoether charge technique [6], and a method exploiting
field redefinitions that we developed prior to the recent
appearance of more powerful and general techniques [6,
7]. In addition, we will extend the results of [6] by show-

ing why ambiguities in the Noether charge construction
do not affect the entropy, and establishing an expression
for the entropy, which is valid on arbitrary cross sections
of the horizon (rather than just on the bifurcation sur-
face) .

A key concept in what follows is the notion of a Killing
horizon. A Killing horizon is a null hypersurface whose
null generators are orbits of a Killing field. In four-
dimensional Einstein gravity, Hawking proved that the
event horizon of a stationary black hole is a Killing hori-
zon [9]. This proof cannot obviously be extended to
higher curvature theories (however, no counterexamples
are known, including some nonstatic solutions [10]). If
the horizon generators of a Killing horizon are geodesi-
cally complete to the past (and if the surface gravity is
nonvanishing), then the Killing horizon contains a (D
2)-dimensional spacelike cross section B on which the
Killing field y vanishes [11]. B is called the bifurca-
tion surface Such .a bifurcation surface is fixed under
the Killing flow, and lies at the intersection of the two
null hypersurfaces that comprise the full Killing horizon.
(For example, in the maximally extended Schwarzschild
black hole space-time, the bifurcation surface is the 2-

sphere of area 16vrG M at the origin of Kruskal U-V
coordinates. ) The techniques employed for computing
black hole, entropy in this paper all apply only to black
holes with bifurcate Killing horizons. For a space-time
containing an asymptotically stationary black hole that
forms by a collapse process there is certainly no bifurca-
tion surface. However, the operative assumption is then
that the stationary black hole, which is asymptotically
approached can be extended to the past to a space-time
with a bifurcate Killing horizon. Investigation of the va-

lidity of this fundamental assumption is important but
will be left to other work.

The zeroth law of black hole thermodynamics states
that for a stationary event horizon the surface gravity v,
which is proportional to the black hole's temperature (in
any theory of gravity [12]), is constant over the entire
horizon. If y is the null generator of the horizon, rc is
defined by y 'I7gy = ~y . This constancy of z on Killing
horizons has been proven for Einstein gravity [13] with
matter satisfying the dominant energy condition, but this
proof does not readily extend to the present context of
higher curvature theories. If one assumes (as we do) a
bifurcate Killing horizon, however, then constancy of the
surface gravity is easily seen to hold independently of
any field equations. Conversely, if the surface gravity is
constant and nonvanishing on a Killing horizon, then the
horizon can be extended to a bifurcate horizon [11].

The first law of black hole thermodynamics takes the
form

M, J~ ~, and O~ ~ are the black hole mass, canonical an-
gular momentum, and the angular velocity of the horizon
[14]. The ellipsis indicates possible contributions from
variations of other extensive parameters which charac-
terize the black hole (e.g. , electric or magnetic charge).
For Einstein gravity, the entropy S is one-quarter the
surface area of the horizon: S = A/(4G). Equation (1)
then has the rather remarkable feature that it relates
variations in properties of the black hole as measured at
asymptotic infinity to a variation of a geometric prop-
erty of the horizon. Given the recent results of Refs. [6,
7], one now knows that although the precise expression
for the entropy is altered, it remains a quantity localized
at the horizon for arbitrary theories of gravity, and so
this aspect of the first law is preserved.

The remainder of the paper is organized as follows. In
Sec. II, we describe %aid's result that the entropy is a
Noether charge [6], generalize it to arbitrary horizon cross
sections, and discuss the extension to nonstationary black
holes. We also apply this technique to compute S for a
certain wide class of Lagrangians. Section III introduces
the field redefinition technique, and illustrates it with
examples. Section IV presents a discussion of our results
and their possible implications for the problem of the
statistical origin of black hole entropy. Throughout the
paper, we consider only asymptotically flat spaces, and
we employ the conventions of [15].

II. ENTROPY AS A NOETHER CHARGE

5 = 2m $ Q, (2)

Wald [6] has recently derived a general formula for the
entropy of a stationary black hole based on a Lagrangian
derivation of the Brst law of black hole mechanics. The
results of [6] apply to black holes with bifurcate Killing
horizons in any diffeomorphism invariant theory in any
space-time dimension. (The entire discussion of this sec-
tion refers to stationary black holes of this type, except
in Sec. IIC.)

Given the symmetry of diffeomorphism invariance,
there is a conserved Noether current associated to any
vector field (see below). Wald begins with the Noether
charge associated with the horizon generating Killing
Geld y, defined by integrating the Noether current over
a spacelike hypersurface extending from asymptotic in-
finity to the bifurcation surface in a stationary black hole
solution to the field equations. (According to our results
below, the inner boundary could be chosen as any space-
like slice of the horizon. ) Upon considering a variation of
the fields away &om the background solution, he Bnds an
identity relating a surface term at infinity to another on
the horizon, in the form expected for the first law. The
terms at infinity yield precisely the mass and angular mo-
mentum variations appearing in Eq. (1) [16]. From the
other boundary term, Wald thus finds that the entropy
is given by

where the integral is over the bifurcation surface of the



49 ON BLACK HOLE ENTROPY 6589

horizon. The (D —2)-form Q is the "Noether potential"
(defined below) associated with the Killing field y that
is null on the horizon and normalized to have unit surface
gravity. As we shall show below, one obtains the same
result for the entropy if Q is integrated over any cross
section of the horizon.

The entropy (2) is not expressed in terms of only the
dynamical fields and their derivatives, since by construc-
tion Q involves the Killing field y and its derivatives.
(The Killing field is of course determined by the met-
ric, but by an integral operation rather than diKeren-
tial ones. ) However, as noted in [6], the explicit depen-
dence on y can be eliminated as follows. First, one uses
the identity V', V' ys = —R s,~y (which holds for any
Killing vector) to eliminate any second or higher deriva-
tives of y, leaving only y and V' ys. The term linear in

contributes nothing at the bifurcation surface, since
vanishes there. Moreover, at the bifurcation surface

one has V' ys = e b, where i s denotes the binormal to
B This. allows one to substitute e s for V ys in the ex-
pression for Q. Thus, at least at the bifurcation surface,
all explicit reference to the Killing field can be eliminated
&om Q. Let us denote by Q the form that is obtained
from Q in this fashion. Then the expression 2m f Q eval-

uated at the bifurcation surface correctly displays the
entropy as a "local" geometric functional of the metric,
the matter fields and their derivatives. It will be shown
below that in fact S = 2n $ Q on an arbitrary cross sec-
tion of the Killing horizon.

