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Lorentz group and spherical impulsive gravity waves
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The method for constructing a spherical impulsive gravitational wave solution of Einstein's vacuum
Seld equations has been described by Penrose. Recently the author gave an explicit transformation lead-

ing to coordinates in which the metric tensor is continuous across the history of the wave front in Min-
kowskian space-time. In this paper we exhibit the relationship between this transformation and proper,
orthochronous Lorentz transformations. This provides a novel viewpoint on spherical impulsive gravity
waves which facilitates a description of them in terms of new continuous coordinate systems.

PACS number(s): 04.30.Nk, 04.20.Jb

I. INTRODUCTION

The technique for constructing impulsive gravitational
wave solutions of Einstein's field equations has been de-
scribed in a classic paper by Penrose [1]. When applied
to an impulsive wave with a spherical front propagating
in a vacuum, the procedure given by Penrose is as fol-
lows: The history of the wave front is, in this case, a fu-
ture null cone in Minkowskian space-time M. Take the
fiat space-time line element in the form

g=Z, g=Z, u=U, v=V. (1.4)

For V & 0 the transformation from (1.1) to (1.3) is [2]
2' —1

V h"
4U h'

V h'h"
g=h(Z)+ (1.5a)

function of Z only, and 8( V) is the Heaviside step func-
tion which is equal to unity if V&0 and equal to zero if
V &0. For V & 0 the transformation from (1.1) to (1.3) is
the identity transformation

ds =2u dgdg+2du dv

(here g is a complex coordinate with complex conjugate g
and u, v are real coordinates). The hypersurfaces
v =const are future null cones with vertices on the null
geodesic u =0, and v is an affine parameter along this
null geodesic. Subdivide M into two halves M+(v &0)
and M (v &0) and reattach the halves on v =0 with the
identification or "warp"

g=h(Z)+ V h'h"

U V h"
4U h

Vv= Vih'i 1—

2 —1

V h"
4U h'

2 —1

(1.5b)

(1.5c)

(1.5d)

M

(1.2)

ds =2U dZ+ H dZ +2dUdV,
2U

(1.3)

which is continuous across the history of the impulsive
wave V=0 (corresponding to v =0 above}. Here Z is a
complex coordinate with complex conjugate Z and U, V
are real coordinates. Also H is an arbitrary analytic

where h is an arbitrary analytic function of g and
h'=dh/dg. The identification (1.2) ensures that the
metric induced on v =0 from M coincides with the
metric induced on v =0 from M+. It now follows from
Penrose's theory that v =0 is the history of a spherical
impulsive gravitational wave, the space-time has vanish-
ing Ricci tensor, and the curvature tensor is Petrov type
N with Dirac 5-function dependence on U, singular at
v =0. Recently a coordinate transformation has been
given [2] that puts the line element of the space-time de-
scribed above in the form

Here h is an arbitrary analytic function of Z, h
' =dh /dZ,

h"=d h/dZ, and H in (1.3) is derived from h as fol-
lows:

2
3 h"
2 h' (1.6)

The Ricci tensor calculated with the metric tensor given
via (1.3} vanishes for all values of V, and the only
nonidentically vanishing Newman-Penrose component of
the curvature tensor is

H(Z)5( V),1

2U

indicating a Petrov type X curvature with degenerate
principal null direction given by the vector field 8/BU
evaluated on V=O. Further aspects of the coordinate
system (Z, Z, U, V) can be found in [2], and an extension
of the result to a spherical impulsive wave propagating
through the de Sitter universe is given in [3]. Equations
(1.3) and (1.6) [without (1.4) and (1.5)] have been indepen-
dently presented in [4]. Spherical shock waves [for which
the curvature tensor undergoes a Snite discontinuity
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across the history of the shock in contradistinction to the
delta function behavior visible in (1.7)] have also been
constructed using the Penrose procedure in [5].

