
PHYSICAL REVIEW 0 VOLUME 49, NUMBER 12 15 JUNE 1994

On the Vaidya limit of the Tolman model
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We show that the only Tolman models which permit a Vaidya limit are those having a dust
distribution that is hollow, such as the self-similar case. Thus the naked shell-focusing singularities
found in Tolman models that are dense through the origin have no Vaidya equivalent. This also casts
light on the nature of the Vaidya metric. We point out a hidden assumption in Lemos' demonstration
that the Vaidya metric is a null limit of the Tolman metric, and in generalizing his result, we 6nd
that a different transformation of coordinates is required.
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INTRODUCTION nates that are comoving with the dust particles:

vG„„= M*,

v 48M
T,6 (3)

where the asterisk denotes 0/Ov, and superscripts V and
T are used where necessary to distinguish quantities in
the Vaidya and Tolman models.

The Tolman metric [16,17] uses synchronous coordi-
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Recently Lemos [1] showed that the Vaidya metric,
describing radially directed incoherent radiation (spher-
ically symmetric null dust), can be obtained from the
Tolman metric, which represents a spherically symmet-
ric distribution of pressureless matter (dust), by taking a
null limit. This surprising and intriguing insight was in-
spired by the very strong similarities, quantitative as well
as qualitative, between the naked shell-focusing singular-
ities (discovered by Eardley and Smarr [2]) that appear
in the self-similar forms of these metrics at the moment
the crunch singularity forms, see for example [3—ll, and
extensive references in footnote 2 of 12]. We discuss the
nature of an origin of spherical coordinates in Tolman
models, and show that a Vaidya limit cannot be extended
to such a point. We show that one of Lemos' assumptions
can be relaxed if a different coordinate transformation is
used.

The incoming Vaidya metric [13,14; see also 15] is

ds = 2dvdR —
~

1 —
I

dv + R dO,
2M)
R )

where d02 = de2 + sin (e)dg2 is the metric on a two-
sphere, the areal radius is positive, R & 0, and M =
M(v) & 0 is an arbitrary function of the null coordi-
nate v, representing the effective gravitational mass in-
side v. The only nonzero Einstein tensor component and
the Kretschmann scalar K = R ~~~R

p~g are

d8 = —dt + dr +RdO1+
where the prime denotes 8/Br, f = f(r) is an arbitrary
function of coordinate radius that determines the local
spatial geometry, as a function of r, see [18,19]. The
areal radius R = R(t, r) is a solution of

where the overdot denotes 8/Bt, and M = M(r) & 0 is a
second arbitrary function. Comparing this equation with
its Newtonian analogue for the kinetic plus potential en-

ergy of a radially moving particle of mass m at a distance
z from the center of a spherically symmetric dust cloud
with density distribution piv(x),

f3/2 (a t)
(sinhrl —rl) = (9)

where the third arbitrary function a = a(r) gives the time
at which R = 0 —the big crunch. (Parabolic and elliptic
solutions exist for f = 0 and f ( 0.) Since the pressure
is zero, the dust particles (which stay at constant r, 0, P)
follow geodesics of the spacetime. It can be shown in

MN (x) = 4m. x pN (x)dx,
0

we obtain the interpretation that M(r) is the gravita-
tional mass within comoving radius r, and f(r) is twice
the energy per unit mass of the particles at r. (The
principal difference between these two equations is the
replacement of the radial distance x by the areal radius
R.) For f & 0 (or rather Rf/M & 0) the evolution of
the areal radius for a collapsing model is hyperbolic:

M
R = —(cosh rl —1),
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general [20,18] that, for the collapsing models,

/'M' f'l, (M' 3f')——
/
By a' —

~

— /(a —t) R.
f& gM 2f&

(io)

The density and the Kretschmann scalar are given by

and, for finite R, (a —t) must be vanishingly small. Sim-

ilarly (5) for collapsing models becomes

(17)

and the derivative of (16) [or alternatively substituting
for (a —t) and R &om (16) and (17) in (10)] gives

Sxpr ——G„=
48M' 32MM' &2M"

Rs Rs R' R4B'2 (12)

R '
R' -+ y a'~f.

2

Lemos then states that the transformation

R

v f

(18)

(i9)

LEMOS' METHOD

We here outline the approach used by Lemos, although
we find it convenient to delay taking the null limit until
a slightly later stage in the working. He initially makes
the assumption of self-similarity in both metrics, for sim-

plicity, and later drops it. That assumption is not made
here. The Tolman line element (4) may be transformed
from coordinates (t, r) to (t, B) by means of

dR = Rdt + R'dr m R'dr = dR —Rdt,

which leads to

converts (14) into the Vaidya metric (1), in the limit

f y oo. Since (19) and (16) imply that

(20)

the new coordinate becomes a function of r only, in the
limit, so we can now write M ~ M(v).