Wald's construction for the entropy has tremendous
advantages compared with methods previously available.
One works with an arbitrary Lagrangian, and there is
no need to find the corresponding Hamiltonian, as in

Ref. [8]. Further, there is no need to identify a preferred
surface term in the action. Adding a total derivative to
the Lagrangian does not affect the entropy (2), as will

be shown below. Another feature to be noted is that no
"Euclideanization" is required.

In the remainder of this section, we first sketch the
Noether charge construction [17,18], and explain why the
attendant ambiguities do not affect the entropy. Then,
we show how the entropy can be expressed as an integral
over an arbitrary cross section of the horizon, rather than
over the bifurcation surface. Next, we discuss the possi-
ble definitions of entropy for nonstationary black holes.
Finally, we explicitly compute the black hole entropy for
a wide class of Lagrangians.

A. The Noether potential Q

The (D—2)-form Q may be defined as the potential
for the corresponding "Noether current" (D—1)-form J,
in the case that J = dQ. The symmetry relevant for
the black hole entropy is di8'eomorphism invariance. The
Noether current associated with the de'eomorphism gen-
erated by a vector field ( is defined as follows [17]. Let L
be a Lagrangian D-form built out of some set of dynam-
ical fields, including the metric, collectively denoted here
by g. Under a general field variation bg, the Lagrangian
varies as

bL = E . bQ + d8(bg),

where the centered dot denotes a summation over the
dynamical fields including contractions of tensor indices,
and E = 0 are the equations of motion. [The ambiguity
8 m 8+ dp allowed by (3) is inconsequential —see below. ]

The difI'eomorphism invariance of the theory is en-

sured if, under Geld variations induced by diKeomor-
phisms hQ = Et/, one has bL = ZtL = dig L [19]. The
Noether current J associated with a vector field ( is
defined by

J = 8(l:tg) —igL,

where 8 is defined by (3). One easily sees that dJ = 0,
modulo the equations of motion, as a consequence of
the diKeomorphism covariance of the Lagrangian. Thus,
modulo the equations of motion, we have J = dQ, for

some Q, at least locally. Much more can be said, how-

ever, as a consequence of the fact that J is closed for all
vector fields ( . Namely, there exists a unique, globally
defined Q satisfying J = dQ, that is a local function of
the dynamical fields and a linear function of ( and its
derivatives [18]. Moreover, Ref. [18]presents an inductive
algorithm for constructing Q in such a situation. We call

Q the Noether potential associated with ( . The Noether
charge for a spacelike (D—1)-dimensional hypersurface M
is given by fM J, and hence, in this case, reduces to the

boundary integral f&M Q. Thus the black hole entropy

(2) is 2s' times the contribution to the Noether charge
coming from the boundary at the horizon.

There are three stages at which ambiguity can enter
the above construction of the Noether charge. First, an
exact form da can be added to the Lagrangian without

changing the equations of motion. This induces an extra
term l:ta in 8(l:tQ), and therefore extra terms dita and

isa appear in J and Q, respectively. Now in the entropy

(2), f is chosen to be the Killing field y, and Q is eval-

uated at the bifurcation surface where y =0. Thus the
extra term i„-a makes no contribution to the entropy. In
fact the extra term vanishes everyiiihere on the horizon,
as will be shown below, leaving 2vr $ Q unmodified for

any cross section of the Killing horizon.
The second ambiguity arises because 8 is defined by (3)

only up to the addition of a closed form P. Assuming P
is closed for all variations hg (and that it vanishes when

bg = 0), then the result of [18] quoted above implies
that P has the form dp. Thus 1 and Q are modified by
the addition of dp(l:~g) and p(l:tg), respectively. With

( equal to the Killing field y, the extra term p(EX/)
vanishes because l:xg = 0 for the background fields Q in
a stationary solution. In this case, it is immediately clear
that this ambiguity will not affect 2vr g Q for any slice of
the horizon.

The third ambiguity arises because Q is defined by
J = dQ only up to the addition of a closed form o. With
the same assumptions as for P in the previous paragraph,
we similarly conclude that o is exact. Since the integral
of an exact form over a closed surface vanishes, Q and

Q + o yield the same entropy.



6590 TED JACOBSON, GUNGWON KANG, AND ROBERT C. MYERS 49

B. Arbitrary horizon cross sections

There are several reasons why it is important to be
able to evaluate the black hole entropy as an integral
over an arbitrary slice of the Killing horizon rather than
only at the bifurcation surface. For one thing, if the
(approximately stationary) black hole formed from col-
lapse, then the bifurcation surface is not even a part of
the space-time. As a practical matter, it may be incon-
venient to have to determine the geometry and matter
fields in the vicinity of the bifurcation surface, for in-
stance, if the solution is known in a coordinate system
that does not extend all the way to there. The primary
reason though arises because one wants to have a defini-
tion of the entropy that applies to nonstationary black
holes. A clear prerequisite for such a definition is that it
yield the same result for any cross section of a stationary
black hole horizon.

In the case of general relativity, Eq. (2) yields one-
quarter the area of the bifurcation surface for the en-

tropy. It is a simple consequence of stationarity that all
cross sections of the Killing horizon are isometric, so, in
particular, they have the same area. Thus one can de-
duce that the entropy is one-quarter the area of any cross
section of the horizon. Similarly, in Lovelock gravity, it
was found [5] that the entropy depends only upon the
intrinsic geometry of the bifurcation surface. Since all
cross sections of the horizon are isometric, the entropy of
Lovelock black holes is given by an intrinsic expression,
which can be evaluated over any cross section with equal
results.

