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Weak gravitation waves in vacuum and in media: Taking nonlinearity into account
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The relevance of the nonlinear nature of gravity waves has been pointed out, in the astrophysical con-
text, in recent publications by Christodoulou and by Thorne, who studied the nonlinear contribution to
the memory effect. In the cosmological context, the role of nonlinearity has been discovered by Salopek,
who studied the evolution of the primordial cosmological perturbations. In this article, we use the
weak-field approximation to derive, in the perturbative approach, the wave equation for pure gravity
waves with nonlinear correction terms.

PACS number(s): 04.30.Nk, 98.80.Bp, 98.80.Hw

I. INTRODUCTION

An extensive literature on gravity waves and their role
in cosmology and astrophysics exists, and it seems that
all such papers can be divided into two types: the au-
thors either consider the waves to be weak and describe
the appropriate effects in the linear approximation only,
or they consider analytically (sometimes numerically)
very special toy models with nonlinearity, which are still
very far from being used in current astrophysics. As re-
gards the third possible way, i.e., extending the weak-
wave approximation by taking into account the nonlinear
correction terms in the wave equation, this is something
most authors would rather do without, though on general
grounds it is very natural to turn to the next order of ap-
proximation after the linear approach is exhausted. One
of the strengths of such a description could be the light it
may shed on the problem of the evolution of the power
spectrum of the relic gravitons and thus on interpretation
of Cosmic Background Explorer (COBE) data [1,2].

It is widely accepted that since the primordial gravity
waves decoupled from matter a long time ago and since
they interact with the fields of matter very weakly then
their power spectrum has preserved its form completely.
In fact, this pivotal point is doubtful because of the non-
linear nature of the phenomena: should one keep the
higher terms in the wave equation one may face self-
interaction effects known in the nonlinear differential
equations theory as the "energy cascade. " Thus a whole
set of problems is called into being: to clarify the history
of the primordial gravity-wave spectrum, to study the de-
velopment of the relic adiabatic scalar perturbations,
with respect to the nonlinearity, and of course to explore
the role of the unavoidable nonlinear interaction between
the excitations of these two types.

II. ARE THE NONLINEAR CORRECTIONS RELEVANT'

The relevance of the nonlinear nature of gravity waves
was pointed out for the first time in the context of the so-
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called memory effect: as was independently discovered
by Blanchet and Damour [3] and by Christodoulou [4],
there is a contribution to this "memory" that arises from
nonlinearities in the Einstein equation. As exhibited re-
cently by Thorne [5], for the coalescence of a binary sys-
tem made of two black holes, this contribution will pro-
duce a significant share of the total memory effect.

The nonlinear effects were further pointed out by Bond
and Salopek [1,2], in the context of a cosmological prob-
lem: it appears that nonlinearity may be responsible for
certain indirectly observable (via COBE-type experi-
ments) changes in the power spectrum of the cosmologi-
cal perturbations and the primordial gravitational waves.

In Ref. 1, Salopek aims at the analysis of the fully non-
linear solutions, via the Hamiltonian approach. Howev-
er, we believe that since the amplitudes of the cosmologi-
cal perturbation, in the framework of inflationary
scenarios, are very small, this analysis may be executed in
the weak-field approximation with the aid of the pertur-
bative approach, provided the nonlinear correction terms
are taken into account.

The purpose of this paper is to derive the quadratic
and cubic terms in the wave equation for the purely grav-
itational waves. The main results are Eqs. (4.19) and
(5.3). Before deriving the wave equation with nonlinear
terms, we shall recall briefly the current approach in Sec.
III.

III. THE STANDARD FORMALISM

It is fair to say that the problem of nonlinear correc-
tions has not dropped from the sight of the preceding au-
thors completely: the issue is addressed in the papers
[6—9], but unfortunately none of them addressed the
problem of the back reaction and the role of the observer.
Ignoring these essential aspects led some of these authors
to quite extravagant "results": for example, the authors
of [6] "proved" that in Einstein's relativity the gravity
waves do not transport energy, and it made these authors
even doubt relativity. Although we shall not go to such
lengths, it would be useful to recall some of their argu-
ments and to point out their mistake. In the weak-field
approximation to general relativity, one writes
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g„=y„„+h„„ (2.1)

and treats h„, as the new variables on the Ricci-flat back-
ground y„. Of course, this decomposition is always legal
and does not inhuence the physical nature of the theory.
Now, if the theory is considered as a nonlinear theory of
a tensor field h„on the background geometry y„„then
the wave equation of this theory is

