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A Wilson loop is defined, in four-dimensional pure Einstein gravity, as the trace of the holonomy of
the Christoffel connection or of the spin connection, and its invariance under the symmetry transforma-

tions of the action is shown (diffeomorphisms and local Lorentz transformations). We then compute the

loop perturbatively, both on a flat background and in the presence of an external source; we also allow

some modifications in the form of the action, and test the action of "stabilized" gravity. A geometrical

analysis of the results in terms of the gauge group of the Euclidean theory, SO(4), leads us to the con-

clusion that the corresponding statistical system does not develop any configuration with localized cur-

vature at low temperature. This "nonlocal" behavior of the quantized gravitational field strongly con-

trasts with that of usual gauge fields. Our results also provide an explanation for the absence of any in-

variant correlation of the curvature in the same approximation.

PACS number(s): 04.60.Ds, 04.20.Cv, 04.62.+ v

I. INTRODUCTION

One open issue of fundamental interest in (3+1)-
dimensional quantum gravity is the investigation of
meaningful observable quantities.

If we regard quantum gravity either as a (not yet com-
pletely established) fundamental theory, or as an effective
quantum field theory which has general relativity as its
classical limit and goes to some more fundamental theory
at short distances, the observable quantities are impor-
tant in guiding the research.

Precisely because a complete quantum theory of gravi-

ty is still lacking, it is not possible to define in a rigorous
way what an observable is. The task is particularly
diScult also due to the huge invariance group of gravity,
namely, the group of the diffeomorphisms. The most ad-
vanced steps in this direction have been made by the
Hamiltonian theory in the Ashtekar variables [1]. In this

paper we shall take a simpler view and agree to consider
a quantity as "physically observable" if the correspond-
ing classical quantity is a scalar under arbitrary transfor-
mations of the coordinates.

More specifically, the quantities we intend to study are
the Wilson loops, or "holonomies, " of the Christoffel
connection or of the spin connection I „'&. In the men-

tioned canonical approach to quantum gravity they form
the basis of the so-called "loop representation" of the
quantum theory [2]. Also it is known that the quantum
averages of the loop operators have to satisfy the ana-
logues of the Migdal-Polyakov loop equations [3]. Some
general features of these equations have been studied by
Makeenko and Voronov [4], considering the Christoffel

On leave from University of Pisa, Pisa, Italy.

connection and the usual Einstein action in the metric
formalism. What we shall do is simpler but more expli-
cit. Keeping the local fields as the fundamental dynami-
cal variables, we shall compute the loops in a few
different cases, in order to learn about their behavior and
their geometrical meaning. The latter turns out to be
quite different from that of the holonomies of Yang-Mills
fields.

Our calculations are based on the Einstein-Hilbert ac-
tion. We shall see, however, that certain properties of the
loops do not depend on the detailed form of the action.

Since we work essentially in perturbation theory, some
problems such as the lower unboundedness of the Eu-
clidean Einstein action do not strictly affect our results.
Nevertheless, the formalism we develop will also lead us
to consider, in the final section, a different "source" for
the dynamics of the Euclidean gravitational field, namely,
the "stabilized action" of Greensite.