For a general theory, the entropy (2) does not depend
only upon the intrinsic geometry of the horizon, so it is
not immediately clear what form it will take on arbitrary
cross sections of the horizon. Nevertheless, it is easy to
see that $ Q is in fact the same for all cross sections of a
stationary horizon. The difference between the integrals
over two cross sections is given by the integral of dQ =
J over the segment of the horizon that is bounded by
them. For a stationary space-time, Eq. (4) yields J =
—i~I, whose pullback to the horizon vanishes, since y is
tangent to the horizon. Thus the entropy is indeed given
by (2) with the integral taken over any cross section of
the horizon.

Can the explicit dependence of the entropy on the
Killing field be eliminated on any slice of the horizon,
as was possible at the bifurcation surface? Recall that, as
explained above, when eliminating the Killing field from

Q to obtain Q, Wald used the fact that y vanishes at
the bifurcation surface and the fact that V' yb is the bi-
normal, neither of which are true on an arbitrary cross
section. Nevertheless, we will now show that although

does not vanish the term proportional to y vanishes,
and although V' yb is not the binormal the difFerence be-
tween it and the binormal makes no contribution. That
is, the entropy is given by 2m g Q on any cross section of
the horizon.

When any higher derivatives of the Killing field are
eliminated by use of the Killing identity, the Noether
charge takes the general form

Q = &oX + & b& X',

where B and C b are tensor-valued (D —2)-forms that
are invariant under the Killing How.

The pullback to the horizon of the form B y neces-
sarily vanishes everywhere on a Killing horizon if B is
regular at the bifurcation surface. To see why, note that
the Killing field is tangent to the horizon, and there-
fore it defines a How of the horizon into itself. The form
B y is invariant under the Killing How, so its pullback
is an invariant form on the horizon submanifold. If it
vanishes at one point on a given horizon generator, it
vanishes everywhere along that generator. Now it van-
ishes on the bifurcation surface, where y vanishes, pro-
vided none of the tensor fields out of which B is built
are singular there (regularity at the bifurcation surface is
an implicit assumption already in Wald's derivation [6]).
Furthermore, all horizon generators terminate at the bi-
furcation surface. However, the Killing "flow" does not
flow anywhere at the bifurcation surface. Nevertheless,
one can argue by continuity that the components of the
form B y are arbitrarily small in good coordinates on
the horizon sufFiciently close to the bifurcation surface,
and transforming to the Killing coordinate along the How

will only make them smaller. Therefore we can indeed
conclude that the pullback of B y to a bifurcate Killing
horizon vanishes, provided B is regular at the bifurca-
tion surface. Thus this term will make no contribution
to the black hole entropy on any slice.

Now consider the second term in Eq. (5). Since the
Killing field is hypersurface orthogonal at the Killing
horizon, we have V' yb ——mt yb~ for some m defined
on the horizon. On an arbitrary cross section we there-
fore have V'~yb ——pi~b+ s~~ybj, where i~b is the binormal
to the cross section, p is some function, and s is some
spacelike vector tangent to the cross section. Contracting
both sides of this equation with y we find that p = 1,
so we have

7agb —~ab + ~tagbj

The same reasoning as in the previous paragraph leads to
the conclusion that the pullback of the covariant tensor-
valued form | by vanishes on the horizon [20]. Thus the
second term in (6) does not make any contribution to the
pullback of Q, and therefore makes no contribution to the
entropy. The conclusion is that when pulled back to any
point of the Killing horizon, Q = C be

b = Q. Therefore
in fact the entropy (2) is also given by 2vr $ Q over any
cross section of the horizon.

In the above arguments as in Ref. [6], one makes the
assumption that the horizon is a regular bifurcate Killing
horizon, and that all the fields (not just the metric) are
regular at the bifurcation surface. This is a rather strong
assumption, since there certainly exist stationary space-
times with Killing horizons that do not possess a regular
bifurcation surface. How do we know that the stationary
solution to which a black hole settles down might not be
of this type'? Recent work by Racz and Wald [ll] has
something very important to say on this point. Namely,
if the surface gravity is constant and nonvanishing over
a patch of a Killing horizon (and the patch includes a
spacelike cross section of the horizon), then there exists a
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stationary extension of the space-time around that patch,
which extends all the way back to a regular bifurcation
surface. This result makes it seem likely that one can dis-
pense with the need to go back to the bifurcation surface,
and instead give a local argument for the vanishing of the
pullback of the tensors B y and C by to the horizon,
provided one assumes the surface gravity is constant and
nonvanishing. In fact, such an argument exists, and will
be presented elsewhere [21].

The arguments of Ref. [11] referred only to the met-
ric, so they do not guarantee that a/I of the (matter)
fields can also be extended in a nonsingular way back to
the bifurcation surface, although that may actually be
true. Certainly one knows that all scalars formed from
the background matter fields and their derivatives (as
well as the metric and the curvature) will be nonsingular
at the bifurcation surface, since they are constant under
the Killing flow. This is not suKcient, however, since a
tensor can diverge even if all scalars formed by contract-
ing it with tensors &om some particular class are regular.
For scalar matter 6elds, we have shown that stationarity
is sufficient to enforce the desired regularity at the bifur-
cation surface [21]. In other cases, regularity may require
that additional conditions be placed on the matter fields
(rather like the assumption of constant surface gravity
for the metric). In the context of the local argument
above, these results are required so that the vanishing of
the pullbacks still holds in the presence of matter fields.