5(R v' —g )/5h&„=0,

g„,=y„,+h„, (2.7)

is introduced, one has to establish, for the contravariant
components, that

ground shift has also been mentioned by the authors of
[13] (who called it a "nonlinear correction" and mistak-
enly considered that it becomes zero after averaging).
Still, most authors traditionally consider the background
to be y„„,not (y„„+ri„„). In this approach, after the new

physical, metric

and the symmetric stress-energy tensor density is

t" = —2—5(Rv' —g )/5y„„.
g""=y" —h"'+O(h }

in order to obey the condition

(2.8)

The authors of [6] argue that since the aforementioned
decomposition is symmetrical with respect to the quanti-
ties y and h and as the Lagrangian depends only on their
sum, then for a free gravitation field the following equali-
ties will be precise:

5(R v' —g )/5h„„=5(R v' —g )/5y„„, (2.2)

and thus, they conclude, the wave equation is incompati-
ble with the nonvanishing of the stress tensor. If the
background y is fixed then Eq. (2.1) is valid in any ap-
proximation, not only in the weak-field one. In the
weak-field approximation (ii « y ),

25(R v' ——g )/5h„, = —25(R v' —g )/5y„„
t(1)pv+~(2)pv+. . . (2.3)

and the sum of all these terms is zero. The linear approx-
imation of the wave equation is

25(R v' —g)/5h„„—=r"'""=0, (2.4)

whereas the first approximation for the stress energy will
read

r~"= —25(R v' —g )/5y„, = t"'i'" . (2.5)

The authors of [6] believe that since [according to (2.3)]
t"'""=t' '""up to O(h ), then the second-order terms in
the expression for t""are completely compensated by the
first-order term [up to O(h )]. On these grounds, they
insist in [6] once more that the stress-energy tensor is
zero.

Actually, there is nothing strange in such a conclusion:
should one ignore the back reaction of the waves to the
geometry, he must get than any formula such as
6 &(y)=~ &(y, h) indisputably means r &(y, h )=0 if y„,
stands for a vacuum. To avoid the absurdity one should
keep in mind that in vacuum the gravity waves them-
selves create some average background (y„+ri„,) in
which

G ii(y„„+g„)=~Ii(y„+g„„;h„), g=h (2.6)

If the background shift g were taken into account in the
calculations (2.1}—(2.5), they would not lead to the van-
ishing of r & (For more deta. ils, see Tsygan [10].) The
idea that the effective energy of the gravity waves can
affect the background curvature was first set out long ago
by Brill and Hartle [11]and by Isaacson [12]. The back-

whereupon it is usually affirmed that the subscripts and
superscripts will be moved up and down by the initial
metric tensor y„,. This puts forward a question: which
Riemann space does the equality (2.8) relate to (if it re-
lates to any)? If the quantities g"',y"",h"" were defined
as contravariant components of tensors in the Riemann
space related to the metric y„„then we have a discrepan-
cy with the definition (2.7): using y„, to move the scripts
up, one will not get (2.8) but g""=y""+h"",just accord-
ing to the basic rules of how to treat tensors belonging to
one and the same Riemann space. The answer to the
question is very simple: there will be no contradiction be-
tween the formulas (2.7) and (2.8), and both will be ac-
ceptable simultaneously, in case we take that g"v and y"
stand for components of contravariant tensors belonging
to diferent Riemann spaces: g"' belongs to the Riemann
space of contravariant tensors defined by the metric g„,
and y""belongs to that defined by the metric y„,. (As for
h"", in the linear approximation it appears to be ir-
relevant which of these two spaces it belongs to.)