It is easy to see that if h (Z} is a fractional linear func-
tion of Z then, by (1.6), 0 =0, and there is no spherical
wave. This corresponds, in the terminology of the open-
ing paragraph above, to a Lorentz warp, and the result-
ing obliteration of the wave is thus not surprising. In this
case the transformation (1.5) is a proper, orthochronous
Lorentz transformation. We will demonstrate this explic-
itly in Sec. II. This demonstration will suggest a way of
constructing the spherical impulsive gravitational wave
solution of the vacuum field equations in new continuous
coordinate systems. We will give an example of this ap-
proach in Sec. III starting with the Minkowskian line ele-
ment in the form

u =(aa —V 2aPZ —+2aPZ+2PPZZ) U —2PPV,
(2.7a)

—55ZZ U+55V . (2.7c)

Now let

(
—ay +&2a5Z +&2Py Z —2P5ZZ ) U+ 2P5 V

&2(aa —&2PZ —&2aPZ+2PPZZ ) U —2&2PPV
(2.7b)

and v is given by

v —up'= 'y—y—+ y5Z+ 5yZ
1 —— 1

&2 &2

ds =2u (1+—,'g) dgdg+2du dv —dv (1.8)
1 y

—&25Z
&2 —a+ &2PZ

(2.8)

instead of the form (1.1). Here the hypersurfaces
v =const are future null cones with vertices on the time-
like geodesic u =0.

Noting that

lh I-'=
I

—a+&2pz I', (2.9)

II. THE LORENTZ GROUP
AND THE TRANSFORMATION

TO CONTINUOUS COORDINATES

and

—2&ZP
—a+ &2PZ

(2.10)

The line element (1.1) can be written

ds =dx +dy'+dz dt2, —

using the coordinate transformation

(2.1)

we easily see that (2.7a) may be written

U V h"
4U h

(2.1 1)

x+iy =&2ug,

x iy =&2u—g,

(2.2a)

(2.2b)

Rearranging terms in (2.7b) we find that we can write it
as

z= —v+ug' —
—,'u,

t= —v+ug'+ —,'u .

(2.2c)
V(2PPh(Z)+ 2P5)
a+v'2pzl U —2ppV

By (2.9) and (2.10) this may be written

(2.12)

1
(z t)—

2

1—(x —iy)
2

To discuss proper, orthochronous Lorentz transforma-
tions we proceed in a standard way [6] by introducing the
2 X 2 Hermitian matrix

V 2PPh (Z)+ 2P5

I

—a+&zpzl'
2' —

1

V h"
4U h' (2.13)

1—(x +iy)
2

1

V'2 ( z t)——(2.3)
We also have

where S' is the Hermitian conjugate of 'M. Writing

(2.4)

Let VlESL(2, C), then every proper, orthochronous
Lorentz transformation can be written as

2PPh(z)+&2P5 1 h'h"

I
—a+&2pz I'

and so (2.13) takes the form

I II

(=h(Z)+
2U h'

(2.14)

(2.15}

where a,P, y, 5 are complex numbers satisfying

(2.5) Finally we may now solve (2.7c) for v to obtain

Uv

I

—a+ &2pz I'U —2Ipl'V
(2.16)

a5 —Py= 1, (2.6)

we utilize (2.2) to express (2.4) as a coordinate transfor-
mation from (g, g, u, v ) to (Z, Z, U, V) or vice versa. It is
convenient to write (2.4) is

v=Vlh'I 1— V h"
(2.17)

Using (2.9) and (2.10) again, this can be put in the form
2~ —1
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u(Z, Z, U, V) =const, (2.18)

with u given by (1.5c), are null and can intersect the
nullcone V=O. IfX'=(Z, Z, U, V) then

We see that (2.11), (2.15), and (2.17) have the same form
as (1.5), and we conclude that (1.5) with h (Z) given by
(2.8) is the Lorentz transformation corresponding to the
SL(2, C) element (2.5) with (2.6). We can thus obtain the
transformation (1.5) by writing the Lorentz transforma-
tion in the form (2.11), (2.15), and (2.17) and generalizing
these formulas by allowing h (Z) in them to be an arbi
trary analytic function ofZ.