C. Nonstationary black holes

The above arguments establish that, provided a sta-
tionary black hole has a regular Killing horizon, there
is no ambiguity in the entropy, and it can be evaluated
with an integrand of the same form on any cross section
of the horizon. In the nonstationary case, there are three
obvious candidate forms for the entropy:

Sg ——2x, V'

S,=2~, V& '~,

S3 ——2' ~ b

The integrand in the Grst expression is the full potential
Q produced by the Noether charge construction. As indi-

cated, Q may depend on arbitrarily high order derivatives
of the vector field ( . In S2, all of the higher derivatives
have been eliminated from Q via identities that would
hold if ( were a Killing vector, yielding Q. Hence the
only remaining dependence on the vector field is on (
and V'~ ( ~. In the last expression Ss, the term propor-
tional to ( is dropped, and V'~ (i,i is replaced by the
binormal e g to the particular slice over which the inte-
gral is to be evaluated, yielding Q in the integrand. As
discussed in the preceding subsection, all three of these
expressions yield identical results when pulled back to a
bifurcate Killing horizon, with ( equal to the horizon
generating Killing field.

Now if one wishes to define the entropy of a nonsta-
tionary black hole, it is not so clear what to do. There
is apparently no preferred choice of vector Geld out of
which to construct S~ and S2. Further, the ambiguities
explained in Sec. II A can no longer be dismissed, and all
of three of the expressions may contain significant ambi-
guities. In the absence of a deeper understanding of black
hole entropy, it would seem that there is no fundamental
criterion that might be imposed in defining the entropy
of a nonstationary black hole, other than it prove con-
venient for deriving results about the change of entropy
in dynamical processes. Of course, if an entropy that
satis6es the second law can be defined, that would be a
preferred definition.

Actually, for nonstationary perturbations of stationary
solutions, the entropy is well-de6ned. Using the Noether
charge approach [6], the first law has been established for
variations from a stationary to an arbitrary, nonstation-
ary solution. In this law, the entropy of the nonstation-
ary solution is de6ned as Sq, evaluated at the bifurcation
surface of the stationary background. However, it turns
out that in fact one has b Si ——b S2 ——b Ss in this case
[6]. Moreover, as required by consistency with the first
law, the ambiguities in Q discussed in Sec. II A do not
afFect Sq at the bifurcation surface for these nonstation-
ary perturbations. [This is obvious for the first and third
ambiguities but requires a short computation for the sec-
ond one, where Q is modified by the addition of p(Zxg)
[6] ]

%aid proposed S3 as the natural candidate for the en-

tropy of a general nonstationary black hole, since it is a
local geometrical expression [6]. Our results of the pre-
ceding section show that this proposal at least has the
merit that for a stationary black hole, it gives the correct
entropy on any slice of a Killing horizon. It also seems
to meet the criterion of convenience when compared to
the alternatives Sq and S2, since no external vector Geld
is required. Of course, one must still resolve the inherent
ambiguities in Q in some fashion.

To define Sz or S2 in a dynamical process joining two
(approximately) stationary black hole states, one must
choose some vector field, which agrees with the initial
and Gnal horizon-generating Killing fields. It would seem
natural to demand that the vector Geld also be tangent
to the event horizon generators through the intermediate
nonstationary interval (although this could only be ap-
proximately the case, since the original Killing horizon
must be somewhat inside the event horizon). With such

P

a vector field, one can construct Q and Q, and test Si
and S2 as candidates for the black hole entropy. Having
chosen an arbitrary vector field to define Q, one still has
J = dQ. Thus during the dynamical process, the changes
in Sq &om slice to slice will be given by the flux of the
Noether current through the intervening segment of the
horizon [6], and the total change in the entropy between
the two stationary stages will be given by the total flux
of Noether current. It would be interesting if one could
establish that (S2 or) Ss, with some particular choice of
slicing of the horizon, coincides with Sq for a particular
choice of vector field. In this case, the change of (S2 or)
S3 could also be connected to a flux of Noether current.
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D. Explicit entropy expressions

In this subsection we will Gnd an explicit expression for
the entropy in a wide class of theories. (We only retain
the contributions denoted as Q, above. ) As stated above,
Ref. [18] presents an inductive algorithm, which can be
used for constructing the Noether charge Q. Two use-
ful facts, which arise from this construction, and which
will simplify our calculations below, are if the maximum
number of derivatives of ( in J is k, then (i) the maxi-
mum number in Q is k —1, and (ii) the term in Q with
k —1 derivatives is algebraically determined by the term
in J with k derivatives.

Let us first compute the entropy for a general
Lagrangian of the functional form L = L(g, V' I/

g s, R s,~), that is involving no more than second deriva-
tives of the space-time metric g b, and first derivatives of
the matter fields, denoted by g . Since ultimately the
potential form is pulled back to the horizon, where the
(pulled-back) term linear in the Killing field y vanishes,
we need only determine the part of Q involving at least
first derivatives of ( . Hence we only require the part of
1 with at least second derivatives of ( . From (4), this
is the part of 8(l:gg) with at least second derivatives of
(, and then it follows from (3) that the latter is given

by the part of bL involving at least second derivatives of
the Geld variations. For the class of Lagrangians, we are
considering, such terms can only arise from variations of
the Riemann tensor.

To implement the form notation in computations, it
is convenient to introduce the notation ~, . .. , which
denotes the volume form ~, ... D regarded as a tensor
valued (D —m)-form. Note that there are therefore many
notations for the same tensor field, and we use whichever
one is convenient at any given juncture. A result that we

will make use of is

d(W' e, .. . )=m((7W' - ')e
With the D-form ~, the Lagrangian form may be writ-

ten as L = Le, where L = L(g, 7' g, g s, R s,d) is a
scalar function. Now varying L, one has

hL = Y '"( 2V' V',—bgbd) e + .

= '(7 (—2Y '"V',hgsd e) +

and so

(12)

where we have dropped the terms, which vanish for
(" = 0. The entropy is given by S = 2Ir g Q(y), where
the integral may be evaluated on any cross section of
the horizon. One may also construct Q by making the
replacement V', yg ~ ~„d,, which then yields

= —2a Y 6~b6~(gc- (13)

In the second line we have introduced e, the induced vol-
ume form on the horizon cross section, and used the iden-
tity c b

———i bi, which holds when e b is pulled back as a
( D —2)-form'to the horizon cross section. (We have not
distinguished the various expressions for S here, since
they yield identical results on a Killing horizon. ) This
rather general result (13) was also derived in Refs. [7,
22].