The above statement needs clarification. As is well
known, not only covariant but also contravariant tensors
may be defined on the manifold, independent from the
metric, and thus all contravariant tensors may be con-
sidered as elements of one space. However, this is not the
case for the contravariant tensor j7elds whose parallel
transport is defined via a metrical connection rigidly con-
nected to this or that metric. For example, in any partic-
ular point of the manifold one may take the sum of two
contravariant tensors T &y

"y~' and T &g
"g~" (where g

and y are different metrics) and denote this sum as
T 13q

"q~ where q will be some third metric. There
would be nothing wrong in such summarizing of two-
forms, and the result will be a form as well. But this pro-
cedure will become illegitimate should one deal with co-
variant and contravariant tensor fields defined on the en-
tire manifold, i.e., should one propose that the parallel
transport of these fields must be rigidly defined by a cer-
tain metric via the appropriate metrical connection. In
this case, one may not deal with T &y "y~" and
T &g "g~ as with elements of one space, because they
will be parallel transported with the aid of different con-
nections. This is the rigorous formulation of the fact usu-
ally expressed in the following, rather blurred, form:
"one must be explicit about which metric was used to
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raise indices. " So, dealing with tensor fields, one must
consider the contravariant tensor fields, with indices
raised by different metrics, to be objects of different
spaces.

In the most rough approximation we ignore this
difference; i.e., we neglect the fact that the real observer
finds himself not in the initial background y„„(which had
existed before the wave train had come) but in some
effective average background qpv =y„,+g„„, q =h,
which has been produced due to the back reaction. In
other words, on this level of approximation one
does not recognize the variations (g„,—y„„) and

[g„„—( y„„+g„„)] from one another: both are called

h„,. Although this approach leads to the proper linear

approximation to the wave equation, it portends contrad-
ictions (as exhibited above) whenever one tries to deal
with quadratic forms such as ~„,. The obvious equality
(2.6) is already a step out of this approach. To correctly
extend the formalism to the high-order terms, one has to
establish that the back inhuence of the oscillations upon
the background geometry effectively leads to producing
such an average background q„=y„+g„„g=h that
the interferometer of size L will feel all the modes with
wavelengths shorter than L as waves, and all the longer
modes will not exist for him as waves —they will be in-

cluded into the effective background. To calculate the
observables measurable by this device, one should use the
average metric q„,.

Thus, the very observer himself divides the physical
metric g„ into the background and the waves. This pro-
cedure, called "the natural low-frequencies cut-off, " has

been introduced in [14]. It is on purpose that in the
above statement we prefer to use a blurred term such as
"size of interferometer" rather than a more definite term

such as "base." The thing is that one can, at least in
theory, measure waves of about a kilometer length with
the aid of a meter-length bar. This will come off, exactly
as in the radio techniques, if the duration of measurement
extends the period of the longest mode observed. It
comes off also due to the fact that the bar is installed on a
long rigid body, the Earth. Taking this circumstance into
account, we would point that the effective length of the
total device is much longer than the length of the bar.

The aforementioned natural low-frequency cut-off
gives the framework in which the field of gravity waves
may be interpreted (for the particular observer) as a phys-
ical field that can be endowed with effectively observable
energy and momentum densities. So one can introduce
the effective stress-energy tensor whose integral over a
certain three-space region wi11 correspond to the result of
some measurement. ' In the proposed framework, one
can also derive the wave equation with the nonlinear
correction terms. %e are going to carry out this deriva-
tion for the vacuum case (Sec. IV) and for the case of an
ideal-fiuid-filled space (Sec. V). These terms will depend
on hpv as well as on g„,. In Sec. VI, we shall present the
direct expression of g„, via h

&
for a particular case of

relic gravity waves in a Friedmann-Robertson-%alker
model.

IV. WAVE-EQUATION FOR THE GRAVITY WAVES
IN VACUUM

Let some smooth, nondegenerate, symmetrical
pseudo-Riemannian metric y be determined on a four-
dimensional differential manifold M; then the functions

exp
(~„y,.+~,y,„~,y„.)

—~.p~v

yIp
(a„y„+a,y,„a,y„,—)

yy6+ (a,y,,+asy„a,y,s—)
2

yap

2
(a„y,.+a,y,„a,y„.)—

r"
2

(a,y,,+a,y„—a,y„) y"
2

(a„y„+a,y,„a,y„,)— (3.1)

[where yr~=(y)r '] and

Gp (y):—Rp (y) —
—,'yp (y ~R p) (3.2}

and the covariant Ricci and Einstein tensors correspond-
ingly.