With the results to be described in the next section in
mind it is helpful to make the following observations: In
flat space-time with line element (1.3) and 8( V) replaced
by unity the hypersurfaces

&2uc
X+lg =

1+—,
' g'

&2ugx —iy=
1+-,'g'

(3.2a)

(3.2b)

pulse gravity wave. The problem we consider here is to
find new coordinates (Z, Z, U, V) (there will be no danger
of confusion with coordinates described in Sec. II using
the same symbols) in terms of which the metric tensor
components are continuous. In the light of the observa-
tions we have made in Sec. II we begin by looking at
proper, orthochronous Lorentz transformations starting
with the line element (1.8).

We can write (1.8) in the form (2.1) using the coordi-
nate transformation

1 h" 1 h" h
, U ——V a, —

—,
' U

2 h' 4 h' h'

u(1 —
—,'g')

1+—,
' g'

(3.2c)

and

2'
1 h" — 1 h"——V, H, 1, ——
4 h' ' ' 4 h'

g u )u~ —0.

(2.19)

(2.20)

t=v —u . (3.2d)

We write the transformation (2.4) now as
2

—v= a+ —PZ —V(lal + Pl ),
1+—,

' g' 1+—,
' ZZ

The expansion of the null geodesic generators of (2.18) is
(3.3)

v
4U' Ih'I

' (2.21)
u g U&2(y+ I /v 25Z )(a+ I /&2PZ )

I+-,'Ã 1+-,'ZZ

and the complex shear of these generators is
2

H V 1 h" — h" —,
2Ulh'l 4U'lh'l 2 h' h' . (2.22)

We thus see that if, as indicated by (1.3), we effectively
have H =0 for V(0 and HAO for V) 0 then 8 is con-
tinuous across V=O while there is a jump in cr across
V=O. It is a consequence of Penrose's theory that for
the field equations to be satisfied 8 should be continuous
across the history of the impulsive wave and for a 5 func-
tion in the curvature with a nonzero coefficient in front of
it there must be a 6nite jump in o across the history of
the wave.

V (ya+5p),
2

(3 4)

up'
1+—,'g' y+ - » —«lyl'+I~I') .

1+—,'ZZ

(3.5)

&2(y+ I /&25Z )

a+ 1/&2PZ
we can calculate the useful formulas

(3.6)

We can solve these equations for (g, g, u, v) in terms of
(Z, Z, U, V), but this will not be necessary. Here a,p, y, 5
satisfy (2.6) as before. If in place of (2.8), however, we

take

III. THE LORENTZ GROUP AND
NKW CONTINUOUS COORDINATES

y+ 1/&25Z hh' ' (3.7a)

We now consider the construction of the spherical im-
pulsive wave starting with the Minkowskian line element
(1.8). The Penrose construction involves dividing the
space-time into two halves M+(v )0) and M (v (0)
and reattaching them on the null cone v =0 with the
identification

(g, g, u, u =0)

a 1 h"=1+—Za+ 1/v'2PZ 2 h
'5, 1 hh"=h' ——

a+ 1/&2PZ

=1+—'Z" —Z"
y+ 1/V25Z 2 h

' h
—2

(3.7b)

(3.7c)

(3.7d)

1+-,'lh l'
h(g), h(g). . ., , , u =0

1+, g'
M

(3.1)
Ih'l= a+ PZv'2 (3.7e)

with h(g) an arbitrary analytic function of g as before.
This results in v =0 being the history of a spherical im-

=—y+ —6Z (3.7f)
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with

ug fh/' U

1+-,'g I&'I (1+,'ZZ)

2 2
1 1 h" 1 h"

S,=, 1+—Z, +—
2

Ihl' 1 h" h'
2

1 h" h'+1+—Z, —Z—
2 h' h

Substituting these in (3.3)—(3.5) we obtain

2u 2U

1+-,'g lh'l(I+-, 'ZZ)

ug b U

I+-,'g lh'I (1+-,'ZZ)

(3.8a)

(3.8b)

(3.8c)

(3.9a)

We next use (3.8) and (3.9) [with now h (Z) arbitrary,
of course] to calculate the line element (1.8) in the coordi-
nates (Z, Z, U, V). It is very helpful to note in this regard
that (1.8) may be written as

