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Cosmic walls from gravitational collapse

Paulo R. Holvorcem and Patricio S. Letelier*

{Received 5 May 1993)

The formation of plane cosmic walls of negligible thickness from the collapse of smooth inhomogene-
ous plane-symmetric distributions of rnatter is considered. Two models with different asymptotic
behaviors far from the wall in formation are constructed. In the first, the fluid far from the wall is aniso-

tropic, with pressures proportional to density. The second model describes an asymptotically isotropic
ideal gas in isentropic flow. Even though both models start from matter distributions with positive den-

sity and pressures everywhere, it is found that, during the collapse, negative pressures (tensions) appear
within the wall in formation.

PACS number(s): 04.20.Jb, 11.27.+d, 98.80.Cq

I. INTRODUCTION

In grand unified theories (GUT's) of the early
Universe, it is usually considered that domain walls arise
from spontaneous symmetry breaking during a first-order
phase transition [1]. Since the width of a wall is inversely
proportional to the energy scale of the symmetry break-
ing, such GUT domain walls are often idealized as having
zero thickness. When gravitational effects are taken into
account, a zero-thickness wall becomes a topological de-
fect of space-time. The gravitational field of the wall is
then determined by solving the Einstein field equations
with a prescribed energy-momentum tensor (EMT) which
is proportional to 5(z), where z is a coordinate normal to
the wall. The tension in any direction tangential to the
wall is assumed to be equal to the wall energy density,
and the normal stress component is assumed to vanish.
This form of the stress tensor may be obtained as a limit
of the static plane-symmetric solution for a domain wall
of finite thickness in Minkowski space, for which the
above relations between energy density, tension, and nor-
mal stress are exactly satisfied [2]. Static wall solutions
can be obtained only in the case of plane symmetry, since
curved walls tend to collapse due to surface tension. The
simplest solutions of this kind describe static thin walls in
vacuum, and have been found by Vilenkin [3] and Ipser
and Sikivie [4]. These solutions have been generalized in
several directions, including thin walls where the ratio of
tension to energy density is not unity [4] and multiple
domain walls [5]. The interaction of plane thin walls
with gravitational waves and matter fields has been stud-
ied by Wang [6,7]. The head-on collision of plane
domain walls has been simulated numerically (in the con-
text of A,P theory) by Anninos et al. [8] and analytically
(using the thin-wall approximation in the context of gen-
eral relativity) by I.etelier and Wang [9].

Recently, a new scenario of galaxy formation involving
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low-mass domain walls [10] has stimulated research on
the dynamics of thick domain walls. For this more gen-
eral case the condition of zero normal stress is not con-
sistent with a static solution of the Einstein equations
[11]. However, static plane-symmetric solutions with
tension equal to energy density and nonvanishing normal
stress can be found: Goetz [12] has obtained simple ana-

lytic solutions by choosing a special form for the poten-
tial V(Ci) of the scalar field 4 which assumes different ex-
pectation values on both sides of the wall, and Tomita
[13] has found a wall without reflection symmetry by as-
suming a polynomial ansatz for In~det(g„, ) ~

and solving
for the potential V(4). In the case of planar walls, the
thin-wall approximation has been recovered by Widrow
[14] as a regular limit of the Einstein scalar equations if
the wall thickness approaches zero (in this limit, the nor-
mal stress vanishes). A more general argument for walls
of arbitrary shape and sufticiently low curvature has been
advanced by Garfinkle and Gregory [2] by expanding the
solution of the Einstein scalar equations in powers of the
wall thickness.

Thus far, most studies on domain walls have focused
on static solutions, which are assumed to form by symme-

try breaking. However, it would be relevant to know if
static walls can be obtained as the final result of a dynam-
ical evolution governed by appropriate gravitational and
field equations. In this paper, we undertake a first step in
this direction, by considering some classes of metrics
which tend to the metric of a planar thin domain wall in
the limit t ~ ~. Since wall solutions have been found for
several different potentials [12,13] we will not consider
any specific potential. Instead, we will work in the spirit
of Synge's g method [15] by searching for metrics whose
associated EMT tensor T„,= —( I /8m )G„„describes "or-
dinary matter" (at least initially), and then tends to the
distributional EMT of a thin domain wall. By "ordinary
matter" we mean a fluid with non-negative energy density
and pressure, although not necessarily isotropic. It is
known that the Einstein equations with certain fluid
sources are equivalent to the same equations coupled to a
scalar field [16—19]. For instance, the case of a stiff per-
fect fluid corresponds to a real scalar field [16] and aniso-

0556-2821/94/49(12)/6500(12)/$06. 0Q 49 1994 The American Physical Society



COSMIC WALLS FROM GRAVITATIONAL COLLAPSE 6501

tropic fluids with stiff equation of state in two directions
correspond to a complex scalar field [17]. Fields with

SU(2) structure can also be used to describe anisotropic
fluids [18]. Thus, in principle, it is possible to interpret
the time-dependent EMT's that we find here in -terms of
specific field theory; this interpretation is a nontrivial
task, and wi11 be worked out elsewhere. On the other
hand, we want to remark that the results of this paper
simulate dynamical features of wall formation which may
be common to different field theories in which plane
domain walls can form.