Let q and g be smooth, nondegenerate, symmetric
metrics on M too. We consider y and g to be vacuum
metrics, but q to be nonvacuum:

h p
=gpv qpv ~ '9pv= q pv y pv . (3.4)

By definition, the appropriate values h" and g" will be-

long to the Riernann space determined by the metric ten-

tween the covariant components of the metrics are denot-
ed

G (y)=G„„(g)=0, G„(q)%0 . (3.3)

Further we shall call y "the premetric" (it had existed be-
fore the waves appeared), g the physical metric, and q the
average metric, or the background. The differences be-

'The formula for the stress-energy tensor and its detailed
derivation were presented in our previous paper [19].
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sor q; by definition,

h~"=h
pq

"qt'=g"' q—"', (3.5a)

(3.5b)

travariant indices and the appropriate covariant ones is
defined via the metric q only. Treating h „as a perturba-
tion of the metric q„, we expand the Ricci tensor in a
power series:

i.e., h and g are covariant and contravariant tensors and
they are connected with one another via the nonvacuum
metric q. Generally, whenever we use the contravariant
notation, it will mean that connection between the con-

I

R„„(g)=R„,(q)+R„",'(q, h)+R„'„'(q,h)

+R'„„'(q,h)+O(h ),
where ( [13],formula (35.58) )

(3.6)

R „"„'( q, h ) =—,
'

(
—h .&„h—&„~

' + h ~& „' .+h ~„z' .), (3.7)

—(h t.
p
—

—,'h', ' )(h „.,+h, .„—h„„. )] . (3.8)

All the covariant derivatives are taken with respect to the
average metric q. In the same way,

R„,(y) =R„„(q)+R„",'(q, ( ri))+R—„"„'(q,ri)+O(ri') .

(3.9)

Since y and g are vacuum metrics, it follows from (3.6)
and (3.9) that

next-after-leading order terms:

R „",' ( q, h ) +R „',' ( q, h ) +R „"„'( q, ri) +R „'„'(q, h )=0,
(3.11)

(where q =y„„+ri„,). Note that the term R„",'(q, ri)
has the same meaning as R „'„' in the paper [12] by Isaac-
son, and it is of the same order as R ~,' (q, h ).

O=R„„(g)—R„,(y )

=Rq '(q, h)+R„'„'(q,h)+R„"„'(q,ri)

+R„'„'(q,h)+O(h )+O(ri ) . (3.10)

V. WAVE EQUATION FOR THE GRAVITY WAVES
IN AN IDEAL MEDIA

At this point we accept the following assumptions.
Assumption 1. The waves are weak in the sense that

the terms denoted as O(h") and O(ri ) are small against
the preceding terms.

Assumption 2. The components of g are of the order
=h

Assumption 3. The tensor field h„, includes modes
with wavelengths not exceeding some maximal scale L
determined by the observer.

The latter means that we follow the natural procedure
of metric separation into background and waves, intro-
duced in [14]. For example, in the measurements of an-
isotropy of the relic microwave electromagnetic radia-
tion, the Universe as a whole acts as a natural interferom-
eter of size up to about c/H. So the COBE-type experi-
ments are to become the largest possible gravitation-wave
detectors, provided we learn to separate the contributions
from the scalar and the tensor cosmological perturbations
(as established by the authors of [15], such separation
may be in principle carried out).

Returning back to (3.10), we can, in the proposed ap-
proach, derive the wave equation in vacuum, with two

This is the precise form of the supposa1 that I h I « I y I.

To generalize the formalism to the case of spaces with
ideal-fluid-like matter and a cosmological term, we shall
begin with recalling several simple facts. With the signa-
ture ( —+++), the cosmological constant A is intro-
duced as

G „(g)+Ag„„= T„„;SmG

c
(4.1)

G„(y ) —kT„(y, g) }=0, (4.2)

G„(g) kT„,(g, y) =0, — (4.3)

where k = 8m Gc and p stands for the fields if matter.
All these tensors can be expanded around q, like (3.6) and
(3.9). For example,

in Friedmann-Robertson-Walker (FRW) models it
effectively behaves as an ideal fluid of pressure

p,z= (8n Gc )A and—density p,&=(8m Gc )A. In any
way, A always may be effectively included into T„