It is a simple exercise to show that Eq. (13) reproduces
S = A/(4G) for Einstein gravity, as well as the expression
for the entropy of Lovelock black holes derived by Hamil-
tonian methods in Ref. [5]. While in these examples the
black hole entropy depends only on the intrinsic geometry
of the horizon, generically the entropy (13) depends on
both the intrinsic and extrinsic geometry. It is a straight-
forward exercise to extend this result, for example, to
Lagrangians including first derivatives of the Riemann
teIlsorii. e. , L': L(lP~, 7 a'lP~, gaS, RaScg, 7 cBaScd). The
final result reduces to

where now the ellipsis refers to terms with less than sec-
ond derivatives of (

At this point one can apply the formulas of [18] to
write down the leading term in Q, but it is just as easy
to read it off directly from (11) above. To do so, we

must massage (11) so that the leading term appears as
an exterior derivative, together with terms that involve
less than two derivatives of ( . We have

J = —2Y '"V'(, (7b)(ye +
= —2Y ' (7sV', (g e

= Vb( 2Y— ' 7',(ge ) +

where the ellipsis indicates terms that make no relevant
contributions to Q, and the tensor Y ' is defined by S = —2m Y ' —V, Z '

a~be, ge) (14)

0 = —2Y Vc~gbd, ~a+. . . (10)

and thus the Noether current is given by

J = 2Y ' 7c(V'b—(q+ 'Vq(b)ea+.

2Y '"V'(,V—b)(ge +

Y ' =c)L/M s,d .

Note that the tensor Y '" has all symmetries of Rie-
mann tensor (i.e.,

Yabcd Y[ab][cd] Yabcd Ycdab and
Y [ ] = 0; the last will not be used in the following),
and hence the indices on V' V', bgbd need not be explicitly
antisymmetrized. Comparing Eqs. (3) and (9), we see

where we have introduced the tensor Z"
BL/BV', Rag g In principle, this. result could have been
more complicated because the Noether current now in-
cludes third derivatives of the vector (, but one finds
that the (anti)symmetries of Z" ' reduce the order of
the derivatives in all such terms. Recently, Iyer and Maid
have produced a result, more general than Eq. (14), for
Lagrangians containing arbitrarily high order derivatives
of the curvature [6].

Finally, we would like to provide an explicit illustration
of the ambiguities that arise in these expressions for black
hole entropy. Consider the following interaction involving
the metric and a scalar field:
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I; = [V V' pV Vbp —(V' p) + R bV' QV Q]e

Despite the fact that second derivatives of the scalar ap-
pear in I„by the arguments above, it is not hard to see
that those terms make only contributions to Q with no
derivatives of ( . Hence Eq. (13) may still be applied,
and from Y,

'" = —V~ Pgbj~'V~/, one finds a contribu-
tion to the entropy:

S; =2' g bV' V' (15)

where g+b is the metric in the subspace normal to the
cross section on which this expression is evaluated. Now,
in fact, L; is a total derivative:

L, = dn; = d[(V V PVbg —V PV P)e ].

III. FIELD REDEFINITIONS

In this section we introduce a new technique, based on
Geld redeGnitions, for computing black hole entropy. If a
Geld redeGnition can be used to relate the actions, which
govern two theories, then the entropies of black holes in

By the arguments of Sec. II A, this only produces a con-
tribution Q; = ign; to the Noether potential with no
derivatives of $, which yields a vanishing contribution
to the entropy, S,' = 0. At one level, this apparent con-
tradiction is resolved by the observation that S; vanishes
as well. To see why, note that g+& ——y Pb + P y, where

P is a vector orthogonal to the cross section that satisfies

p p = 0 and p g = 1 at the horizon. The integrand
in Eq. (15) evidently vanishes, since it is proportional to
y V P = l:zP = 0, so one does have S; = 0 when evalu-
ated on a slice of a Killing horizon. On a nonstationary
horizon, the Lie derivative would not vanish, and hence
one would expect in general that S; g S!= 0.

The discrepancy between the forms of Q; inferred from

(12) and from Sec. IIA, arises because the ambiguity
8, ~ 0;+dp; in the definition of 8; has implicitly entered
our calculations. The discussion in Sec. IIA, by which

L; = dn; would yield Q; = ign;, asserts that 8(Egg) =
This form explicitly disagrees with the result in

Eq. (10) if one inserts Y; b'" as given above, and 6gbg =
V'b (g + Vg (b. However, it is not hard to show that this
latter result can be reexpressed as dp;(Egg) up to terms

that make no contribution to Q. Alternatively, one may
consider Q in Eq. (12) directly

Q(g) Yabcd V ( +
V( y»)[ V~lyV gee b+. . .

=
I

V 0V [&~&l — V&V.&[&-~e]'
I

e b+ "b 1

2 )
=~'(&(&)+ "

where as usual we drop terms with no derivatives on

( . Thus the contribution to the entropy calculated in
Eq. (15) could be eliminated via the ambiguity in the def-
inition of 0. This explicitly illustrates that these ambigu-
ities must be resolved in establishing a unique definition
of black hole entropy for nonstationary horizons.

these theories turn out to be related via the same field
rede6nition. Hence one can determine the entropy for a
new theory by using a 6eld redefinition to transform it
to a theory for which the entropy is already known. This
technique is useful because Geld redeGnitions can intro-
duce (or remove) certain higher curvature interactions
and other higher derivative terms in a gravitational ac-
tion. In general, the expression for black hole entropy [in
particular, S = A/(4G) for Einstein gravity] is modified
by such field redefinitions [23].

The field redefinition technique would not be very prac-
tical if it were not for the remarkable fact that the leading
order perturbative result is in fact exact, as one can infer
from the general form, which the entropy density takes in
a Noether charge derivation. We will illustrate this per-
turbative procedure and its justification with an example
below.