Since the domain wall has tangential tension and zero
normal stress, it is clear that if we start with positive
pressures everywhere, some kind of transition must occur
in the fiuid at some later time, in order that the pressures
become tensions. It is also necessary that the fluid be-
comes highly anisotropic at large times. In constructing
the classes of metrics that we will present below, we have
tried to ensure that the above-mentioned transition and
the high anisotropies be confined to a small vicinity of the
wall in formation, wherein the largest densities and pres-
sures occur. Far from the wall, the EMT tends to zero,
and in this region the pressure is positive for all times.
As t~ ce, this outer region becomes empty and the re-

gion of high densities becomes the zero-thickness wall.
Thus, the models suggest that the transition from pres-
sures to tensions can be interpreted as some phase transi-
tion which occurs at sufficiently high pressure and densi-

ty. We remark that the process of formation of the wall

is reminiscent of plane gravitational collapse, which has
been studied in the case of zero pressure (dust collapse)

II. PLANE-SYMMETRIC SPACE-TIMES

We will consider here the formation of a vacuum
domain wall with metric

ds =exp( —4ncr~z~)

X[dt dz —exp(4—not)(dx +dy )]

and EMT [3]

T„"=dia g(o, 0, cr, o }5(z),

starting from a general plane-symmetric metric [22]

ds =e dt e Gdz e (dx +dy )

(2.1)

(2.2)

(2.3)

where F, G, and H are functions of (t,z) The .Einstein
equations, G„=—8n.T„,give us

by De [20] and Liang [21].
The plan of the paper is as follows. In Sec. II, we re-

view the Einstein equations for a plane-symmetric space-
time and present expressions for the eigenvalues of the as-
sociated EMT. In Sec. III, we construct a class of models
in which the "outer region" far from the wall is filled
with an anisotropic Quid whose equations of state are
given asymptotically by p~/p=const, pf/p=const (p~
and

p~~
are the pressures in the directions normal and

tangential to the wall, respectively, and p is the density).
In Sec. IV, we construct a similar but more realistic mod-

el, in which the "outer region" is filled with an asymptot-
ically isotropic classical gas in isentropic flow [22].

Too= [H, +2H, G, +e (F, F,G, 4H— 3H, +—2H, G—,}],1

32~

To) = — (2H„H,F, H, G—, +H, H,—),1

16m

T» = [e (2H, F, 4H« 3H, ) —F~+F—,G, +H—,~+2H, F,],
32~

(2.4)

Tzz =T33= e [e (H, F, H, G, —2G« —2H« H, G,—+G,F—, }+e—(H,F, H, G, +2F„+—2H„+H, )] .
22 33 3 2'

The pressure and density fields are the eigenvalues of
the EMT (2.4). The tangential pressure is given by the
tetradic component

and the eigenvectors g+ = ( g+, g+ }have the form

0'*=c*Toi I+= —c*(Too—~~e» (2.9)

PI~
=e T22 (2.5)

The density and the normal pressure are the eigenvalues
of the block (T, ), i,j =0, 1, which s"atisfy the characteris-
tic equation

where c+ are constants. We will consider here only the
case 6)0; if b, &0, ( T, ) can be reduced to the canonical

form

det(T; —Ag;-) =0 .

The roots of (2.6) for the metric (2.3) are

=—'[(e T eT„)+6' ]-
b, =(e T +e T ) —4e T

(2.6)

(2.7)

(2.8)

P —a

a= —,'e (Too—T» ),
13= ,'e F( —5)'r sgnTo),—

(2.10)

which says that p~ = —p=a, and that there is a heat Bux
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2 I'=c+e A+,
] Ggl/2[ Ft 1/2+(T + F —GT )]

Defining

s =sgn Tr(T; )=sgn. (e Too+e Tt, ),

(2.11)

(2.12)

(2.13)

we conclude from (2.12) and (2.8) that s &0 implies
sgnA+ =+1, and that the opposite is true if s &0.
Hence, (, is the time like eigenvector, and g, is the
spacelike eigenvector. Consequently, we interpret A. , as
the density p and —

A, , as the normal pressure p~.

III. ANISOTROPIC FLUID MODEL
OF DOMAIN-WALL FORMATION

In order to study the formation of the wall described
by (2.1), we will look for plane-symmetric metrics (2.3), of
class C", such that

F,G —4 z~, H-4(t —
~z ) (3.1)

as t ~ oo. (The t and z coordinates have been rescaled by
@crt~t, m.o z.~z.) One possibility is to take

P in the positive z direction. Since in the limit t ~ oo we
want p~ &&p, we can disregard the case b &0. The case
6=0 may be disregarded by the same reason.

If 6 & 0, we can decide which eigenvalue must
represent the normal pressure and which the density, by
computing the scalar product of the corresponding eigen-
vectors:

(g+g+)=ee To, —e c (T —
A, e )

In order to determine the asymptotic behavior of T„as
t ~ oo and z%0, we need the asymptotic form of N and
its derivatives:

N- ~z~+(1/s)exp( —2s~z~ ),
N, = tanh( ez ) —[ 1 —2 exp( —2E ~z

~
) ]sgnz,

N, =(E/E)[z tanh(Ez) N]—

2( e /e ) I
z

I exp( —2c
I
z

I )

N„=Esech (ez)-4eexp( —2s z~),

N„=ez sech (ez)-4ez exp( —2e z~ ),
(3.7)

N«=('e/E —2e /e )[z tanh(ez) —N]+(E /c, )z sech (ez)

—(1/e)[4e z —2~z (e —2e /e)]exp( —2s~z~) .

Substituting these expressions in (3.4), and assuming that
e/E « e as t ~ oo, we obtain

Too-4e exp( —2E~z ), To, -4Ez exp( —2e~z~),

T„-2[2(e /s)z' —('e/e —2e /c, )~z~

—6 —4(e/e) ~z~ ]exp( —2e (zl ),
p~~=e T22=[4(e /e)z —2(e/e —2e /E )Izl

—4e]exp[2(2 —e)~z~] .