Now, let the metrics y„,q„, and g„have the same
meaning as in the vacuum case: the prernetric y had ex-
isted before the wave train came (or was produced); g is
the physical metric which is decoupled into the smooth
background q and the excitations h. These excitations
cause some average shift g of the geometry,

2h „=g„—q„,g„=q„—y„, g =h . Obviously,
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0=6&x(g)—kT&x(g, p)=G„x(q)+6„"&(q,h)+6(x)(q, h)+O(h )

—k [T„x(q,(p)+ T„"q'(q,h, (p)+ T„'z~(q, h, q))+O(h')],

where

6„"„'(q,h)=R„"„'(q,h) —
—,'h„, [q ~R &(q)] ,'—q„—„[q~R "&(q,h)]+ ,'q„—[q~R f((q, h)],

G„'„'(q,h)=R„','(q, h) —
—,'h„, [q ~R(I))(q, h)]+ ,'h—„,[h ~R &(q)]—,'q„—„[q~R(I))(q, h)] —

—,)q„,[hxhx~R &(q)]

(4 4)

(4.5)

(4.6)

and so on; R "& and R '
&

are determined by (3.7) and (3.8).
Taking the difference between this expansion and the similar one for y, neglecting the higher-than-third order terms,

one gets a formula similar to (3.11):

0= [G„"„'(q,h) —kT('„'(q, h, q))]+ I 6('„)(q,g) —kT(',)(q, r},q))]

+ I G„'„'(q,h) —kT(„'(q, h, ((o) }+I 6„','(q, h) —kT„','(q, h, (I())] . (4.7)

Generally speaking, even in the linear approximation to
the wave equation,

6„"„'(q,h) kT„",)(—q, h, q)) =0, (4.&)

there are terms directly dependent on the parameters of
the matter. As we restrict ourselves to the purely gravity
waves (not coupled matter-gravity oscillations), it appears
that in the case of an ideal fluid the terms that depend on
the matter parameters can be excluded from the linear
approximation. To perform this, we shall recall that in
this model the tensor T„will read

proximation the wave equation does not contain, in a
direct form, any parameters of matter.

To exclude the matter-parameters-dependent terms
from the wave equation, in the linear approximation it is
quite sufficient to transfer to the nontensor quantities
5(1)6 v d 5(1)T v.

P

5"'Gp"= px(g g-' Gpx(q)q-'"

6( 1 )qXv+ 6 5qXv 6(1)qXv+ 6 ( h Xv)
} I px px px

(4.13)

T„„(q)= (p + p)u„u „+(p —A/k )q„„. (4.9)
5"'T "=T"'q '+T ( —hx")

P W' px (4.14)

If the excitations are purely gravity, then 5p=5p=O,
5u„=0, and (in the gauge h„"u„=0)the first variation of
T„,looks like

and, since in a cornoving reference frame, in a traceless
gauge, 5'"T„"vanishes, one gets the linear approxima-
tion in the form

T„",'(q, h )= (p —A/k )h„„. (4.10a) (4.15)

Thus, from (4.9)—(4.10a), one gets several very simple and
useful relations:

that is equal (see Appendix A) to

—h.„,—h„. ' +2R&„, h~I'+q„, h. ' +R~,h~„

T„"„'(q,h ) = T„&(q)h „ (4.11a) —R~„h,+q„,h R p+2h I„' .,
I

—q„h p' =0.
T' '(q, h) = T„','(q, h }= =0 . (4.12)

In case the background shift is taken into account and
the total difference between the physical metric g and the
premetric y is (h + il ), then (4.10)—(4.11) look like

T„",'(q, h+g)=(p —A/k)(h„, +g„„), (4.10b)

T„''„'(q,h+q)=T„) (q)(h, +g„), (4.11b)

and the gauge condition (h„"+11„)u„=Oshould be im-
posed.

