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Anisotropic wormhole: Tunneling in time and space
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We discuss the structure of a gravitational Euclidean instanton obtained through coupling of gravity
to electromagnetism. This Euclidean solution can be interpreted as a tunneling to a hyperbolic space
(baby universe) or alternatively as a static wormhole that joins two asymptotically flat spaces of a
Reissner-Nordstrom type solution.

PACS number(s): 04.20.6z, 04.20.Dw, 04.20.Jb

I. INTRODUCTION

Wormholes (WH's) are classical Euclidean solutions
for the gravitational field coupled to matter or gauge
fields that asymptotically connect two four-dimensional
manifolds; they are interpreted as tunneling between the
two asymptotic configurations. If a WH can be joined at
t =0 to a hyperbolic universe whose spatial three-
dimensional hypersurface is compact, the Euclidean solu-
tion can be interpreted as nucleating a baby universe
(BU) from an asymptotic region and gives the semiclassi-
cal amplitude for creating a BU in that space. The BU
then evolves according to its equations of motion.

A large amount of attention has been devoted to expli-
cit WH solutions. In particular, Giddings and Strom-
inger [1] and Myers [2] have discussed WH's generated
from coupling the gravitational field to an antisymmetric
tensor of rank 3 (the axion), with topology R XS3; Hal-
liwell and Laflamme [3] have discussed solutions in the
presence of a conformal massless field, and Coule and
Maeda [4] have examined the case of the axion field cou-
pled to a scalar Klein-Gordon field (in both cases with to-
pology R XS ); Hawking [5] and Hosoya and Ogura [6]
have dealt with gravity coupled to a Yang-Mills field.
The magnetic monopole solution in four dimensions has
been investigated by Keay and Laflamme [7]; its topology
is R XS~XS

In this paper we shall investigate a different WH solu-
tion of topology R XS' XS generated by the elec-
tromagnetic (EM) field.

The outline of the paper is the following. In the next
section we sha11 present the Euclidean solutions for gravi-
tational and EM fields in the cases of zero and nonzero
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cosmological constants; then, in Sec. III, we shall discuss
their interpretation as instantons describing a gravita-
tional tunneling.

Finally, in Sec. IV, we shall deal with a different type
of continuation to a hyperbolic space leading to an alter-
native interpretation: a static Reissner-Nordstrom-
(RN-) type solution joined by a WH to a second RN
space. According to the usual interpretation, this is evi-

dence of a quantum tunneling: The WH yields the ampli-
tude for a transition between two RN spaces. We shall
discuss in detail the transition probability for the particle
cross between the two spaces.

This way of looking at the WH as a quantum bridge
connecting two classical hyperbolic spaces opens the way
to the interesting speculation that singularities in the
classical domain of physical, hyperbolic solutions in gen-
eral relativity can be avoided by Euclidean solutions join-
ing two spaces, as happens in the RN case that we discuss
here.

We shall use natural units in Secs. II and III and
geometrized units in Sec. IV.

II. EUCLIDEAN SOLUTION

+f d x&h K.Mp

an 8m
(2.1)

Here Q is a compact four-dimensional manifold, Mz is
the Planck mass, R is the curvature scalar, A is the
cosmologica1 constant, F„ the usual EM field tensor
with coupling constant e, K is the trace of the extrinsic

Let us consider the Euclidean action for gravity
minimally coupled to the EM field:

S~= J d x&g — (R+2A)+ F „F""Mp 1

0 16m. 4 2 P~
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curvature of the boundary BQ of 0, and h is the deter-
minant of the induced metric over BO. The EM field
prevents spatially homogeneous and isotropic solutions of
the field equations; hence, we look for a solution of the
form

ds =dt +a (t)dy +b (t)d02, (2.2)

where y is the coordinate of the one-sphere, O~g&2m. ,
and dQz represents the line element of the two-sphere.
The line element (2.2) is known as the Kantowski-Sachs
type [8] and describes a R XH space, where H is a three-
dimensional homogeneous and nonisotropic hypersurface
with topology S'XS .