(3.8)

The particular cases in which c increases linearly or ex-
ponentially with t serve to illustrate the asymptotic prop-
erties of the model under consideration:

Case 1. 8=at, a=const. In this case, To, , T„«Too
we have 6' —Too, and hence

F=G= 4N(t, z), —H=4[t N(t, z)]—, (3.2) p- Tooe 4at exp-[ 2(at —2—) z~ ] &0, (3.9)

where

lim N(t, z) =
~z~

t —+ oo
(3.3)

and N is a C" function of (t, z). With this choice of the
metric the EMT (2.4) reduces to

Too=N„+ 1 —N, —4N, +3N, ,

To& =Ntz+2Nt Nz

T„=N„—3(1 N, )+4N, N, ,
——

T22=T»=e '(N« N„+N, —1+2—N, N,)—(3.4)

N(t, z) —
~z~ =O(exp[ —A(t)~z~ ]) [A(t) &0] (3.5)

as ~z~ ~ oo. A relatively simple function with this proper-
ty is

N(t, z) =(1/e)in[2 cosh(ez)]

= f tanh(ez')dz'+(ln2)/e,
0

s =E( t )~ oo as t —+ oo

(3.6)

[the components of the energy-stress tensor have been
rescaled by (2/m. o )T„„~T„].

In order to obtain density and pressure fields which de-
cay exponentially with ~z~ as ~z~ ~ oo, we require that

b, '/ -4a~l —b z ~exp[ —2(ae ' —2l(z(+bt], (3.1 1)

p-2a[(1 —b z )]+~1—b z ~exp[ —2(ae ' —
l~ 2~ z+]bt.

(3.12)

Therefore, p &0 for ~z~ & b '; for ~z~ & b ', (3.24) gives
p-0, which indicates that the density in this region is
asymptotically small compared to the density for
~z~ &b '. From (2.7), (3.8), (3.10), and (3.11), it may be
seen that pj, p~~

&0 for ~z~ &b '; clearly, in this region
we will have p ~~,p~ &&p, which is an unphysical situation.

A model possessing the features mentioned in the dis-
cussion of case 1 above can be obtained by considering

which decays exponentially with time for a fixed z. The
tangential pressure is asymptotically equal to —p, and
p~=O(To, e,T»e F) &&p. Therefore, even if the ini-
tial state is such that p, p~~,p~ &0, we would eventually
have

p~~
&0 in the low-density regions far from z =0. A

more realistic model should have p~I &0, p~ &0 only in a
neighborhood of z =0, where the largest densities are
reached.

Case 2. c=ae"', a, b =const. In this case,

( ~T, T„O»T)-4 (al, z,bbz )exp( —2ae '~z~+bt),

(3.10)
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functions N(t, z) with the asymptotic behavior

N(t, z)- lzl+k(t)exp( —
A, lzl), k(r) —+0, (3.13)

for t ~ 0D, and sufficiently large lzl; A, is a constant. The
asymptotic form of the derivatives of X is

The tangential pressure will be positive if a )0 and

v —2v —A(A, +2) & 0,
that is, if

v) A, +2 .

(3.22)

(3.23)

N, —[1—
A, k exp( —

A, lzl )]sgnz, N, —k exp( —
A, lzl },

N„——
A,k exp( —

A, lzl)sgnz,

N«-k exp( —A, lzl),

N„-A, k exp( —
A, lzl),

inserting these expressions in (3.4), we obtain

T~-(A, k+2Ak —4k)exp( —
A, lzl),

To, -(2—
A, )k exp( —A, lzl )sgnz,

T» -(k+4k —6Ak)exp( —A, lzl),

p~~
-(@+2k—

A, k —2Ak)exp[ —(X—4)lzl] .

(3.14)

(3.15)

The infiuence of the rate of decay of k(t) on the
behavior of the model can be verified by considering the
cases k =at, (a, co=const}, and k =a exp( vt )—
(a, v= const).

Case 1. k =at ". Here k «k «k; therefore
Toi I(T00+ Tii ) =O(k/k) « 1, and hence

pi —T»e ——6Ak exp[ —(I,—4)lzl] &0 . (3.17)

Therefore, the properties of this model are similar to
those of case 1 discussed above.

Case 2. k =a exp( vt ). In th—is case the EMT is given
asymptotically by

Too-a(A, +2k, +4v)exp( —vt —
A, lzl ),

To, -a v(A, —2)exp( vt —
A, lzl )sgnz—,

T» -a(v —4v —6A, )exp( vt —A. lzl ),—
(3.18)

p-Tooe -A(A, +2)k exp[ —(A, —4}lzl])0 (3.16)

if k & 0; but then pi ——
p & 0 and

X exp[ vt——(A, —4) lzl ],
pi-2a[v —

A,
—8(A, +v)+6' ]

Xexp[ vt ——(A, —4) l zl ],
where

8=[v +A(A, —4)] —4[v(A, —2)]

=(v—
A, )(v+A, )(v —

A, +4)(v+A, +4) .

The conditions p,pi & 0 are equivalent to

& lA, +8k, —v +8vl =(v+A, )lv —
A,

—Bl,

(3.24)

(3.25)

(3.26)

taking the square of this inequality, and using (3.25), we
get

(v—A, )(v —
A, +4)(v+A, —4) & (v+A, )(v —A, —8), (3.27)

which is equivalent to

2v +(A, —10)v—3A(A, +2)&0.
The solution of (3.28) such that v&0 for A, &4 is

v) —,'[(10—
A, )+(25K, +28k, +100)' j

—A, + —",

(3.28)

(3.29)

for A, ~ 00. Since the lower bound of v in (3.29) is always
greater than A, +2, we can summarize the above deduced
conditions for A, and v by (3.19) and (3.29).