Further we shall need the relations (4.10b) and (4.11b).
Now we would remind how it comes that in the linear ap-

I

(4.16)

However, one should keep in mind that addition and sub-
traction of mixed tensors, whose superscripts have been
moved up by different metrics, is not a mathematically
correct procedure and it can lead to mistakes in the
high-order terms. (This is shown in Appendix A). So, to
write down the wave equation with the higher terms
correctly and to exhibit it in the form where the linear
part would look conventionally [as (4.16}],we shall con-
tract the tensor equation (4.4) with the tensor
( —h, —q, ) and add the obtained product to (4.7). Tak-
ing (4.12) into account, we shall receive

0=G„"„'(q,h) h„"6„)(q)+—k [(h „+g„)T„&(q}—T„"~(q, h +g ]}

+G~'„)(q, g) q "G„z(q)—h —G„(t,)(q, h)+k(h +q )T'„'))(q,h)

6('&(q, h)+G(,)(q, h}+6( '(q, h}+O(h ) . (4.17)

The equalities (4.13) and (4.14) are nontensor, so the sign "—"before h~ does not contradict the convention (3.5a): in (4.13) and

(4.14) we have takeng~ =—{g~,) ' but notg~ =—g &q ~q~.
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According to (4.11b), the sum in parentheses vanishes. Then we write

k(h, +q„)T„"&(q,h)=k(h, +g, )T„"&(q,h+g) —kh, T I'(q, g)+O(h )

making use of (4.11b),

=k(h +7}, )(hzr+gz~)T„&(q) —kh T„"z(q,g)+O(h )

with the aid of (4.4),

= (h „+g„)(h„r+rig)G„r(q) + h

„herG�„"r'(q,
h )

—kh h&rT„"&(q,h) —kh„T„"~'(q,ri)+O(h )

=h, h&rG„r(q)+(h„"gzr+hzrrl, )G„z(q)+h, h&rG„"z(q, h)

kh„—hzrT„"z(q, h) kh —Ti'z'(q, q)+O(h )

making use of (4.11b) once more,

=h, h&rG„&(q)+(h, "ri&r+h„rri, )G„&(q)+h, h& rG&(q, h) h, h~—rh&~G„&(q, h)

—kh„T„"&'(q,ri)+O(h ) . (4.18)

Substituting this into (4.17), one will obtain, up to the cubic in h„„ terms inclusively, the wave equation of the gravita-

tional waves, including the nonlinear corrections

G„"„I(q,h) h„G—„&(q)+ [ G„",'( q, q) +G„','( q, h) g, G„—~(q) h„"G„"—z'(q, h)+h„"h&rG„&(q)]

+ [(h,"r}/+hurri, )G„&(q)+h„h~rG„"&(q,h) h„h—~rh&~G„&(q, h)

—g„G„"„'(q,h )+ G„"„'(q,h ) —kh „T„"g(q, ri }]=0, (4.19}

where the first two terms are linear, the next five are
quadratic, and the others cubic. This is the equation for
the pureLy gravity waves taken in the gauge

u &(h,"+q,")=0, (4.20)

in an ideal medium, with or without the cosmological
constant. The equation is written down so that the terms
containing the parameters of matter are excluded not
only from the linear part but from the quadratic one as
well. [It was just for this purpose that we have thread
our way through the tedious calculations (4.18}.] In the
cubic approximation these terms cannot be excluded.
Equation (4.19) will become solvable after the back-
ground shift q„, is expressed via h &. At least in one case
one can do it easily. It is the case of relic gravity waves
in FRW-spaces. Since the premetric y was of FRW type
then the average metric q =y+ r} belongs to this type as
well. Generally, this assumption is wrong. However, in
the case of a uniformly distributed primeval radiation one
can take that the average shift g depends on the cosmo-
logical time only, and the assumption becomes valid. As
has been noticed in [14], the background shift
effectively reduces the Universe expansion and plays the
role of a negative feedback because the creation of gravi-

ty waves is effectively equal to production of some sort of
matter, and it decelerates the expansion. Recall this
more precisely; g„appears, in this situation, to be a neg-

I

I

ative variation 5a(g) of the Friedmann radius a(ri). As
is known, the pressure, energy density and Friedmann ra-
dius are connected like this [see the formula (112.6) in

[16]]: 5p = —3(p+p )5a /a. In our case, it means that

5a(g)/a(g)=- pg

3pm
(4.21)

2 2pggoo=+ —a
pm

while all other components of g vanish.