Let us first discuss the case 4 =0. For the EM field, we
choose the ansatz

A„= A (t)5r„. (2.3)

From the equations of motion,

The only nonvanishing component of the EM field is, of
course,

F, = F,=A—(t) .

t =q tan
2

' (2.10)

where g is defined in the interval ( ~,—rr) Int. roduce now
the new coordinates u, U as

1 —cos( ~&/2)

sin(g/2)

1/cos(g/2) i
1 —cos( ~~/2 )

sin(g/2)

(2. 1 la)

(2.11b)

then, from (2.10) and (2.11), the line element (2.7a) takes
on a singularity-free form given by

'2

ds2=q2 1+ q e 2+t +q jv(d—U 2+dv )&t'+q'

particular case has been classified by Gibbons and Hawk-
ing [9] as a "bolt" singularity. In the neighborhood of
t =0, the topology is locally R XS with R contracting
to zero as t ~0. New variables can be defined such that
the whole Euclidean space is represented by a single
chart. Let us define

a„(&gF~.) =0,
we obtain

A=K
$2

(2.5)

(2.6)

+(q +t )dQi .

Recalling

u+U=2+ 2 1 cos(g/2) 2/cos((/2)eI+cos(g/2)

(2.12)

(2.13a)

where K is a constant of motion. Substituting (2.6) into
(2.1), one recovers after some algebra (details are given in
Appendix A) the scale factors of the one- and two-
spheres. The solution is

ds =dt +q dg +(q +t )dQ, ,
t'

q +t
qqeM&A(t)=-
2&Fr v'q'+ t'

q is connected to K by

4~ X2
2~2'e p

(2.7a)

(2.7b)

q is an integration constant with dimension of length
whose value remains arbitrary.

Let us now study the asymptotic behaviors of the solu-
tion (2.7a). When t ~+~, the metric coefficients remain
well defined, a ~q, b —+t, and the line element be-
comes

2dt 2 +q2dy2+ t 2d@2 (2.8)

Clearly, the manifold becomes Hat with topology R XS'.
At t=0 the metric is singular. This is only due to the
choice of the coordinates that cover only half of the rnan-
ifold (2.7a). Indeed, in the neighborhood of t =0,
defining q =q, (2.7a) becomes

ds =dt +t2 (2.9)

hence, we see that the singularity t =0 can be removed
going to Cartesian coordinates in the (t, y) plane. This

U—=tang,
u

(2.13b)

1 —cos(g/2)
1+cos( g/2 )

1/cos( 0/2) (2.14)

Let us now consider the case A@0. Using the same an-
satz (2.3) for the EM field and introducing for conveni-
ence a new Euclidean time coordinate b:b( t), a solut—ion
is now given by

$2 gb4+b 2 2

ds = db +q
+ q d~2+$2dQ2~b'+b'-q' ' b'

A (b)= —
q—,K

b

(2.15a)

(2.15b)

with A. =A/3. This solution reduces to (2.7) when X=O
2 q2+t2

Let us separately discuss A, &0 and k(0. In the first
case, it is easy to see that the line element (2.15a) is
defined for

2 z +1+4Aq —1
b )qo —=

2X
(2.16)

With the transformation

b'=qo+r

(2.15a) takes the form

we see that the geodesics at constant y are the straight
lines passing through the origin, while the geodesics at
fixed t are circles of radius

' 1/2
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d~
A(qo+r ) +qo+r —

q

A(qo+r ) +qo+2 —q2

+(qo+r )dQ2, (2.18)

solution is given by

ds = dt —+q sin —dy +q dQ2,2 — 2 —2 . 2

qeM t
A (t) = cos

2v'7r q

(3.1a)

(3.1b)

where now —~ (~(+ ao.
The asymptotic form of (2.18) for H~ 00 is

ds = dr +Aq Hdy +r dQz .1
(2.19)

Contrary to the A, =O case, now this is not a fiat Euclide-
an space. Let us redefine the Euclidean time by

l~l =exp(+A, v' ),
so that the asymptotic form (2.19) becomes

d&2 drr2+e 2 xH
(Zq 2d+2+ dQ2)

(2.20)

(2.21)

This line element defines an anisotropic universe whose
scale factors expand exponentially; their ratio is fixed by
the cosmological constant.