The plan of the paper is the following. In Sec. II, we
define geometrically in detail the Wilson loop of the
Christoffel connection and of the spin connection (in the
vector representation) and show their equivalence. In
Sec. III classical and quantum dynamics are introduced.
We also recall the well known fact that Einstein's action
is locally invariant under SO(3, 1), but not under ISO(3, 1);
so the invariant Wilson loops are just those of the
Lorentz connection, and not, like in 2+1 gravity, those
of a generalized connection which contains the genera-
tors of the translations. In Sec. IV we give one illustra-
tive example of a classical holonoxny, computing it along
a circle of constant radius in a Schwarzschild metric. In
Sec. V we consider the case of a weak gravitational field,
quantized around a Aat background. We briefly review
the corresponding perturbation theory and prove that the
leading contribution to the Wilson loop, proportional to
'AK, vanishes for quite general dimensional and symmetry
reasons. In Sec. VI an expression is given for the contri-
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bution of order A' to the holonomies computed on a
nonfat background. In general this contribution is not
vanishing in that case, due to the lower symmetry of the
background; however, it is only of order Asc . In Sec. VII
we work out in detail the geometrical meaning of the ma-
trix Q of the parallel transport in the Euclidean theory
and conclude that its trace, that is, the loop "lV, is the
sum of the squares of two angles, describing an SO(4) ro-
tation. So the vanishing of ("lV)0 to order fi implies that
in the equivalent statistical system there are no excita-
tions with localized curvature at low temperature. This
quite unexpected physical picture also explains the ab-
sence of any invariant correlation of the curvature in this
approximation [11]. Finally, in Sec. VIII we consider a
recently proposed "stabilized" version of Euclidean quan-
tum gravity [14] and show that the basic property of the
holonomies found in Sec. V is maintained in this case.
Section IX contains our conclusions.

The term —4 in Eq. (4) sets the holonomy to zero in
the case of a flat space, when the matrix 'M reduces to an
identity matrix.

Under a coordinates transformation x ~g, the matrix
Q transforms as

8 y
'Q&(x, x') ~'M&(x, x ')

For a closed curve, this transformation, being of the form

'M~A'MQ (6)

does not affect the trace of S. So the loop lN(C) is in-
variant with respect to coordinate transformations.

Instead of the metric formalism, it is also possible to
use a "first order" formalism, by introducing the vierbein
field e„'(x}and its inverse E,"(x) [6), which satisfy the re-
lations

II. DEFINITIONS

In the so-called "second order" (or metric) formalism,
classical spacetime is described by a Lorentzian manifold
M, whose geometry is encoded in a metric tensor g„„(x)
of signature ( —1, 1, 1, 1) (our conventions are those of
Weinberg [5]).

There is a natural definition of parallel transport of
tensors on M. For instance, the variation of a vector V
by an infinitesimal displacement dx" is defined by

el'(x)E'„(x) =51„', e,"(x)E„(x)=5, ,

E„'(x)E„(x)rl,b =g„„(x) .

Any vector V" (or, more generally, any tensor) can be
referred to the vierbein, with "anholonomic" components
V' given, in any point x, by

V'= V~e„'(x) .

The equivalent of (1) in terms of the anholonomic con-
nection I „'b is

dV = r„(x—)V~dx~,
pP d V'= I „'&(x)V—dx" (10)

where I „&is the Christoffel connection:

r~~= 2g "(~WI.+~mw (2)

Integrating (1) we find that the parallel transport of V
along a finite differentiable curve connecting the points x
and x ' is performed by the matrix

QI(x, x') =P exp J dy "r„&(y) (3)
x

where the symbol P means that the matrices (I „))=r„&
are ordered along the path. The indices of Q&( , xx)are
lowered and raised by g (x) and g~r(x'), respectively.

When the manifold is curved, the matrix Q depends
not only on the end points x and x', but also on the path.
In fact, if C is a smooth closed curve on M, we define the
loop functional (or "holonomy"} %V(C) as

%'(C}= 4+TrQ(—C)

r„~=E,ebr~ +E, a@„' (12)

and that the relation between the matrices 'M& and Q& is

Qb(x, x') =e'(x)S)(x,x')Eg(x') . (13)

It is known that gravity in the vierbein formalism has a
local Lorentz invariance, since Eq. (8) is insensitive to a
Lorentz rotation of E'(x),E (x). The connection I „'b is
then completely analogous to a usual gauge connection,
and its Wilson loop

and the matrix Q of the finite parallel transport has an
expression which is formally the analogue of (3): namely,