We note, however, that a constant f, inherited from
the self-similar case, must still be assumed in order to
get this result. If we do not make this assumption, then
(19) leads to

2M' dt'

R) (1+f)
dR2 +B dO,

2R
dtdR

(i4)

dR (
~f f 2f3/2 f2

dt dR / t R &, (dR —Rdt)

~f f 2f3/2 f2

(21)

(22)

where the new gii has been simplified using (5).
Now the limit of interest is that in which f is allowed

to diverge, while M and R are both required to remain
6nite:

f ~ +oo, 0 & R, M & oo

dv-+
~

y ~(1 —X),
( dt dR)

(23)

and, after substituting for t, R, and R' &om (16)—(18),
to

Equation (8) shows that in this limit coshrI must also
diverge, so that cosh@ ~ sinh r/ ~ e"j2 and (8) plus (9)
simplify to

where

Rya
R+ 2f /'(a'/f') '

R -+ +f(a —t) (16) so that (14) in the limit becomes

1 2M

glyf& f q R) glyf& ql —X& f g R)

qiyf) ~1 —X& q R) (25)

The limiting behavior of X is not at all clear, as the
relationship between a(r) and f(r) is arbitrary in general,
and the limiting behavior of a is not specified.

THE PROBLEM OF THE ORIGIN AND THE
FORM OF f(r)

In all Tolman models describing a collapsing dust cloud
which exhibit a naked. singularity, this singularity occurs
at the moment of collapse t = a, at the origin (r = 0 being

I

the natural choice). The origin of spherical coordinates
is specified by R(t, r = 0) = O, V t and we also have

B(t, r = 0) = 0, V t, which, by Eq. (5), requires M(0) =
0 as well as f(0) = 0 at the origin, for example, the
homogeneous case [the dust filled Friedmann-Lemaitre-
Robertson-Walker-model]. Can we extend Lemos' result
for the null limit to cases where f does not diverge at the
origin? Clearly the functional form of f(r) must allow

f(0) = 0 —for example f = pr2, p -+ oo.
Consider cases with f finite at r = 0, such as the
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nonparabolic self-similar models. Assuming R, M & 0,
Eq. (5) shows that R(t, r = 0) & f g 0. If r = 0 is ap-
proached along a constant t surface, with a(r) finite near
r = 0, (8) and (9) show that either (a) M —i 0 so that
rI —i oo and R i ~ft, or (b) M remains finite so that
rI and R also remain finite. Case (a) represents a hollow
dust cloud —it can be matched at r = 0 onto a vacuum
Tolman (Minkowski) spacetime with M(r) = 0 and a true
origin at some negative r value where f = 0. Case (b)
either (i) contains more dust inside r = 0, with the true
origin again at f = 0, i.e., r = 0 is not the centre of the
cloud, (ii) it contains the Schwarzschild vacuum inside
r = 0, with no origin, or (iii) it contains a dust filled ver-
sion of the Schwarzschild-Kruskal-Szekeres topology [19].
In (ii) and (iii), f must pass through zero and reach —1
in order to form the throat, rising to f & 0 in the second
sheet, and M, R & oo everywhere that f & 0. Clearly
particle world lines having f (0) & 0 are not at the origin,
but they do collapse to zero and begin the formation of
the singularity.

Furthermore, since shell-focusing singularities do form
in Tolman models with normal origins, can the detailed
similarity between the naked singularities of the two met-
rics be extended to such cases, or is constant f required?

Note also that the coordinate r is eliminated by the
first transformation (13) and then effectively reintro-
duced, in the limit v = a(r)/gf(r), via the second one
(19). Since the Tolman coordinate r is comoving with
the dust particles, and the Vaidya coordinate v is co-
moving with the shells of radiation, one might expect v

to be the direct limit of r. This is consistent with the
interpretation of f as an energy parameter which goes to
inanity, meaning that the Tolman particle geodesics are
asymptotically null. Since a particle staying at the origin
of spherical symmetry cannot be moving at light speed,
this suggests that a Vaidya limit is not achieveable here.