2
2Q

1+—,
' g'1+—,

' g'

(3.16)

—v . (3 15)
I+-,'00

A rather lengthy but straightforward calculation results
in (3.15) taking the form

2

ds =2U p dZ+ Hp dZ +2dUdV dV—
2U

(3.9b)

h 1 h" h'S=, 1+—Z, —Z
2lh'I 2 h' h

1+—Z1 —h"
h

1 h'
2

2 h

P
I I

b
Itic

h' (3.9c)

We now generalize the transformation given by (3.8) and
(3.9) by taking h (Z) in it to be an arbitrary analytic func
tion.

We note from (3.8) that if V =0 then (see [7]) v =0 or
U =2u. In the former case

U
(3.10)

The hypersurfaces

u(Z, Z, U, V) —
—,
' v(Z, Z, U, V) =const, (3.11)

1+-,' Zl'

1+
I

(3.12)

with the last equality here following from (3.10). The
complex shear of the generators of (3.11) calculated on
V=O turns out to be

O v=o

with

(1+,' [Z~')(1+,' [b (')

2U[b'I

2

(3.13)

h'" 3 h"
H(Z) =

h' 2 h' (3.14)

There is an analogy between the conclusions to be drawn
from the results (3.12)—(3.14) and the discussion at the
end of the previous section. Clearly if we effectively al-
low H&0 for V) 0 and H =0 for V&0, there will be a
finite jump in the shear of the generators of (3.11) across
V =0 while the expansion is continuous across V =0.

are nu11 and can intersect the null cone V=O. The ex-
pansion of the null geodesic generators of (3.11) calculat-
ed on V=O is

Here p = 1+—,'ZZ and H (Z) is given by (3.14).
Following from the results above we can now conclude

that the line element of the space-time describing a spher-
ical gravitational wave, with history V=O, propagating
through flat space-time is given in a new coordinate sys-
tem in which the metric is continuous across V =0 by

2

ds =2U dZ+ H dZ +2dU d V —d V
2U

(3.17)

p H(Z)5(V) .
1

2U
(3.18)

It follows from (3.17) that the hypersurfaces V=O are
null and are generated by the geodesic integral curves of
the null vector field 8/BU having U as an afiine parame-
ter along them. This vector field restricted to V =0 is the
degenerate principal null direction of the Petrov type E
curvature tensor above. The complex shear of the in-

tegral curves of 8/BUis

a = —
—,'P ' V8( V)H, (3.19)

and their real expansion is

y
—1 —2U

where

/=U p ——'V a(V)~H~ p

(3.20)

(3.21)

Thus it is clear that V=0 is a null cone (as are all
V = const & 0) since on this null hypersurface the genera-
tors are shear-free and have expansion U

where 8( V) is the Heaviside step function. When V &0
we transform this line element to the form (1.8) by
the identity transformation while (3.17) for V) 0 is
transformed into (1.8) by (3.8) with (3.9), which reduces
to (3.10) when V =0. This means that this pair of coordi-
nate transformations incorporates the Penrose warp (3.1).
With the metric tensor given via the line element (3.17) a
calculation of the Ricci tensor reveals that it vanishes for
all V. The Riemann curvature has only the one nonident-
ically vanishing Newman-Penrose component: namely,
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IV. DISCUSSION
p =1+—ZZ,

2
(4.2)

ds =2U dZ+ H dZS = p 2U

+2dUdV —E dV2, (4.1)

where now

We can combine (1.3) and (3.17) in a single formula: and E =0 or 1. The case E = —1 is also a further possi-
bility. In this case the Ricci tensor vanishes for all V, and
the formulas (3.18)—(3.21) continue to hold with p given
by (4.2) with E = —1. This corresponds to starting with
a form of the Minkowskian line element in coordinates
based upon a family of future null cones with vertices on
a spacelike geodesic rather than on a null geodesic as in
the case of (1.1) or on a timelike geodesic as in the case of
(1.8) (see [8]).
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