Sb(x,x') =P exp J dy "I'„'b(y) (11)
X

Using (1), (10), and (7) it is straightforward to verify
that the relation between the connections r„&and I „'b is

= —4+TrP exp dx "I xP (4) 'N( C)= —4+Tr( Qb )( C} (14}

We make the physical requirement that the curve C
should be possibly defined in an intrinsic way (that is, in-
dependently of the coordinates), and that its form and
size should be eventually specified by invariant distances
and angles. We also recall that we are not interested here
in self-intersecting loops, nontrivial topologies, or global
effects, but only in "local" effects. Our attitude should be
different, of course, in analyzing the (2+1)-dimensional
theory, where there are no local degrees of freedom.

is a natural invariant quantity of the theory. But from
Eq. (13) we see that this loop is equal to that defined in
(4). So the Christoffel connection I „& and the anholo-
nomic I „'b connection have the same loop, denoted by
"%(C). In the computations we shall employ the connec-
tion I „&, which is usually simpler to deal with.

When the exponential in (4) is expanded, one obtains
terms with 1,2, 3, . . . fields I . We introduce the notation
to be used in the following:
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e= I+ tt) dx "r„(x)+—,'P It) dx"
gdy "r„(x}r(y)+

(15)
z = J d [g j exp

g
[~[gj I (22)

=I+e"'+-'n"'+
2

and

4+—Tre= Trn"'+-'Tr U"'+
2

or by the analogous formula in the first order formalism.
A roman letter corresponding to a calligraphic one will

denote the vacuum average of the classical quantity. For
instance, we write

U =(n),=I+ &n'"),+-,'&e"'),+

III. DYNAMICS

%e shall assume that the dynamics of the gravitational
field is given by the Einstein-Hilbert action

W=('lV) = —4+TrU

=Tr U' "+—'Tr U' '+
2

(23)

4 (18) =8""+—'W' '+
2

In the vierbein formalism S is expressed as

d x R„', x ep x ear x E 6abcd (19)

where R „', is the usual gauge curvature of I b„.
As is well known, Einstein s gravity written in the form

(19}is a gauge theory of the Lorentz group (i.e., S is in-
variant under local Lorentz transformations), but not of
the whole Poincare group ISO(3,1). A gauge formulation
can be obtained only introducing some auxiliary fields q'
[7).

So it is not possible to consider in 3+ 1 dimensions, like
in 2+1 gravity [8j, the holonomies of the Lie algebra
valued connection,

IV. CLASSICAL CASE

dH=B(r}dt A(r)dr— r(d8 +—sin 8dg ),
where

(25)

8(r)= 1— A (r)= 1—
r

(26)

The corresponding Christos'el connection has the non-
vanishing components

We just give one typical example of a classical holono-

my, namely that of the Schwarzschild solution. Let us
consider the Schwarzschild metric [5]

A„(x)=e„'(x)P, +I"„d' (x)co,b, (20) rsin 6 I~ 1
(27)

where I', and co,b are the generators of the translations
and of the Lorentz transformations.

From the dynamical point of view, the holonomies of
A„have certainly more content than the holonomies of
I „alone. For instance, it can be easily verified that the
term

Trfdx" fdy'(e„'(x)P, e„(y)Pb )o

= —25, fdx" fdy'(e„'(x)eb(y) ) (21)

is not trivial to leading order, unlike the corresponding
term containing the connection (see Sec. V). However,
this term does not respect the invariance of the action.
In conclusion, the loop %'(C) defined in Eqs. (4) and (14)
is the only invariant loop functional which we can define
in Einstein's gravity.

In the quantum case, we assume the quantum averages
to be given by the functional integral

r&e&= —sin8cos8, r~&e=cot8 . (28)

Let us take as the curve C a circle of radius ro, azimuth

8&, and constant time tp; that is, C is described by the
function

It)dt r~ +)dr r~ +gd8r& +gdyr~&

= fdPI I ~, +I ~, + r~e+ I ~~t, j =0 . (30)

The quadratic term is

x"(P)=(to, ro, 8o~g) .