A final condition that we would expect from the matter
in the low-density region far from z =0 is pll, pj &p. In
view of (3.24), the condition on pi says that

Note that (3.21) will be automatically satisfied if (3.23) is
valid. The asymptotic forms of the density and normal
pressure fields will be

p- —,'a[A, —v +8(A, +v)+b, ]

p~~-o(v —A, —2v —2A, )exp[ —vt —(A, —4)lzl ] .

The pressure pi will decay as lzl ~ ~ if

A,
—4&0, (3.19)

A,2+8K,—v +8v&0,

whose solution is

v&A, +8 .

(3.30)

(3.31)

v +A(A, —4)&2v(A, —2),
which will be satisfied for

(3.20)

in this case, the condition 6 & 0 (which is equivalent to
lTOO+T» l &2lTO, l) maybe written as 3(v —4v —

A,
—4A, ) &b, '

which splits into the two possibilities

(3.32)

(3.33)

Using (3.18) and (3.24), the condition on pi reduces to

v) A, or 0(v(A, —4 . (3.21)
I

[if the left-hand side of (3.32) is negative] or

v) A, +4,
v —9v —2(A, +5k, —10)v +9k(A, +4)v+A, (A, +10k,+16)

=(A, +v)[v —(A, +9)v —(A, +A, —20)v+A(A, +10k,—16)]&0 . (3.34)
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The roots of the cubic polynomial in v which appears in
(3.34) are

'V) —S) +$2 —Q2

2 3= —
—,'(s)+s2) —

—,'a2+ —,
'V j(s( —s~),

where

(3.35)

—[r+(q 3+ 2)1/2)1/3

r = , (a-, az —3ao) ——„a&,1 3
(3.36)

and a2, a, , and ao are the coefficients of v, v, and 1, re-

spectively, in the cubic polynomial. By direct calcula-
tion, one verifies that

9 10 11 12

FIG. 1. Curves in the (A,v) plane which arise in the discus-
sion of the model of Sec. III. From bottom to top: v=k+2
(where p

~~

-0), v =v, (A, ), v= (1/4) [(10—
A, )+(25K'+ 28k

+ 1QQ) ] (where p&
—0), v=/+4, v=v&(g) (where p~~

—p),
and v =k+ 8 (where p j

—p). The strip between thick lines is the
solution of the inequality (3.41).

q
= —

—,'(4A, +21K+21)&0,

r = —
—,', ( 16K, + 126K. +45k, + 162 ) & 0,

D=q +r (3.37)

therefore,

= ——„',(292/(, +2328k +3313/(, +3576k, +400)

&0,

60

50

4o f-

8

20

10

—1.0 —0.5 0. 0 0, 5 1,0 —0.5 0.0 0.5 1.0

10 I- (c)-
80

F)0

='0

I'Eg
/

/

/

II I

I

—50

—60
—1.0 —0.5 0.0 0.5

- 60
—05 1.0

FIG. 2. Evolution of density, pressures, and Newtonian density in the model of Sec. III with v=21.=12.73, a=3. 142, and
c, = 101.3tg. The displayed curves are for t =0.242 (dashed), t =0.273 (long-dashed), t =0.336 (dot-dashed), and t =0.493 (solid).
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s, ,=[r+i v' —D ]'"
l 77 r=v' —

q exp +———arctan
3 2 v' —D

and

1
v& =2&—

q cos ———arctan
6 3 v' D—

1 r
v = —2M —

q cos ———arctan
6 3 v' —D

(3.38)

1—ap

(3.39}
1+ ———a

3 32

p~ =p+2p~~~+ (3.45)

During the collapse, a repulsive layer (pN &0) develops
near the plane of symmetry, while the outer regions
remain attractive (pz&0) for all times. The density p
remains positive for all (t,z), and the EMT tends to the
distributional form (2.2) as t ~ ~.

changes its sense, pointing inward to the wall and there-
fore accelerating the collapse. In Fig. 2, we also show the
"Newtonian density" [3]

IV. DOMAIN-WALL FORMATION
FROM AN ASYMPTOTICALLY ISENTROPIC FLOWIt may be verified numerically that v2 & 0 for A, & 4, while

v, & A, +4 & v3 & 0. Hence, (3.34) will be satisfied if
The flow described by the model of the previous sec-

tion has p~~/p-const, p~/p-const far from the wall.
These relations between the density and the pressures are
formally similar to the relation p /p =const, which holds
when a classical ideal gas undergoes an isothermal pro-
cess. However, since the collapse of the wall occurs rap-
idly, it is reasonable to expect that a model for which the
flow from the wall is asymptotically isentropic (adiabatic)
will better represent the physics of wall formation. The
asymptotic relation between pressure and density in such
a model is

A, +4&v&v, (A, ). (3.40)

The region of the (A, ,v) plane where all the above-
deduced inequalities are valid is defined by (see Fig. 1)

A, &4,
(3.41)

-'[(10—A)+(25K, '+28k+100}'"]& v&v, (A, ),
it can be easily shown that the asymptotic form of v, (A, )

for large 1, is v, (A, )-A, +(19+v 73)/4=A+6. 88.
Figure 1 suggests that on the strip defined by (3.41) we

will always have p~ &p~~, i.e., that the model under con-
sideration cannot represent a fluid which is asymptotical-
ly isotropic as ~z~ ~ 00. In fact, by (3.18) and (3.24), the
condition p~ -p~~ says that

=v +4v —
A, +4k, =(A, +v)(v —A. +4), (3.42)

(4.1)pp ~ =const,

where y=c /c„ is the adiabatic index. In an isentropic
process at low densities, we have p «p, since the con-
stant y in (4.1) lies between 1 and 2 in physically relevant
gases. The asymptotic form of the metric employed in
Sec. III implies that the fields p and p decay with the
same spatial and time scales, and is therefore unable to
describe this kind of process.