For A, & 0, (2.15a) is defined when

q &b &q+,
where

1+v'I —4l Xlq'

(2.22)

(2.23)

In this latter case, we can cast the line element (2.15a)
into the form (2.2) introducing a new transformation

We then have

&I—4l~lq'
(2.24)

2 2 q
'

[ 1 —41~ I
q']cos'[2&

I
~

I r] 2

1++1—4ll, lq sin[2& I, r]

+ [1++1—4ll, lq sin[2&lk, lr]]dQ2, (2.25a)

qrt &21~1

[1+&1—4lzlq'sin[2''lair]]'"
(2.25b)

The important feature of (2.25a), which will be relevant
in the forecoming discussion, is that of being a periodic
solution in the Euclidean time ~.

III. SOLUTION IN HYPERBOLIC
SPACETIME: GRAVITATIONAL TUNNELING

The instantons (2.7) and (2.25) can be joined to real,
hyperbolic universes; these are the bounce solutions of the
gravitational tunneling.

To find the hyperbolic manifolds describing the tunnel-
ing spacetimes, we have to investigate hyperbolic solu-
tions of the coupled gravity and EM fields with the same
symmetry as just discussed in the Euclidean case. Using
the hyperbolic version of the action (2.1) when A=O, a

Here, as before, the topology is 8 XH, y is defined in the
interval [0,2~[ and —00 &t &+ ao. The line element
(3.la) describes a nonisotropic universe with a constant
two-sphere radius and a periodic one-sphere scale factor
taking values in the interval [O, q]. In the neighborhood
of t =0, the line element (3.1a) with q =q reduces to the
form

ds = dt +t—dy +q dQ (3.2)

ds = —dt +sin co t+ 7T

4&l)
l

dy2+ q d Q22

(3.3a)

and

and the EM field (3.1b) is well defined for all t's Howe. v-

er, as for the Euclidean case (2.9), the singularity at t =0
can be removed; indeed, the curvature tensor is regular
there even if at t=0 the physical size in y is zero. In
fact, in the neighborhood of t =0 the topology is locally
R "XS and the three-dimensional spatial hypersurface
H of (3.1a) becomes homotopic to S and a point. Thus
(3.1a) represents a universe which periodically reproduces
itself with period n.q.

The Euclidean solution (2.7) can be joined to the hyper-
bolic solution (3.1) at t =0. In fact, solutions (2.7) with
t 6]—~,0[ and (3.1) with t E ]0, ~[ satisfy Darmois
conditions for a change of signature at t =0 [10];namely,
the first and second fundamental forms of the three-
dimensional hypersurfaces H in (2.7a) and (3.1a) coincide
smoothly for t ~0*. Moreover, also the EM field is con-
tinuous with its derivative on the hypersurface t =0,
where the change of signature occurs. Evidently, the EM
field is well behaved on the matching hypersurface t =0
because both the Euclidean and hyperbolic manifolds are
well defined at t =0. The regularity of solution (2.7) and
its asymptotic behavior for t~+oo where the line ele-
ment reduces to (2.8) and the EM field vanishes allow one
to interpret that solution as an instanton which provides
a tunneling between a flat vacuum hyperbolic region and
the manifold (3.1).

In conclusion, solution (2.7) describes the nucleation of
a nonisotropic BU at t =0 starting from an original flat
spacetime. The hypersurface of the signature change is
in our case two dimensional, and this corresponds to the
particular situation of a BU nucleated in the phase of
maximum shrinkage of the spatial metric.