The linear term 'N'" in the holonomy is given by (we

omit, for brevity, the arguments of the field)

m'"=S; g dx~r~.

N( )=Pgr dxv dy I I P
a IP

=pgdy' fdy"r;~rt, '„. ,

I

=2 d ' d " I ~~I ~~-„+I ~.~I ~~-g+I ~~„I ~-~+I ~~.gI ~ ~

2S1n Op= —Sm + cos Op
A (ro)

(31)
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It is easy to check that the contribution %V' ', of the
form

(32)

vanishes, and so do the following contributions. Thus the
total holonomy is exactly given by

sin Oo'N = —(2n. ) + cos Oo
A (ro)

variance of the background, and to the absence of a di-
mensional coupling (apart from the overall factor ~ } in
the action (18}.

Let us write the most general form of the propagator
(h&„(x)h p(y) ) which is compatible with the symmetries
in the indices and with Poincare invariance (in any di-
mension N} W. e have

= —(2m ) 1+
2MG sin Op

(33) S„„p X„X„XXp+"
N

+e (N+2)X X
(36)

We see that if we set Ho=0 ("equatorial" circle) the
loop is constant and equal to —(2m) (for symmetry
reasons); if we set 80%0, we have a small "precession an-
gle" (see Sec. VII) which depends on ro and vanishes
when ra~ 00.

V. SMALL QUANTUM FLUCTUATIONS
AROUND A FLAT BACKGROUND

where

X =x -y„, X"=[(x-y)'-(x'-y')' —~e]"",

b,„,p ,'(rI„r—i„p—+rt„pg„),

sq„~p =(rl„+ Xp+rl~pX„X„),

(37)

(38)

(39)

In this case, following the usual approach, we decom-
pose the metric g„„(x)as

g„„(x)=g„,+~h„,(x), a =&16~6,
and we interpret q„„as the classical background while

~h„,(x) is regarded as a small quantized perturbation,
which represents gravitons propagating in the vacuum.
The Einstein-Hilbert Lagrangian (18}is then split into a
quadratic part, whose inverse gives the bare graviton
propagator, and into interaction vertices. Because of the
nonpolynomial character of the Lagrangian, there are
infinitely many vertices; the first two ones, respectively
proportional to a and ~, connect 3 and 4 fields h. Hence
the first few orders of perturbation theory are formally
very similar to those of Yang-Mills theory.

The leading contribution to W, of order foe, is given by
W' ' with one bare propagator: namely,

W''= x" y" IP xI py (35)

Here the angular brackets denote the bare propagator of
the 1 s, obtained using their definition (2), Eq. (34), and
the propagator of h„„(x}[see Sec. VIII, Eq. (81)].

The following two contributions to 8; of order A' a,
are given by the term W' ' with two bare propagators
and by the term W' ' with three propagators and one K

vertex. Finally, the three contributions of order A' K are
given by the term W' ' with three propagators, by the
term W' ' with four propagators and one K vertex, and
by the term 8' ' with the radiatively corrected propaga-
tor.

What is remarkable, and easily shown [9], is that the
leading term (35), of order fi, vanishes in Einstein s
theory. (This opened the problem of finding a gauge in-
variant expression for the static gravitational potential;
see [10].) In the remainder of this section, we would like
to show that this vanishing, in fact, does not depend on
the dynamic content of Einstein's action, but is only due
to the symmetries of the propagator, to the Poincare in-

X [a hP(y) —aPh„(y)] )

x~ y 'g 0 p~ x py
—8 BP( h„(x)h „p(y) ) ] .