Here we consider the general metric (2.3), where the
asymptotic behavior of the coeScients is chosen as

taking the square of (3.42), and using (3.25), one con-
cludes that v=0.

In conclusion, the model described by (3.13) with
k (t)=a exp( vt) presents —the more acceptable features
among all the models analyzed above. Far from the wall,
the density and pressure fields behave like plane waves,
propagating without change of shape towards the plane
z =0. In the following, we look for C" functions with
the asymptotic behavior (3.13}.

One possibility is

F= 4M(t, z), 6—= 4P(t, z), H—=4[t N(t, z)], —

M- ~z~+ A, e ~+ A2e

N- ~z~+coA &e ~+(A2e

P- Izl +y A,
e~+g'A2e

(4.2)

N=N, +k exp( —A,N, ),
N~ =(1/e)ln[2cosh(ez)], lim e(t)=+ ~ .

(3.43) forz%0, t~ao, A, Az, co, y, g, gareconstantsand

It is easy to verify that (3.13) will be valid provided
y=vt+X~z~, y=gt+p~z~ (4.3)

ke exp[(2e —
A, )~z~ ] &&1 . (3.44)

Numerical experiments with (3.43} (Fig. 2) indicate
that it is possible to choose A, , e(t)=sot,
k(t}=a exp( vt ), in su—ch a way that p, p~~,p~ & 0 for all
z at an initial time to) 0. At a later time t&, negative
pressures appear in a small neighborhood of z =0; the
collapsing fluid seems to undergo a phase transition in
which an equation of state with pressures changes to one
with tensions. In the initial stage of the collapse, the
pressure gradient force points genera11y outward from the
wall, indicating that the fluid pressure tends to slow down
the collapse. At later times, the pressure gradient force A, &@&2k, v&q&2v, (4.4)

( v, A, , g,p =const).
If we assume that vugg, A,Ap, , we hope that it will be

possible to choose the constants in (4.2) and (4.3) in such
a way that the fluid is asymptotically isotropic and p and

p decay with different spatial and time scales, as required
by (4.1). Without loss of generality, we can assume that
v&g and A, &p. In order that the leading-order terms in
the asymptotic expansions for the density and the pres-
sures p~ and p~~ be O(e ~,e ~}, we must ensure that the
terms O(e & "~) with m+n &1 are negligible with
respect to e ~. Clearly, this condition is satisfied if and
only if
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exp( —4IzI )p- poe ~+p, e ~+

exp( —4IzI )pll p Iloe ~+p llie ~+

exp( —4Iz )pi-pioe ~+prie ~+

(4.6)

where the coefficients depend on (v, l, rj, p) and possibly
on the other parameters appearing in (4.2). We will try to
choose the parameters so that p~~o p~o=0. If, with this
constraint, it is still possible to choose the remaining free
parameters so that

p~~& =p» )0, po&0, then the Quid will
be asymptotically isotropic, with positive pressure and
density. In this case, the classical equation (4.1) implies
that

in this case we will have

e &»e &»e '&»e & &»e '&» (45)

The asymptotic expansions to O(e ~) for the pressures
and the density will have the form

pllo
=

—,
' A, [(v —4v —4A)y+(v —2v+2A+8)to

+(2v —
A,

—2A, —8)],

pili A2[(~+()rl —
p, +2(1—2g —g)tl

—2(1+2(—g)p —8(1—g)] .

(4.10)

The first coefficients in the expansions of p~ and p are ob-

tained from (2.7), (2.13), and (4.8):

po= 2(&~o"-+Qo» pro=-,'(&~o"—Qo»

(we omit the rather long expressions for b,o and b, „which
are more conveniently obtained by use of a computer
algebra system). The first coefficients in the expansion for

p~~ may similarly be found:

i)=yv, p,
—4=y(k —4) . (4.7)

(4. 11)

It can easily be verified that (4.7) implies (4.4) if 1(y (2
and A, )4. In this case, it is known that the speed of
sound in the gas is always less than the speed of light

Inserting (4.2) in the expressions (2.4) for T t3, it is
found that as t ~ ~ (zWO) we have

exp( —4IzI)(e Too
—e Tii )-Qoe ~+Q, e ~+

where

s=sgn Tr( T, )-sgn ro.