The validity of the 6eld rede6nition technique rests
on the fact that both the asymptotic structure of the
space-time and the horizon structure are left intact by the
6eld redefinitions we consider. To understand this point
further, suppose a metric g b is de6ned by g b

= g b +
6 b, where g b is an asymptotically Hat black hole metric,
and 6 b is a tensor field constructed from g b and/or
other tensor fields with the property that it vanishes at
infinity. For example, b b might be a multiple of R b,
the Ricci tensor of g b. Then, provided the tensor field
b, b falls off fast enough at infinity, the mass and angular
momentum of the space-time given by g b will be the
same as that for g b. Moreover, if g b is a stationary
black hole space-time with a bifurcate Killing horizon
generated by a Killing vector y, and if Zzb, b = 0, then

is a Killing field for g b as well, and g b has the same
Killing horizon and surface gravity as g b. The condition
that 6 b be invariant under the Killing field is satisfied
in our application, since 6 b will be constructed &om the
metric and matter 6elds in a stationary solution of some
theory. The fact that the Killing horizon and surface
gravity are common to both g b and g b requires further
explanation.

First we reiterate that y is clearly a Killing field for

g b, provided it generates a symmetry of both g b and any
fields entering 6 b. The bifurcation surface B is de6ned
by the metric-independent equation y = 0, so it must
coincide for the two metrics. The (D —2)-dimensional
surface B is spacelike with respect to g b by assumption,
and in fact also with respect to g b. To see why, note
that the 2-form V yb (where gb = gb, g') is orthogonal to
B, and is timelike: (V gb)(V gb) = (V yb)—(Vby ) =
—(V yb)(Vbg ) = —2z2, where z is the surface gravity
of the Killing horizon with respect to g b. To obtain the
second equality we evaluated on B, where y vanishes.
This computation shows not only that B is spacelike with
respect to g b but also that the surface gravity with re-
spect to g b agrees with that of g b.

Now if a Killing field vanishes on a spacelike (D —2)-
surface B, then the null hypersurface generated by the
null geodesic congruences that start out orthogonal to
B is a Killing horizon [24]. In fact, the Killing horizon
generated in this fashion for the metric g b coincides with
that for g b. This follows because, although the light
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cones defined by g b and g b do not in general agree, it
so happens that the Killing field is null with respect to g b

everywhere on the Killing horizon 'R of g b. To see why,
note that gaby y = Gaby y, which defines a scalar
that is constant along the orbits of the Killing field. As

long as 6 b is regular at the bifurcation surface, where
vanishes, this scalar must therefore vanish everywhere

on
Now consider the first law of black hole mechanics (1)

in both theories. We assume that the field redefinitions
leave the asymptotic properties of the black holes (e.g. ,
the mass and angular momentum) unchanged in trans-
forming between the two theories. Now in comparing dif-
ferent black holes, the extensive variations on the right
hand side of the first law are the same in both theo-
ries. Therefore, since the surface gravities are the same,
the variation of the entropy must be the same in the
two theories for all variations. Therefore the entropies

must be the same up to a constant, within any con-
nected set of stationary black hole solutions. Therefore,
the entropy of a black hole in the theory with action
I[g b, . . .] is given by the entropy in the theory with ac-
tion I[g b, . . .] = I[g b(g, . . .)], evaluated on the (com-
mon) Killing horizon, and reexpressed in terms of g b

and the rest of the fields.
We now illustrate the procedure with an example.

Consider the theory governed by the action

d zQ —g +L +&(aiR R~b+a2R )16+G

(16)

where L is a conventional matter Lagrangian (depend-
ing on no more than first derivatives of the matter fields).
Now consider the field redefinition

gab 87I Gg~b
g b

——g b+ 16+GA aiR~b — (ai + 2a2)R+ 87rGaiT~b — ((D —4)ai —4a2)T
D —2 D —22

where the energy-momentum tensor has the usual definition

b 2 bg gL bL=2 +g Lm
bgab

and T = g bT . In terms of the field g b the action takes the form

I= d zii' g +L (g)+(87rG) A(aiT Tb +b T2)+O(A )16~G

where b2 ——[4a2 —(D —4)ai]/(D —2) [25]. The coefficients in the field redefinition (17) were chosen to eliminate the
curvature squared interactions, and any curvature matter couplings such as T B b arising at order A. The resulting
action is not quite a conventional action for Einstein gravity coupled to matter fields, since the matter fields have some

higher dimension interactions. As long as L contains only first order derivatives of fields, these extra interactions
do as well. From the Noether charge method, we know that such terms do not lead to modifications of the black hole
entropy (or the mass, angular momentum, or any parameters characterizing the black holes at infinity).

For the theory governed by I(g), the entropy is simply given by the standard formula to O(A2):

S= +O(A ) = d z+h+O(A ),
A 2 1

4G 4G , (18)

where h b is the induced metric on a cross section of the horizon Z. Now expressing the entropy in terms of the
original metric, one finds

d~ 'z &h 1+ -h b bh, b+ O(A')D—2 ab

4G 2

where bh~b is the difference h~b —h~b. The intrinsic metric may be written as h~b = g~b —y~Pb —P~yb, where y is
the Killing field and P is vector field orthogonal Z, satisfying P P = 0 and P y = 1 on the horizon. Thus to first
order, bh~b = bg~b —bg~~y' Pb —y~bPb —bP~ yb —P~bgb y', and since h yb = 0 = h Pb, one has h bh~b = h bg~b.
Therefore,

8 = d z V h + 2m%~ (ai + 2a2)R —aih R b+ [(D —4)ai —4az]T —87rGaih T~b + O(A )
D —2 SvrG ab 2

4G D —2

From the Noether charge method, we know that the en-

tropy for the action (16) can be given entirely by metric
expressions, independent of the matter fields. Using the
leading order equations of motion, namely,

T b = (R b
—zg bR) + O(A)8~G

the contributions proportional to T b can be replaced by
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TABLE I. Contributions to black hole entropy from higher derivative interactions.