(41)

(42)

It is straightforward to verify that the substitution of (36)
into (42) gives rise only to terms which are either gra-
dients, or ultralocal terms [that is, containing 5 (x —y)],
or finally are proportional to the functions

X Xp X„XXXp
g„„a ap „', a.ap ",„;„',X X

X„X„X
&(N+2)

(43)

(44)

which vanish by homogeneity. It is easy to check that
the derivation above also holds in the Euclidean case
(compare also Sec. VIII).

As was pointed out in [11], if we admit dimensional
couplings in the action, like in (8 +R ) gravity, some
nonvanishing contribution to W' ' may arise.

Finally, we would like to justify our omission of higher

Sq,~p=(v]q+„Xp+rl„pX,X +q„+„Xp+g„pX„X ) .

(40)

The tensor 6„,p is the generalization of g„, to tensors
with a symmetric couple of symmetric indices, and also
the tensors s„„pand S„„pare defined in such a way that
the decomposition (36) is left invariant by the exchange of
the pair (aP) with (tv) and of the indices inside each
pair.

In (36), a, b, c,d, e are numerical constants. No other
terms can be present, since there are no other dimension-
al parameters in the linearized action. The contribution
of order fwc to the holonomy is

8" '= x" y" I„pxIP y

=4 x~ y p p x ppx
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order calculations by observing that the vanishing of the
leading term has a geometrical interpretation which
strongly affects the physical significance of the holo-
nomies (see Sec. VII). Furthermore, higher order calcula-
tions in quantum gravity are very complicated, and give
rise to nonrenormalizable infinities, which require the in-
troduction of some effective cutoff. What would thus
seem more appropriate to us, and is in progress now, is to
apply higher order perturbation technique to the formula
for the static potential [10].

In the next section, instead, we shall give a kind of
semiclassical expression for the Wilson loops.

VI. NONFLAT BACKGROUND

\

z [J]= fd [h] exp —S [h]+ f dx h (x)J(x) .

(45)

If we expand the action S [h] around the classical solu-
tion h0, we find

S[h]=S[ho]+f dx
6S fix)

5h (x)

5S+—f dx f dy f(x }f(y )+S, ,5 x h y) h =ho

(46)
The discussion of the preceding section suggests that a

contribution to the holonomy proportional to A' could
arise on a nonflat background. In order to illustrate this
point, let us suppose that a weak external source J for the
gravitational field is present. The field produced by this
source, as given by the Einstein equations, will be denot-
ed, in the variable h defined in (34), by ho„,(x). The
functional integral (22) will now depend on J: omitting
the indices of the field, it is given by

where

h =ho+A .

Since by definition we have

S
5h (x)

we are left with [12]

(47)

(48)

r

z[J]=exp —S[ho]+ fdxho(x)J(x) fd[A]exp
' fdx fdy2A' 5h (x)5h (y)

f(x)f(y)+S3 . (49)

The operator

G(x,y)= . 5S
5h (x)5h (y) h =h,

(50)

52S
=Q +KV' 'h +h V' 'h +O(K )0 0

0

whose inverse is

(52)

is the graviton propagator in the background ho. If we
write symbolically the Einstein action as a quadratic part
Q plus the interaction vertices V' ' and V' ' as

G =Q-' —~V"'h, +O(~') (53)

S[h]=—,'Qh + —,'hV' 'h + —,', h V' 'h +O(x. ),
we have

where Q
' is the usual propagator of the graviton on a

flat background. When evaluating the holonomy, we
have to compute the expectation value

f d [f]exp ~ f dx fdyG '(x,y)f(x)f(y}+S3 SV[ho+f]
2A

f d [f] exp ~ f dx fdyG '(x,y)f(x)f(y)+S3 .
2A

(54)

It is known that 53 is of higher order in fi; thus the
contribution of order A to IV is still given by Eq. (35},
where the propagator is now given by (53). The term
with Q vanishes, as we saw in the preceding section;
the other term in general does not vanish, and gives a
contribution to the holonomy proportional to Ac .