The conditions p~~o =p~o =0 read

(4.12)

exp( —4IzI )(e Too+e T» )-roe (4 8} (v' —4v —4X)q+(v —2v+2A, +8}co

+~e &+
1

exp( —8IzI )b, —doe ~+ b, ,e
~ ~+

where

Qo
= —A, [(v —

A, )y+ 2(1 —co —4y )v

sb' Qo=0, —

+ (2v —
A. —2A, —8)=0, (4.13)

(4.14)

—Syk+ 16(oi—1)],
Qi = A 2[(rj' p')(+2(1 —0 4()rt——

this last equation may be replaced by the equivalent con-
ditions

—8(@+16(g—1)], (4.9) ho Qo =0 sgnQo =s (4.15)

ro= A, [(v +A, )q&+2( 1+oi—2(p)v

—2(co+ 1)k+8(to —1)]

(we assume that b.o&0, which will be verified below).
The first equation in (4.15) may be written in full as

2(v3+2v2& —6v2 —vj. —16vg —10k. —2A. )y +(2v +3v A, —16v —12vA. +48v —
A, +12/ +64/)y~

—(4v +2vA. —24v —
A, +SR,+48)to +(Sv~ —v k —2vk, +12vA, —48v —A. —4A. —64K, )y

+2(2v +2vA, —16v+A. +48}co+2(4v—vA, +4k, —24) —3A, =0 . (4.16)

Solving (4.13) for co, and substituting the result in (4.16), we get a quadratic equation for q& =g(v, A, ):

~os +~~V +~~

where

(4.17)
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BO=Av (v+A, )(v —3A, }+v [2v(A, +2v )
—A(v A+8v +18k, )]

—8[4v (v+A, )+3k, (A, —v}+v A, (5v+9A, )]—16k,[v (9A, +4v)+2k, (4A, +v)]—128K,

B,=(A, —v)B', ,

B& =A,v (A, +v)(v —
A, ) —2A, [A, (A, +v )

—5v (A, —v )]

+16[A, (A, +v ) —2Av(A, —v ) —v ]+32[4v (A, +v)+A, (3v+5A, )]+128k(v+2K, ),
B2=A(A, —2v)(A, —v ) +16vA(A, —v)(A, —v )+16[(A, +v )(v —4vk+A, ) —4A, ]—128(A, —v)(A, —v ) .

Therefore,

q=qr~=( B)+—v'D )/2BO, D =B) 4BOB—q,

co=re)+ = [(A, +2iL —2v+8) —(v —4v —4A, )p+]/(v —2v+ 2k+ 8) .

Remarkably, the polynomial D may be factored as

D=A, (A, —v) (A, +v —4)D',
where

D'(A, , v)=v (A+v)(A, —v ) —4v (A+v) [2v(A, +v )
—

A, (A, +v )]

+4(A, +v)[5v (k+v)+A(A, +v )+7k, v (A, —v )
—2vA, (A, +2v A, +v )]

—16[(A, +v )(v —3A, )+4v (v —
A, )+18Av (A, +v}+2v(A, +v )]

+64[A, (A, —v )(5A, —3v)+2v (v +3k, )]—256[5K, (v —
A, )+2v (2v +vA, +3k, )]

+1024[2k, (A, +v)+v (v —3A, )]—4096v

(4.18)

(4.19)

(4.20)

(4.21)

(4.22}

Inspection of the terms of degree 9 in D' shows that

lim D'(A„kk)=+Do, k &0, k%1,
g~ 00

while for k = 1, the terms of degree 8 imply that

lim D'(A, , A, )= —~ .
g~ 00

(4.23}

(4.24}

we have obtained the first eight coefficients ak.

a0=3, a, =+-,', a2=4, a3= '~',
(4.29)

4033 1 182 853a4= —13, a5=+, a6 =4, a7
512

These results suggest that D' has at least two roots
v= v+(A, ) with the asymptotic behavior

1/7 ~ (4.25)gazoo, g+) 1 .

Taking into account the terms of degrees 8 and 9 in D',
we obtain immediately

D'[A, ,v+(A, )]-A, (2A, )( —2a~A, —+
)

—4A, (2A, ) (4A, —D, }+

=8a+A, ——32K,'+. . . (4.26)
7+2/v+

The two leading terms in (4.26) will cancel out if x+=2,
a+ =+2, (4.25) then suggests that the complete expansion
of v+(A, ) has the form

The accuracy of (4.27) has been numerically verified for
A, & 4: the largest relative errors occur at A, =4 (about 5%
for v+ and 1% for v ), and the error decreases rapidly
for larger values of A, .

We have verified numerically that v+(A, ) are the only
roots of D'(A, , v) in the region A, &4, v&0 (Table I). By
(4.23), we must then have D'&0 for A, &4 and v& v+(A, )

or 0& v& v (A, ). The functions y+(A, ,v) will only be real
for (A, , v) satisfying these conditions.

Next, we need to verify the second condition in (4.15)
for solutions (4.19) and (4.20).

Case l. y=y+, co=co+. Let us first analyze the limit
v, k~ao, v-kA, (k &0}:

Bi ——
A,v (v —

A, ), Bo-Av (A, +v)(v —3A, ),+a +a g +a

( ]+2$+apg +0]$ + )
(A, —v} (A, +v) (1—k} (1+k)

v (v—3A, ) k (k —3)

co+-(A/v) —q)+ —[1—(1—k) (1+k)/(k —3)]/k

where 5=A, ' is a small parameter. Inserting this ex-
pansion in (4.22), we get

D'=5 ' (co+c&5+cz5 + )=0, (4.28)

D'-v (A, +v)(v —A. ), D-A, (A.—v)2(A, +v)D',
(4.27)

(4.30}

the conditions cp=0, c& =0, . . . , determine ao, a&, . . .
successively. With the aid of a computer algebra system,

s-sgn~o-sgnA, g+(A, +v )=sgnA, p+,
Qo-A, q)+(A, —v )-A, p+(1 —k )A,
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TABLE I. Di6'erence (Av+) between the expansion (4.28)
and the true root of D'(A, ,v). The largest power of 5 included in

the evaluation of (4.28) is shown in parentheses.