(4.22)

VI. THE (}UADRATIC APPROXIMATION

The most attractive feature of the second-order ap-
proximation is that it does not directly depend on the pa-
rameters of matter. Keeping in the wave equation (4.17)
only the linear and the quadratic terms, we obtain

where pg and p are the energy densities of the relic
gravitons noise and of the matter correspondingly. The
ratio pg /p for the spatially fiat FRW model has been es-
timated by Allen in his paper [17] and appeared to be
about 10 ' . Thus, the background shift will look like

ri, = ——a 5,
2 2pg

IJ 3 lJ

h~ G„~(q)+[G„' '(q p)+G„"'(q,h) g„G„q(q) h. G„"z—'(q, h)+h, ~h—~rG (q)] =0,
«, the same (up to the higher-than-quadratic order terms),

G&'„(q, (h+ri)}—(h, +g )G&z(q)+G„„(q,(h+g)) —(h,~+g„~)[G" (q, (h+g)) —(h ~+q ~)G (q)] =0 .

(5.1)

(5.2)
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h O=O, (5.4b)

(5.4c)

These conditions can be satisfied simultaneously for any

Thus, the equation can be expressed via the tensor
h &

—=h &+g &=g &
—

y &. This is the full variation of
the metric. In the linear approximation, they never make
any distinction between h

& and h &, but in fact they are
different quantities. In direct interferometrical measure-
ments, they observe, rigorously speaking, h & rather than
h &, because the interferometer finds itself not in the ini-
tial metric y but in the average metric q. Anyway,
should one express Eq. (5.2) in terms of h, &, it will look
especially simply

G„',I(q, h )
—h„"G„&(q)+G„,'(q, h )

—h, «{G„"~~(q,h )
—h«G„i(q) I

=0 . (5.3)

Now we shall impose the transverse traceless (TT) gauge
on the tensor h & (not on h &):

(5.4a)

solution and on an arbitrary background on an arbitrary
initial timelike hypersurface. However, they cannot in
general be satisfied simultaneously off it [18];i.e., it is im-
possible to localize the degrees of freedom explicitly
(though at any time the count of number of "physical"
components of the field h„"gives the number 2). Still the
most primitive cosmological models (and among them
the FRW spaces) belong to the class of spaces in which
such localization is possible [18].

In FRW universes, when the gauge (5.4) is imposed
upon h„, ', one has

h, G„i(q)—G„",'(q, h )=—,'h„„. ' —R „„sh
=

—,'h„„.„' +h„a'(s+H, ) .

(5.5)

Here we used (1) and also the fact that in FRW spaces
R „&h = ,'(R„"+—R„"——,'R )h„„, no summing over p
and v. This can be easily derived from the vanishing of
the Weyl tensor in FRW universes. In these spaces, in
the gauge (5.4),

&+ ~ {(Ii $ ) « —(Q h„, )' +«2(h «h~lv~l
« —(h, hp «)' —(h h q).„}.

lip.„)«-(~.ii~.„)«j (5.6)

(See appendix B for details. )

VII. SUMMARY OF THE MAIN RESULTS

(1) In vacuum, the gravitational waves themselves
create the average geometry background q„, which
d'ffers from the "premetric" y„ that had existed before
the train of waves has come or has been produced; a simi-
lar effect takes place in the presence of matter, when the
back reaction of the gravity waves produces a shift of the
background [formula (2.6)]. The existence of the back-
ground shift q„ is an essentially nonlinear phenomenon.
For the case of stochastic relic gravity-wave noise, q„ is
expressed directly via h„, [formula (4.22)].

(2) Because of the nonlinear nature of the Einstein
equation, the high-order approximations naturally relieve
the linearized approach. Among other things, the non-
linear corrections may be of importance for studies of the
possible energy cascade in the power spectrums of the
primordial gravitons, primordial adiabatical perturba-
tions, and perhaps for modeling of nonlinear interactions
between these types of excitations, that might take place
during the radiation-dominated stage.

The wave equation for the purely gravitational waves,
with quadratic and cubic (in h &) terms, looks like (3.11)
in vacuum and like (4.19) in an ideal media, with a
cosmological constant or without it.