Thus we have seen that by breaking the Poincare in-
variance with a small source term which produces a
nonfat background we may obtain a contribution to the
quantum holonomies proportional to A, while there is no

such contribution on a flat background. Nevertheless,
this is a small effect, being proportional to ~ .

VII. GEOMETRICAL AND
PHYSICAL INTERPRETATION

It is interesting at this point to do a sharper analysis of
the properties of the matrix Vl(C) of the parallel trans-
port defined in Sec. II. We shall see that in the Euclidean
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theory the vanishing of its trace amounts to a very strong
geometrical statement.

Let us first consider, for illustrative purposes, the case
of a Yang-Mills theory of the group SO(3). The gauge
connection has the form

A„(x}=A„'(x)L;, i =1,2, 3, (55)

d V = A„'(x)(L; )„V"dx" . (56)

The vector is rotated during the transport, but its length
remains unchanged. Let us consider the matrix 8(C)
which describes the parallel transport along a closed
curve C. 6(C) is defined by a P exponential, through a
formula similar to Eq. (4). Suppose that we take a vector
V in a point P of C, and parallel transport it along C, re-
turning to P; let us denote by V' the new vector we obtain
in this way. The vectors V and V' have the same length,
that is,

VmVn 8 VlmV~n
mn mn (57)

but they differ by an angle 8, which is related to the trace
of 8(C}. For small angles, we have, by a proper choice of
the coordinate axes in the internal space,

where the matrices L; constitute a representation of the
Lie algebra of the group. In particular, to fix the ideas,
let us choose the adjoint representation; in this case the
matrices L, have elements (L, )„(m,n =1,2, 3), which
are related to the structure constants s, „of the group.
The connection A„(x) performs the parallel transport of
a three-dimensional vector V" in the "internal" space ac-
cording to the forinula [compare Eq. (10)]

lar to (58), the first representing a rotation by an angle 8&

perpendicular to one plane and the second a rotation by
another angle 8» perpendicular to another plane, we find
that

Tr8(C) =4—(8]+8») . (63)

Also we know that SO(4) = [SO(3)],X [SO(3)]» and that
we have two Casimirs now [13], corresponding to
(Lf+L„), whose "eigenvalue" appears in (63), and
(L f —L „),which is not of interest in this case.

The group SO(4) is the relevant one for Euclidean
quantum gravity. In fact, the geometrical interpretation
of the matrix Q(C) is the following. During the parallel
transport of a vector Vin spacetime, its length, given by

~V~ =V'V 5 =V"Vg (x) (64)

or, in matrix notation,

G (C)Q(C)=1 .

The matrix 0 belongs then to SO(4) and its trace has the
form (63).

If the variance of the angles 8, and 8„ is zero to order
iri (because 8' ' vanishes), the angles themselves have to
vanish identically in any configuration, that is,

does not change. If we transport V along a closed curve
C, returning to the starting point, we obtain another vec-
tor V', which has the same length of V, and differs from it
only in the orientation. Hence we have, for any vector,

V'V 5 =V"V' 5 =R'(C)V'Q (C)V 5 (65)

that means

8 0

1 ——,'8 0

0 1

(58)

'M(C)=l for any C . (67)

This is a very strong geometrical statement, as it implies
that, still to order fi, all the weak field configurations
which effectively enter the functional integral

z = exp — 'S (68)

Tr8(C) =3—8 (59)

More generally, we recall that the Lie algebra of SO(3)
has just one Casimir invariant: namely, the operator

I 2 L2+L2+L2 (60)

This operator commutes with each of the L s, so we can
in general rotate our coordinate system as to have
L =L3, and the rotation matrix takes in this case the
form (58); i.e., we have

0(C)= I+8L3+ ,'8 L3+— (61)

Taking the trace of (61), remembering that TrL; =0, and
using the normalization condition of the Lie generators

TrL;L. = —25;. , (62)

we find that 8 is the coefficient of the Casimir invariant
in the expansion of the exponential.