with the necessary condition Ao) 0.
When (4.14) holds, we have

hv (5') bv (5) Av (6')

4
5

6
7

10
20
30
50

—0.45
—0.2
—0.1

—0.05
—0.01
—0.001
—0.0002
&10 4

0.08
—0.001
—0.05
—0.09
—0.14
—0.12
—0.09
—0.06

0.03
—0.02
—0.02
—0.02
—0.008
—0.0008
—0.0002
(10

Therefore, the second condition in (4.15) will be asymp-
totically satisfied for k (1; this suggests that y+, co+ will

be a solution of (4.14) in the region A, )4, 0&v(v (k).
This conjecture has been verified numerically, together

sgnp- sgnpo= sgnQo, (4.31)

in the limit A, , v~ oo, 0 & v & A, , we have qr+ & 0, by (4.30).
Therefore, in order to have Qo & 0 we must choose

A& &0. With this choice, it can be verified numerically
that Qo &0 for A, )4, 0& v(v (A, ).

Case 2. y=q, co=co . Here, a simple modification
of the argument of case 1 shows that in the limit
A, ,v~ ~, v-k A, we have y~O. Therefore, to determine
the asymptotic behavior of y, we must take into account
the terms of degree 6 in B, and the second term in the ex-

pansion of v'D:

B, ——A(A, —v){v (A, +v)(A, —v )+2[A(A, +v )
—5v (A, —v )]+O(A, )I,

v'D -Av (A, —v ) —2A(A, +v)[v (A, —v) +2v(A, +v )
—

A, (A, +v )]+O(A, ),
(A, —v)[A(A, —Av+v )

—4v (A, —v)]+2v(A, +v ) —A, (k +v )

v (v —3A, )

(2k —7k +3) (1—2k)

k(k —3)A, k A,

co —(A, /v) —y —1/k

s-sgnro-sgnAi[q& (v +A, )+2(1+co )v —2(1+oi )A]

-sgnA i [(1—2k)(1+k )/k +2(1+1/k )(k —1)]= —sgnA i,
Qo ——A i [y (v —

A, )+2(1—cu )v]

—Ail[(1 —k )(1—2k)/k~ —2k(1 —1/k )]=Aik(1 —k2)/k

(4.32)

Therefore, (4.15) will hold asymptotically for k ) 1; we have verified numerically that y, co satisfy (4.15) and b,o&0
in the region A, & 4, v) v+(A, ). As in case 1, (4.31) is valid; if k & 1, (4.32) implies that we must take A i & 0 as before in

order to have p & 0. We have verified numerically that Qo & 0 for A, )4, v) v+(A, ).
In conclusion, for any (A, , v) in the region A, &4, 0&v&v (A, ) or v) v+(A, ), we obtain a model where p)0 and

pi, pi «p hold in the limit t ~~, zAO. In view of the acceptable domains of definition of the branches y+and q&, we

can write down a single expression for g,

V
[A,v'(A, +v 4)D' —B', ] . —

280
(4.33)

The asymptotic behavior of the pressures as t ~ ao will be determined by the coefficients

p~~i
=

—,
' A2[(g+g)q —p +2(1—2(—g)q —2(1+2(—()p —8(1—g)],

pxi =(~i 2QoQi )/4Qo
(4.34)

where we have used (4.14). With the help of (4.7), (4.34) becomes

p~~i
=

—,A2Igy v 4y(v+A)+16(y 1)]+g[y v 2y(v I, ) 8(y 2)]
—[y (A.—4) —2y(v —5A, +20)—32]], (4.35)
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+ 4 1+y)q)+y

+ 1+ro)]A, +4[2(2y —1)(y —4)q —
y 5y —1 ro+y y+1 v—y[4(1+y)y+y 1+a) — — — 5 1 ro+y y

—7 +1) —3y(ro — v—l)]vA, +4[2(y —2}(4y+1 p y+4[4(2y y
—16[2(y—1)(3y—7)IP —(7y —4 ro — y — —4 v—4 ro —(2y —1)(y —4 v

7 —12y+ 1)ro—(5y —10y+ 1)]A,—16[2(2y —7)(y —1)Ip+ (7y — y — ~ — 1

—64(3y — y——7)( —1)(1—ro) I

v+A, ) (2v —
A, }—4[2(y+1)q)+y 2' —1 v —y

+2[2(y+2)y+y(co+1)]A, —16 y —4 y — y
—2 1 —co)(y —4) I

—16(yro 4q&)A, 3

1 —co ]vA,+4 (2 +ro)v +4[(7y 4—)y y—1 —co v+I —yak, (v+A, ) y
—3)]A, —16[(y+2)Ip+y(2ro 1]v-+2[2(3y —4)y+ y(ro—

—1 A,
—32(y+2}(1—ro)) ) .2 +1)y+(y —1)ro—(2y —1)] — y

fluid be asymptotically isotropic, p» = I~„can be wri enThe condition that the fiut e asy

3 —1)] A,
—2y[(1+y)qr+ y]vutI =( ~1~2~QO)(

(4.36)

3.0

(a) .