In the general case A,AO, the Euclidean line element
(2.15a) can be interpreted in a similar way. For instance,
in the case A, & 0 the instanton (2.25) describes a tunneling
between the hyperbolic universes

r
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ds = —dt +sinh ~+ t—
4&(s)

+q+d02

(3.3b)

where

co+=+I 4~A—, ~q /q+ . (3.4)

Here the tunneling between the latter manifolds occurs
when the one-sphere radius is zero; they notably describe
an oscillating BU in (3.3a) and an ever expanding
universe for t )m /4&

~
A,

~
in (3.3b).

Let us now compute the probability amplitude for the
formation of a BU in the case A=O, starting from (2.1).
On the field equations, R =0 and the Euclidean action
reduces to

Sz=, f d xV'gF„,F"'.
4e

From (2.7) we obtain

4m K +~ a
~E

p b2

Z- 3/2- &—mM&qq —2m q
eMp

(3.5)

(3.6)

The probability I of formation of a BU in a Planck
volume and in a Planck time is given by

SFI =e =exp( n.Mpqq ) .— (3.7)

In order to have a probability of the order of unity, the
constants appearing in the solution satisfy

1
qq=

P
(3.8)

Hence the nucleation probability (3.7) is maximum for
BU's with dimension of order of the Planck length.

IV. STATIC WORMHOLE INTERPRETATION

Solution (2.7) can also be interpreted as a Euclidean
WH joining two isometric, asymptotically flat space-
times, described by RN type of solutions.

To see this let us make a change of coordinates in (2.2)
by substituting y~i T, with T having the dimension of a
length; for clarity, we shall put t=r. Throughout this
section we shall use geometrized units (velocity of light
and gravitational constant equal to 1). Solving for the
hyperbolic version of the action (2.1), we obtain the solu-
tion

Wick rotate the coordinate y as qg=iT and impose that
the electric field remains real. Now, since (2.7) with r = r
is well behaved for r E ]—~, ~ [, we can match the two
branches of solution (4.1) with the Euclidean solution
(2.7) at some r =Q + e with e arbitrary, via the
complexification of g as stated. With this procedure, set-
ting @~0—we obtain a Euclidean WH which joins the
two branches of the solution (4.1).

The parameter Q enter (4.1) can be given a particular
interpretation. Denoting R = r —Q,—we obtain

~2
2 l + K dT2+ 1 + & dR 2+R 2dg2

R R

(4.2)

4=4nQ . (4.3)

Therefore the constant Q only fixes the amount of fiux

that we want through any given surface containing the
origin, similar to what is done for the axionic field in [1].
Thus the electric field extends smoothly beyond the WH
throat to the asymptotic infinities of the isometric space-
times, generating in both cases an apparent charge Q.

Let us now discuss the traversability of the WH.
Clearly, in order to cross the WH, a classical particle
must be able to reach it. We shall study the equation of
motion for a test particle, having an electric charge per
unit mass q, total specific energy E, and specific angular
momentum L with respect to the flat infinity that ap-
proaches R =0. This is relevant since the particle can
cross the WH throat only if it gets to R =0 (classically or
via quantum tunneling). We assume the motion in the
equatorial plane, 8= m /2.

The momenta and equations of motion are

PT
R'+Q'z+~ =-E, (4.4a)

R
P R,

R +Q

P~ ——R $=L,

(4.4b)

(4.4c)

where the radial coordinate R ranges in ]0, co [.
The line element in the form (4.2) can be regarded as of

a RN solution with effective gravitational mass equal to
—Q /2R. However, the constant Q is not a real charge
since there are no physical charges in the field, as can be
deduced from Eq. (2.5}, but is a measure of the electric
field flux through the WH throat at R =0. In fact, since
the electric field is radial in R, its integral flux through a
sphere containing the origin R =0 is equal to

(4.1a)

(4. lb)A(r)=—

dT +dr +(r Q)dA—
r Q-

K
&r' Q' '— R = E —— — 1+0 L

R R

=(E—V+ )(E—V },

2

1+Q
R

(4.4d)

where Q is a constant. Solution (4.1) is defined for
r & Q, and at ~r~

=
~Q~ there is a curvature singularity.