Next we come to consider the group SO(4). Intuitively,
adding a new dimension we can make an independent ro-
tation. Multiplying two four-dimensional matrices simi-

have no curvature. In other words, the curved
configurations, which possibly dominate in other regimes,
are in this approximation totally suppressed.

This unexpected situation should be compared with
what happens, for instance, in an ordinary SO(3) or SO(4)
gauge theory. In this case the leading term W' '(C) does
not vanish and the variance of the rotation angles is not
zero to order fi. For instance, if the curve C has the form
of a rectangle of sides L and T, with L ((T, the quantity—(iriT) 'ln(8 }0 is the potential energy of two non-
Abelian charges kept at rest at a distance L each from the
other.

So the matrices of the parallel transport in the "inter-
nal" gauge manifold, considered configuration by
configuration, are not equal to the identity matrix. Inter-
preting A' as the temperature 6 of an equivalent statistical
system, we see that when 6 grows from zero to some
small value, such that we may disregard 6 or higher or-
ders, the Yang-Mills fields develop "localized excita-
tions, " i.e., regions of various sizes where the Yang-Mills
curvature is not vanishing.

A11 this does not happen for the gravitational field,
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which remains essentially in a "Bat" state. Such a picture
also explains the absence in this approximation of any in-
variant correlation of the curvature [11].

We also have seen that the introduction of a small
external source in the functional integral (68), breaking
the Poincare invariance of the background, gives rise in
general to a nonvanishing contribution to the loop pro-
portional to A. In this case we may have excitations with
localized curvature, but they are very small, since their
variance is proportional to a. instead of it (they are in
fact originated by the nonlinear interaction of gravitons).

VIII. STABILIZED GRAVITY

In a series of papers [14], Greensite has recently pro-
posed a new "stabilized" action for Euclidean quantum
gravity. It is known [15] that the Euclidean action ob-
tained from Einstein s action by naive analytical con-
tinuation is not bounded from below, due to the "wrong
sign" of the conformal term in the kinetic operator. On
the other hand, it is not obvious in quantum gravity that
the simple analytical continuation is a correct procedure.

Both field-theoretical work [16]and a suitably modified
stochastic quantization procedure [14] suggest that in the
"right" Euclidean action the sign of the conformal factor
is Aipped to lowest order, while to higher orders the ac-
tion itself becomes nonlocal.

In the remainder of this section, also in view of future
applications, we shall find the propagator of stabilized
gravity and verify that it gives the expected result for the
holonomies to leading order.

According to the notation of Ref. [14], the linearized
Euclidean gravitational action is written as

1st+pvap ~pvap+ ~pv~ap 2 p, vap3 3p

1 — 4

2p
p ~pvag+ 4Pppvpd'p .

3p
(76)

The kinetic operators above are not invertible. In or-
der to find the corresponding propagators, we must add
to them a gauge-fixing term, usually the harmonic gauge
fixing

~harmonic
pvap pv~ap 2 pvap 2 pvap

p 2p

Then we consider the propagator equation

p
2
[g (p ) +g it4rm 0n tc

(p ) ]G (p )

and look for a solution of the general form

(77)

(78)

a/pa 2 aPpa p aP pa 4 aPpa

d- e
4 Sappo. +

6 p ap pp pp a
p p

where a, b, c,d, e are numerical constants.
In the case of Einstein's theory we find

(t2Ei 1 bEi —t t
Ei —(} dB 0 e i 0)

(79)

(80)

which corresponds in the x space to the familiar
Feynman-DeWitt propagator [17]

5„ 5, +5„ 5„ —5„,5
(&„„(x)hp (y)) '=-

8vr (x —y)

(81)
4

s = f h„„(p)p K„„B(p)h 0(p) .
(2sr )

(69) In the case of stabilized gravity the solution is

Ei (2) (0—s)+pvap
=Ppvap 2Ppvap

where P' ' and P' ' are the projection operators

pvaP T( ~pa~vP+ ~tsP~va S ~pv~aP &

(70)