Z. O

1.5
4

1.0

0.0
—2

(c)

8

0
II

I

—2
I, , ~

1 2—2 0

3 f
=6 v =2, A

&

= —0.7
z

in the model of Sec. = 3, =6 v—. IV with y= —,A, =6, v-s and Newtonian density in

3) (4.20), and (4.37), that p=
3 3,

nsit, pressures, an

8 s=5t+7 [these values of t e pa
for t =0.2 (dash-dotted), t =0. asTh d s layed curves are for r ==0.5105]. The ispq&=0.07225, ro=2. 701, and g= . . Th s

and t =0.5 (solid).
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g{q&y v (v —A )+2y (co —2y+1)v +2y[2q)+y(3' —1)]v A,
—4y2(l+&p)vA2

—2y [2(1+2y }y+y(1+ co ) ]A +8[2(2y —6y+ 3)q) —y(3y —2)~—y2]vz

+16[2(2y —5y+1)y+y(1 —co)]vA+8[2(4y —6y —1)y+y(5y —2)co —y ]A,

+32[—2(y —1)(3y —5)q&+ (4y —3 )co+ (2y —6y+ 3)]v

+32[—2(y —1)(2y —5)tp —(7y —10y+ l)co+(5y —8y+1)]A,
—128(y —1)(3y—5)(1—co) ]

+({yq)v (v A—, ) 2—y[(4y —1)p—y(1 co—)]v 2—yq)A[4(y —1)v —vA, +2A, ]

+4y [
—2y+(4y —3)co—(4y —1)]v —12y(2y+co —1)vA, +4y(1+co)A + 16y(2y+ 3'—1)v

+32y(2y —1)A, +64y(1 —co) {

+ {y2q)A2(A —v )+2yy[v +2(2y —3)v A, +4A, ']+2y[(4y —3)g—y(1 —co)]vA

—4[2(2y —5y+4)g —y(1+ co) ]v —4[2(8y —15y+4)p+ y(4y —7)(co—1 ) ]vA,

4y—[4(3y —4)y+ (4y —1)co—(4y —3)]A,

+ 16[2(y—2)(4y —3)q)+(2y —7y+4)co (2y— Sy—+4)]v
+32[2(2y —6y+ 3 )g+ (4y —6y+ 1)co—(4y —7y+ 1)]A,

+64(y —2)(4y —3)(1—co)] =0 . (4.37)

In summary, in order to obtain a model of domain-wall formation with the desired properties far from the wall (iso-
tropic gas in isentropic flow), one can begin by choosing (A, , v) satisfying the inequalities A, &4, v&v+(A, ), or
0& v&v (A. ). The constants y and co are then determined by (4.33) and (4.20). The values of A, &0 and A, @0may be
chosen arbitrarily; g and g must be chosen (if possible) so that pi, =p~~, =p & 0. Clearly, it is possible to specify g, say,
arbitrarily, and then to find g from (4.37). The condition p & 0 may then be verified by evaluating (4.35) and (4.36).

Examples of C" metrics having the asymptotic behavior (4.2) can be constructed in analogy to (3.43) and (3.44); we
have studied numerically the properties of the metric (2.3) where

,'F=M=N—, —(t,z)+ A &exp[ vt —AN, (t,—z)]+ A2exp[ qt pN~(—t, z)],—
—

—,'G=P=N, (t,z)+qr A, e p[xvt —AN, (t, z—)]+(Azexp[ rtt pN, (t,z)],——

t —,'H =N =N, (t—,z)+ co A i exp[ vt —AN, (t,z—) ]+(A 2exp[ gt pN, (t,z—) ]—,

(4.38)

and N, is given by (3.44) with s(t)=sot+a, , e, =const.
As in Sec. II, we find positive density and pressures at an
initial stage of the collapse (Fig. 3}. Later, a transition to
negative pressures takes place at z =0. It should be not-
ed that initially the pressures are almost isotropic every-
where (not only as ~z~ ~ ~ ). The evolution of the
Newtonian density follows a pattern similar to the one
found in the model of Sec. III, with the appearance of a
repulsive layer around z =0.

V. CONCLUDING REMARKS

Following Synge's g method, we have constructed
dynamical models of the formation of a plane, reflection-
symmetric domain wall of negligible thickness. Our
models start from inhomogeneous plane-symmetric dis-
tributions of matter, whose density and pressures decay
exponentially (in a special system of coordinates) at
su%ciently large distances from the plane of symmetry
z =0. This matter distribution collapses, causing the

density and pressures to decrease exponentially with time
for z@0. Such spatial and temporal behavior of the mod-
els has been chosen to ensure that the matter far from
z =0 has low (positive) density and pressure.

In the first model we have considered, the metric has
the form (2.3) with F = G, and its asymptotic behavior is
given by (3.2) and (3.13), with k(t)=ae "(v&0). This
particular form cannot represent an asymptotically iso-
tropic fluid, but by suitably restricting the free parame-
ters A. and v (Fig. 1), one can obtain equations of state of
the form p~~/p-const and p~/p-const. A metric with
the required asymptotic properties is given by (3.43) and
(3.44), where the C" function N, (z, t) plays the role of a
"smoothed version" of ~z~, and will, in the limit t ~ ~,
contribute with the distributional EMT of the domain
wall. During the collapse, a phase transition seems to
take place, with the appearance of tensions at the high-
density regions around z =0. The tension distribution
around the collapsing wall is such that the pressure gra-
dient forces tend to speed up the collapse (Fig. 2}.

The second model includes certain physically interest-
ing features, such as the asymptotic isotropy and isentro-
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py far from the wall in formation. This is achieved at the
expense of a more complex model, based on both the gen-
eral metric (2.3) and the general asymptotic form (4.2)
and (4.3). The wall collapse in this model is qualitatively
similar to the collapse of the previous model. Finally, we
remark that a more realistic model of domain-wall forma-

tion should include some mechanism of energy dissipa-
tion, such as the emission of electromagnetic radiation.
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