In the region ~r~ ( ~Q~, we have no hyperbolic solution;
however, solution (2.7), with r =r, reduces to (4.1) if we

where V+ are the potential barriers given by [11]

V(R;P, Q, L ) R+[PR+(R +Q )'i (R +L )' ],
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with p=qQ. We shall study analytically the graph of the
function V+. The behavior of V is easily deduced from
the relation

I I I 1 I I I I

(P)= —V+( —P) . (4.6)

The analysis of the potential barriers (4.5) with LAO
shows that the barriers are repulsive for all values of the
parameters. On the contrary, when L =0, namely, when
the motion is strictly radial, there is a class of trajectories
which can reach the WH throat at R =0. We shall dis-
cuss extensively this latter case, referring to Appendix B
for the general situation.

The potential barrier V+ for L =0 reads, from (4.5),

V (R P g ) =R i[P+(R 2+Q2)i/2]

When R —+ ao, V+ behaves as

(4.7)

I & &

f

I

I

V =1+-
R

while when R ~0 we have

p+lgl
+-, p&-lgl,- o, p=-lgl,

R
, p& —Igl.

(4.8)

P2) Q2 (4.9)

In this case the particles may reach the Euclidean WH
and eventually emerge in the other region [12,13]. The
transition probability TwH for tunneling by the Euclide-
an WH is proportional to exp( —2S,i) where S,i is given
by (for clarity, we leave here the natural units)

, &Z —1S,i =nqqM/,
2

(4.10)

The transition probability characterizes the WH and is
independent of the particle's properties since the latter,
provided they satisfy (4.9), all reach the WH throat, re-
gardless of their energy.

The radial particles which do not satisfy (4.9) or those
which have a nonzero angular momentum may cross the
WH, reaching R =0 as a result of a quantum tunneling
with nonzero quantum probability. Indeed, let us go
back to Eq. (4.4d) and use it to establish the equation for
the wave function, taking into account that Pz

id /dR is g—iven by Eq. (4.4b):

R 2(RE — )2
dR (R+g)

—(R +L)(R +Q )]4 .
(4.11)

The conditions V+ =1 and 0 are satisfied, respectively,
when P=P, —:R —(R +Q )'/ and P=Po= —(R-
+Q )'/. They are shown in Fig. 1(a), while the graphs
of V+ are shown in Fig. 1(b) for the cases p& —Igl,
p= —Igl, and p& —IQI.

We may repeat the analysis for the case of V using
the symmetry (4.6). The conclusion is that the point
R =0 can be reached if and only if

FIG. 1. (a) Plot of the functions P, (solid line) and Po (dashed
line) when L=0. (b) Behavior of the effective potential V+
when p & —

I QI (solid line), p= —
I QI (dashed line), and

p & —
I QI (dot-dashed line).

The overall transition probability is given by

T= TOSH (4.12)

where TwH is due to the tunneling by the Euclidean WH
and To is the usual quantum transition probability of the
barrier from R =R o, where R o is the classical turning
point, to R =0.

For the evaluation of To in the WKB approximation,
the relevant quantity is

R2+L R2+ 2

R +Q
—R (ER —P) ] (4.13)

which is finite and has a particularly simple expression
for L =0.

V. CONCLUSIONS

In this paper we have discussed Euclidean solutions of
the Einstein equations for gravity coupled to the EM
field. These solutions describe a tunneling to a BU or a
static WH depending on the coordinate chosen to be
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complexified. In Sec. III we have seen that solution (2.7)
describes the nucleation of a BU starting from a flat re-
gion. The probability amplitude for this process is given
in (3.7); on the contrary, solution (2.25) describes a tun-
neling between an oscillating universe (3.3a) and a nonos-
cillating universe (3.3b). In the last section, we have used
the Euclidean solution in order to obtain a finite traversa-
bility amplitude between two spacetimes of RN type; we

may call this a space-tunneling WH. We stress here that
the motivations for interpreting solution (4.2) as an over-
charged RN spacetime, even if there are no physical
charges in the source field, arise from the fact that the
constant flux of the electric field through the WH throat
can be regarded as originating from an apparent charge.
This latter interpretation of a space-tunneling WH is in
the direction of the proposal by Wheeler ([14]; see also
[15]) of a pair of extreme RN black holes identified at
their throats. In the present case, the joining of two RN
spacetimes happens through quantum tunneling.