(Interaction) / g—g

(1) R
(2) f (P)R„„R""
(3) +(& R)
(4) f(4)L.(g)"
(5) +(@m ~

+a'l//rn
q gab~ Rabcd q +e Rabcd)

(6) V' ~p 'V ~p

(Entropy density) /(4ii~h)

1

f(4')(R —h""R~-) = f(4')gi"R~-
BRI"(p, R)
p f(P)I.„ , (h)

) 6~tb6gd
& (ycL~«g Z~:&~«4-

0

Derivation

E, N
I",H, N
H, N
N
E, N

Methods used to derive the entropy density: [F] = field redefinition method; [H] = Hamiltonian method of Ref. [8]; [X) =
Noether charge method of Ref. [6].

curvature quantities. This yields, up to terms of O(A2),

1S = d z ~h + 4~A[(ai + 2a2)R —aih R b]4G

1
d 'zvh +4~A( 2aR2+agiJ R bj4G

(20)

where g&b ——g
b —h = (y Pb+ P y ) is the metric in

the subspace normal to the horizon.
In making the perturbative expansion, we have consis-

tently ignored terir. s of order A2. Recalling the Noether
charge approach once again we see that, since the action
(16) is linear in A, the modifications to the entropy from
higher curvature terms in the original action would only
be linear in A. Therefore the leading order result (20) is
in fact the exact black hole entropy for the action (16).
(For generic stress tensors, R and R b are zeroth order in
A, so there is no ambiguity in identifying the O(A) terms
as we have done. ) Let us add that Eq. (20) agrees with
the Noether charge result in Eq. (13).

Note that if we had not accounted for the possible pres-
ence of matter fields, the above method would have led to
a modification of the entropy with precisely one-half the
coefficients given in Eq. (20). These results are not incon-
sistent, however, since for any asymptotically Hat vacuum
solution for the action (16), one has that R b = O(A),
and so we cannot make the argument as above that the
leading order result is exact. In general, in the presence
(or absence) of matter or other higher curvature interac
tions, Eq. (20) gives the correct (exact) modification of
the entropy induced by the interactions appearing in the
action (16). Also note that the terms proportional to T b

in the field redefinition (17) were required to eliminate
interactions such as R T b, which would arise at O(A),
and which would make contributions to the black hole
entropy. Thus, when using field redefinitions to reduce
an action with higher curvature interactions to a theory
for which the black hole entropy is known, it is important
to include a matter Lagrangian L, and to ensure that
extra matter interactions arising after the field redefini-
tion make no contribution to the black hole entropy or
make contributions one can evaluate.

The form of the higher curvature interactions for which
the black hole entropy can be determined via field redefi-

nitions is not completely general. However, this approach
provides a simple method to verify results derived via the
more comprehensive methods now available [6, 7]. Note
that field redefinitions of matter fields are also possible
and easily show that many matter interactions do not
modify the black hole entropy despite the fact that they
involve higher derivatives. A simple example of such re-
sults is listed in the last line of Table I. This result is
derived as follows: Beginning with Einstein gravity cou-
pled to a scalar field with I = —

2 [(V'P)2 + m2gP], a field

redefinition p —b p + AV2$ may be used to show that
an interaction (V'2P)2 produces a vanishing entropy den-
sity. Similarly the field redefinition p —b p+ A V'4p shows
the entropy is unmodified by a combination of interac-
tions, (7'2P) 2 and V' P V'4P. Having shown that the first
of these does not contribute, it must also be true that
the entropy density vanishes for V'2PV4$. Working it-
eratively in this way, it is easy to see that an arbitrary
term V'2"P V 'iP yields no contribution to the black hole
entropy. One may similarly arrive at the same conclusion
via the Noether charge technique as well.

IV. DISCUSSION

Several results have been established in this paper.
These are the following.

(i) Ambiguities in the definition of the Noether charge
Q associated with the horizon generating Killing field
(normalized to unit surface gravity) have no effect when

Q is pulled back to the horizon of a stationary black hole.
(ii) The entropy of a stationary black hole can be ex-

pressed as the integral 2vr g Q over any cross section of
the horizon, not just the bifurcation surface.

(iii) The pullback of Q to any cross section of the hori-
zon can be expressed without reference to the Killing
field, yielding the same expression found by Wald at the
bifurcation surface.

(iv) The Killing horizon and surface gravity of a sta-
tionary black hole metric are invariant under field redef-
initions of the metric of the form g g

= g ~ + 4 g, where
4 b is a tensor field constructed out of stationary fields.

(v) Using the preceding result, a new technique has
been developed for evaluating the black hole entropy in
a given theory in terms of that of another theory related
by field redefinitions. Certain perturbative, first order,
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results obtained with this method are shown to be exact.
(vi) The entropy has been evaluated explicitly for

black holes in a wide class of theories using both
Maid's Noether charge approach and the field redefini-
tion method developed in this paper. In Table I, we have
compiled a list of explicit results for certain sample higher
curvature interactions. The first line of the table gives
the result for the Einstein-Hilbert action as a reference
for our notation. The next two lines arc simple extensions
of the results in Eq. (20), to include potential couplings
(i.e. , no derivatives) of a scalar field to the curvatures.
Note that in these cases, the variation of the entropy in
the first law (1) includes variations of both the metric
and the scalar field, on the horizon. In the third line,

F(p, R) also generalizes R2 to an arbitrary polynomial
in the Ricci scalar with scalar-field interactions. The
black hole entropy of the latter interactions have also
been verified by Hamiltonian methods [26]. The third
line provides the generalization of the results of Ref. [5]
to include scalar potential couplings to Lovelock rurva-
ture interactions. All of these results are encompassed
by the general result in Eq. (14), which is listed in the
fifth line.

The results of Refs. [6—8] and this paper establish that
a first law of black hole mechanics holds for black holes
with bifurcate Killing horizons in atl generally covariant
theories of gravity, with the entropy being a local geo-
metrical quantity given by an integral over an arbitrary
cross section of the black hole horizon. The generality of
this result seems somewhat surprising. General covari-
anre plays a crucial role in allowing the total energy and
angular rnomenturn to be expressible as surface integrals
at infinity. The underlying reason for the local geomet-
rical nature of the entropy seems less transparent.