(3) The main result of the paper is Eq. (5.3): it appears

that in the quadratic approximation the wave equation
acquires such a simple form that it contains directly nei-
ther the parameters of matter nor the nonlinear shift g.
Since the most part of the Universe age has been the
stage of dust domination, where all the scalar-type oscil-
lations were frozen out and only pure gravity waves kept
oscillating, it seems that (5.3) may help us to answer the
question whether the age of Universe has been long
enough to enable the nonlinearity to manifest itself as an
energy cascade.
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APPENDIX A

In this appendix we omit the tilde in order to simplify
the notation; thus, write h„ instead of h „, Since in vac-
uum or in an ideal-fluid-filled space (perhaps with a
cosmologica1 term) 5'"T„=O in the synchronous gauge
(5.4b), so the linear approximation to wave equation is
taken, in this gauge, as 5'"G„=—G„"&q~ —G„+h~ =0.
Multiplying by the background metric q&, one wi11 get
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O=G„"'—G „h, =R„"„'——,'h„„R —,'q—„„q R II+ ,'q—„h R p
—h g„»+—,'Rh„,

—R„, ,—q„—q R &+ q„,h R~&
—h Q»

h pg 2 Ap~ ~ yp~p 2 gp~A

+ ,'q„—„h R &+h („' „) . ,'q—„„—h&' + ,'(R—»,h»„R»—„h»„) .

Thus in the most general form, the linearized equation reads (in the synchronous gauge)

h „—, .h—„,' +.2R „„h»r+q„„h ,' +.R»,h»„—R» h»„+q„„h'5R f)+2h, („' „)
—

q. „h f)' ~=0.

In the traceless gauge, the first and fourth terms vanish. In a FRW geometry, provided the gauge is synchronous, the
seventh term vanishes as well. The transversality condition will make the last two terms zero. Finally, if the spatial
curvature is zero, (Al) reduces as

hm +2Hlhm q hm, b b 0 (A2)

(Lifshitz equation). The overdots stand for conformal-time derivatives. Should one try to expand this method to the
second- or third-order approximations, he will face some contradictions that follow from the incorrect nature of ap-
proximation of a nontensor quantity by tensors. For example, in vacuum,

0=5R„~=(g&») 'R„»(g) —(y,») 'R„»(y)=q&»R('»)(q, h)+Iq~»R(»)(q, h) —h~»R('»)(q, h)+q~»R("(q, rj)J

+ Iq&»r„'»(q, h) —h' »R„' »( q, h) +h, &h'»R„"»(
q, h) —h&»R„»(q)I+O(h ) .

This result is manifestly erroneous. [Compare it with the proper, tensor, formula (3.11).]

(A3)

APPENDIX B

As in Appendix A, we omit the tilde and write h„, instead of h„„. It follows from (3.7) and (3.8) that

G„','(q, h—) —= —R„'„'(q,h )+ ,'q„„q ~R(p)—(q,h)+ ,'h„„q ~R—II(q,h)

+ ,'q„„(h —&h&~R &) ,'q„,h—'~—R(1P(q,h) ,'h„,(h—~R&)

'.„h,.„+—, '„h„~ ' —
—,';h„,+ —,'h, ' .„h'„

(Bla)

+ ,'q„„( ,'hh, —p' ~+h—'—R»,h»+ ,'hh IR f)+ —,'h—h.,"

+ —,'I(h P„». )'» —(h'»h„, . )'»+2(h'»h („.„) )'» —(h'Ph, p.„).,—(h „h„. )'»j

+ ,'q„„I—,'(h'Ph —p»)'»+(h'»h. ),»
—2(h»h, r) (h~f'h,'p. )»—

) . ,

Here the curly brackets in subscripts stand for the symmetrization procedure:
h, („".„(

—
—,'(h,„".„+h,„".„). In the gauge (5.4),

(Blb)

for example

+ —,'I(h „h„«. )'» —(h «h„„. )'»+2(h h („. )
)'» —(h ~h p.„).„—(h „h„. )'»]

+ —,'q„„I3(h ~h p. »)'» —(h ~h». p)'»J . (B2)

The formula is valid in any space where (5.4b) and (5.4c) are compatible. If one restricts the geometry to FRW spaces,
the product h ~R

&
will vanish, and one will arrive to the formula (5.6).
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