I

/
I

/
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/

/

/
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APPENDIX A

Let us deduce here solution (2.7). The Einstein equa-
tions are

R„——,'g„R =8~GT„, . (A 1)

Substituting Eqs. (2.4) and (2.6) in the expression for T„„,
we may find its components in terms of the scale factors

1 K
2 b4

L 4 ~ J J

1 E
XI 2 42e b

(A2)

The ensuing equations for the two scale factors are then

b 1

b2 b2

2ab q
ab b4 ' (A3a)

b b 1 q
b2 b2 b4

(A3b)

b a+ +
b

ab q
ab b4

(A3c)
L

(A4)

Putting then b =e ", we get

q 2&
—2h

dh
(A5)

In (A3b) only h (r) appears; by the substitution b '=f,
(A3b) takes the form FIG. 2. (a) Plot of the function L„which is the locus of the

points where the function po has a maximum. (h) Plots of the
function P, (solid line), which identifies where V+ =1, and of
the function Po (dot-dashed line), which identifies where V+ =0.
The locus of the maxima of Po is along the dashed curve, plot of
the function po, . (c) Behavior of the effective potential V+ as

function of R. The solid line represents the case p&0, the

dashed line for P (0 and P & Po„and the dot-dashed line when

P (0 and P (Po, .
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whose general solution is P=R '[R —(R +Q )' (R +L)' ]=P (Bl)

f=E,e "+1—
q e (A6)

K& is an integration constant. In what follows we shall
only consider E, =0. In the old variables, then,

Clearly, Pt & 0 always and limit „P&=0, lima
= —ao. The function Pt is plotted in Fig. 2(b). The con-
dition V+ =0 is satisfied when

So finally

2

b2

P R
—1(R 2+Q2)1/2(R 2+L )1l2=P (B2)

Here again Po &0 always; the graph of Po(R) is easily de-
duced from its limits

b(t) = +q'+ t' . (A8)
lim Po= limPo= —ao

R~oo R~o

By substitution of (A8) into (A3a), the equation for the
remaining scale factor is

and from the locus of its critical points, namely,

L =R4Q 2=L, . —
a q

t(q'+t')
whose solution is

a (t)=+q
q +t

(A9)

(A 10)

The function L, is plotted in Fig. 2(a) in the (L —R)
plane. From (Bl) and (B2) we find P, =R+Po; hence,

P, Po, the equality sign holding only in the limit R ~0.
The value of Po at its maximum is given by

R +Q
where q is an integration constant.

The signs + refer, respectively, to the submanifolds
with t & 0 or t & 0, having defined a (t) as non-negative.

APPENDIX 8

%e give here the details of the equations of motion in
the case LAO. The asymptotic behavior of V+ for large
R is

T

P+R '+
R 1, P&0.

For R —+0 we have

lQI&L —++CO .
R

The condition V+ =1 is equivalent to

and its graph is plotted in Fig. 2(b) (dashed line). We are
now in the position to draw the potential curves
V+(R;13,Q, L) as function of R for any given set of
values g, Q, L) They . are shown in Fig. 2(c) for three
difFerent values of P, namely, (1) P&0, (2) P&0 and

13& Po„and (3) P & 0 and P & —
Po, .

The classical motion is only allowed when the total en-

ergy E of the charged test particle satisfies the condition
E ~ V; hence, when the angular momentum I. is different
from zero, we see by a direct inspection of Fig. 2 that (i)

the WH throat R =0 cannot be reached classically since
the field is repulsive to all particles, either charged or not,
and (ii) a sea of negative energy particles is allowed in the
vicinity of the throat. This effect is a well-known proper-
ty of the RN solution and allows for electric field energy
extraction via quantum tunneling.
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