It is not clear how strong a restriction it, is to include
only black holes with a bifurcate Killing horizon. The as-
sumption that, a regular bifurcation surface exists is not
physically well motivated since, if a black hole forms from
collapse, the bifurcation surfare is not even in the phys-
ical space-time, but only in a virtual extension thereof.
On the other hand, if the surface gravity is constant and
nonvanishing on a patch of the horizon including a space-
like cross section, then the existence of a regular bifurca-
tion surface (perhaps in an extension of the space-time)
is guaranteed [ll]. Thus the assumption of a bifurcate
Killing horizon is in fact implied by the zeroth law (con-
stancy of the surface gravity). In general relativity, with
matter satisfying the dominant energy condition, the ze-
roth law can be established from the field equations. The
validity of the zcroth law in other theories remains an
open question that clearly deserves more attention, since
the validity of black hole thermodynamics rests on it.

It is worth emphasizing that it was necessary for us
to assume that not just the curvature but all the physi-
cal fields and their derivatives are regular at the bifurca-
tion surface. This condition follows from stationarity for
scalar fields [21], but may require additional assumptions
for general matter 6.elds.

Originally, the laws of black hole mechanics were a fea-
ture of classical general relativity [13],and their relation
with thermodynamics was only by way of an analogy.

With the discovery that black holes radiate quantum nse-

chanically with a temperature hr/(2x) [27], the interpre-
tation of these laws [e.g. , Eq. (1)] as true thermodynamic.
relations became entirely justified. Yet, the deep signifi-
cance of the fact that classical general relativity already
"knew about"' Hawking radiation remains to be disrov-
cred. Can any insight into this mystery be gained by
studying the way classical black hole thermodynaiiiics
generalizes to arbitrary generally covariani gravity theo-
ries.'

Within the context of classical general relativity,
Hawking's area theorem [9] implies that the "entropy"
can never decrease. Whether or not the entropy irs a
general theory satisfies such a second law reirsains an
open question, although some positive results do exist,
and will be discussed in another paper [28]. Here we just
remark that we have shown, via a field redefinition tcrls-

nique, that the second law holds in a part, icular class of
theories in which the gravitational Lagrangian is built
algebraically out of the Ricci scalar.

Although the entropy is always a local geometriral
qisantity at, the horizon, it is in general not just depcri-
dent on the intrinsic geometry of a horizon cross sec-
tion. General relativity and the Lovelock theories [29]
are exceptional, in that the entropy is purely intrinsic.
Should anything be made of this distinction? To address
this questiori, it would seem to be necessary to address a
more general question: can one understand the origin of
the "rorrections" to the area-equals-entropy law in more
fundament, al terms?

In this regard, it is interesting to consider the various
approaches to deriving black hole entropy froirs statisti-
ral considerations. One method is to evaluate the ers-

t, ropy using a stationary point approximation to the for-
mal path integral for the canonical partition functiori [30]
or for the density of states [31] in quantum gravity. These
manipulations yield the same black hole entropy as that
defined by the first law, and this correspondence should
continue to hold for arbitrary gravitational actions. This
interpretatiors of black hole entropy thus seerrss to be r~.~-

bust.
Another approach [32] locates the entropy in the ther-

mal bath of ambient quantum Fields perceived by st;a-

tionary observers under the stretched horizors. In tlsis

approach, the gravitational field equations play no role.
It is simply argued that changes in this entropy satisfy the
first law of black hole mechanics. Since the geometrically
dcFined entropy also satisfies the first law, the two rssust

coincide. This argument works for any gravitational ac-
tion, provided the dynamics leads to a stable equilibrium
state. On the other hand, this approach offers no insight
into why the black hole entropy is expressed in a particis-
lar geometric fashion. Moreover, the total entropy of t}s~

bath is infinite.
If this divergence of the entropy is regulated by im-

posing a cutofI' of sorrsc kind, one can obtain a definite
result for the black hole entropy. This is what is done in
various other approaches [33],closely related to the meui-
branc viewpoint of [32]. In those methods, the black hole
entropy is defined essentially by counting quasltum field
degrees of frecdorss either outside or inside the horizon.
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These regulated counting approaches all yield an entropy
proportional to horizon area in units of the cutofF, basi-
cally because the dominant contribution comes from very
short wavelength modes near the horizon. Choosing the
cutoff equal to something of order the Planck length, one
recovers the entropy inferred from the first law (together
with the Hawking temperature) in Einstein gravity. How,
therefore, can these counting approaches accommodate
the corrections to the area-equals-entropy law that one
finds from higher derivative terms in the action?

In response to this query we can offer the following
observations. First, it seems likely that if one could
carry out the counting more precisely, one would find
corrections to the entropy of higher order in the cutoff
(Planck) length. Moreover, the occurrence of curvature
quantities in such corrections would not be too surprising.
In a somewhat analogous context, one obtains divergent
curvature-dependent terms in evaluating the Casimir en-

ergy of a curved conducting cavity, where the curvature
refers to the geometry of the cavity boundary [34]. The
presence of a cutoff then renders these terms finite, and
they have a physically well-defined origin and value.

Since the counting argument introduces only one (cut-
off) scale, the above plausibility argument seems to fail
when the higher derivative terms in the Lagrangian have
coefficients whose orders of magnitude are not all set by
the same (Planck) scale. However, it is conceivable that

dependence of the "counting entropy" on the adjustable
coefficients in the Lagrangian might arise via the effect
they have on the geometry of the black hole background
in which the counting is done. It will be interesting to
see whether or not this effect on the background modes
has the right form to reproduce the entropy defined via
the classical first law. If not, then either this counting
interpretation of the black hole entropy is wrong, or it
is correct and it determines the coefficients in a curva-
ture expansion of the entropy, not leaving any adjustable
freedom in the Lagrangian of the theory. That is, in a
sense, the entropy functional would determine the the-
ory. Indeed one can hope, more generally, that the quest
for a statistical understanding of black hole entropy will

lead us not just to a particular low energy effective La-
grangian, but to a more fundamental theory of gravity
and matter.
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