(71)

In the usual Einstein theory the kinetic operator K is

given by

( a st
1 b st —t c st — 2 d st —0 e st 4

)6 7 3
(82)

In order to write the corresponding x space propaga-
tor, we must compute the Fourier transforms of the non-
standard terms of the form p papp and p pappp p .
This computation is done in detail in the Appendix. The
result is rather simple:

(0—s)
Pp p 3 Op 0 p

1
ttv ttv 2 pppv

p

(72)

(73)

The kinetic operator of the linearized effective action
of stabilized gravity is simply obtained by changing the
sign in (70):

f d4p PaPp . l XaXp

(2n ) p (2+) x"

f d p p&pppp~

(2n) p

XaXpX PXa

(2m) x

So the propagator is (with X =x —y)

(83}

(84)

st (2) (0—s)+pvap Ppvap +2P
I vap (74)

(&„.( )& (y))"=— b, „+ 5 „5
l 1

(2sr} X " 6(2') X

Explicit evaluation of K ' leads to the expression

E 1 1
pvap pvap ~pv~ap 2 pvap 2 pvap

p 2p
(75)

where the tensors 6„p, s„p, and S„p are the ana-
logues in p space of those defined in Eqs. (37)—(40).

For K" we have instead, expanding (74),

2

3(2 )2X4 PVPrJ

X„XX X
3(2m. )2X

(8&)

Being of the form (36} it gives no contribution to the
leading term of the holonomies (see Sec. V).



49 WILSON LOOPS IN FOUR-DIMENSIONAL QUANTUM GRAVITY 6541

IX. CONCLUDING REMARKS

In this work the behavior of quantum and semiclassical
Wilson loops has been studied perturbatively in four-
dimensional pure Einstein gravity. The main results
comprise the vanishing of the leading perturbative contri-
bution to the loops and a geometrical interpretation of
this vanishing in terms of the structure of the vacuum
state. We also have treated the case of a nonflat back-
ground and that of stabilized gravity.

The most interesting "discovery" of our analysis, from
the physical point of view, is that the vacuum state of
quantum gravity does not show, to order t)t', any field
configuration with localized curvature. This behavior is
very difFerent from that of other gauge fields.

But if the Wilson loops vanish and if there is no local-
ized curvature, how can we express in an invariant way
the interaction energy of two masses, and how can we
think of the "mechanism" of their gravitational interac-
tion?

The first question has a definite formal answer, in terms
of an essentially nonlocal formula [10]. The second ques-
tion is more subtle, also in view of the difficulties encoun-
tered already at the classical level for the definition of a
localized gravitational energy (see [10]). All we can say
at the present stage is that the mechanism seems to be
not strictly local. It could be possible to find some ana-
logue of this behavior in other field models; work is in
progress in this direction.

One limit of our analysis resides in its perturbative na-
ture. Of course, nonperturbative analyses of quantum
gravity are a major challenge. Nevertheless, all the con-
siderations above do not involve particularly short dis-
tances, where gravity is thought to develop highly non-
perturbative features. As we pointed out in the Introduc-
tion, perturbative quantum gravity may be regarded in
our case just as an effective field theory.
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X
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Let us first consider (Al). By Euclidean invariance we
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d4p p~p . p x xp4

2 4 e
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2

X ~
4 j

(2n )' p4 x2 x4 (A4)

where A and 8 are two unknown coefficients, which we

may determine imposing the conditions

5 A +8
5 x x
X2 X4 X2
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(2~) x x p
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where the ellipsis denotes all the possible symmetriza-
tions, and impose the conditions analogous to (A5) and
(A6). In this way we find that a solution for (a, b, c) exists
only if ( A =0,8 =1) and in this case we have

APPENDIX

We want to prove Eqs. (83) and (84), namely,
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