R'2 ( f ) a' Rf'
+(1+f]R' Li+fI vf 2f') (29)

The limiting transformation (20) takes care of the first
term in the curly brackets (a'/~f), but not the second
(Rf'/2f ), and without knowing both a(r) and f (r) [i.e. ,

f(a)], it cannot be discounted. The second term is dom-

inant if

(Rf')
(2f2)I

(a') R df

&V f r 2f'/'da (30)

An example of an f(a) that makes the second term
dominant almost everywhere is

f = aln(p) + sin(p"a), n = const, p + oo, (31)

df/da f + ae"f/ cos(ae"f/ )

f3/2 af 3/2

but this wildly oscillating form is very unrealistic. The
conditions for no shell crossings [18] for collapsing hyper-
bolic Tolman models require f' & 0 and a' & 0 wherever
M' ) 0, i.e. , df/da ) 0, so adding a linear term to remove
negative gradients gives a vanishing second term

f = 2p"a + sin(p a), n = const, p ~ oo, (33)
df/da 2 + cos(f/2)

The most rapid uniform divergence of df/da relative to
f we have been able to find for df/da & 0 still leaves

(df/da)/f s/2 vanishing. It is expressed in terms of com-
puter notation "

for raising to the power:

From (17) and (18), we have the following limiting forms
of the extra factors that do not appear in (1)

1 1 R' a' Rf'
f' R' vf 2f'

THE NULL LIMIT FOR GENERAL f AND a
f =aJ (p [p " (p a)]) pw™ (35)

R
Moo ) 0&R, M(oo (26)

Consider approaching the origin on a constant g sur-
face. Equation (8) shows that Rf/M remains constant,
whereas (5) shows that both M/R and f go to zero there.
Thus the Vaidya limit could be described by

df/da ln(f) lnln(f) lnlnln(f)
fs/2 a~f (36)

However, at a single point (or a finite number of discrete
points) the divergence behavior can always be made ar-
bitrarily rapid, e.g. ,

which does not necessarily require f ~ oo at r = 0. The
limiting forms (16)—(18) of R, R, and R' are unchanged
by this adjustment.

Starting again from (4), we transform from (t, r) to
(R, r) as our coordinates, thus substituting for t rather
than r,

n

f = pa+a", n= const, p —i oo,

df/da 1
) 0(a&1)fs/2 a f'

fn, —3/2

ln( )
»(a) V

(37)

(39)

(40)

dR = Rdt + R'dr m dt = (dR —R'dr)/R

and apply (5) to simplify the resulting g, :

Consequently, we now introduce the transformation

(41)

R' R' ( R ) (1+ f)R' dv= + ~drf
dR
2f' (42)

+R dO (28) which incorporates both terms in the curly brackets of
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(29), and which converts (28) to

ds -+ —
i

1 — idR
1 ( 2M)

4 1+ q Ry
1 / 2M'

+ 2 —
~

1 —
~

dvdR

&1+» & R)
It is already clear from (29) as well as this equation
that f ~ oo is indeed required everywhere to obtain
the Vaidya metric as the limit.

da -+ 2dvdR —
i

1 —
~

dv + R dO .f 2M)
(44)

(The alternative transformation

v= dr — R,
a' 1+f

p 1+

dv=
/

+ /dr-f ( a' Rf')
1+ & 2 ')

(45)

dt dB
(46)

in order to recover (1) from (14). Equations (46) and
(41) are the revised versions of (23) and (20).

The overall transformation &om Tolman to asymptot-
ically Vaidya coordinates then is

a'(r) R(t, r)

y f(r) 2f(r)
R= R(t, r),

(47)

(48)

where R(t, r) is given by (8) and (9). Using the following
limiting values of two of the partial derivatives of the
inverse transformation,

Br f Bt
Ov n R Bv

(49)

the Kretschmann scalar and the density may be con-
verted to their Vaidya forms. Thus

OM
Ov

BM Br, f . M' 1

(50)

ensures that the last two terms on the right of (12) vanish,

does not succeed in removing the factor of f/(1+ f), and
also leads to the wrong limit. ) In the limit (15) then, it
is evident Rom (41) that v becomes a function of r only,
so that M -+ M(v) holds once again. No assumptions
about the functional form of f or the limiting behavior
of a were made to obtain the Vaidya metric as the null
limit, and we find that the second term of (41) becomes
negligible, even if the second term in the parentheses of
(42) does not. The new transformation (41) can also be
rewritten in the limit as

giving (3) in the limit. For the "density, "
(2) is obtained

f'rom (11) in the limit by writing

Gv I~Bt ll G~=f 2M' 2 M,
(Bv ~p

" R2R' R2 (51)

The strengths of singularities are variously defined by,
e.g. , [21,22]

@~=limA G~pk k or @R=limAR pk k
A-+0 A —+0

(52)

where k is the tangent vector to a null geodesic with
parameter A that hits the singularity at A = 0. From
the above, and since 4' is a scalar, it is clear that the
strengths of the Vaidya singularity, as measured along ra-
dial geodesics are given by the limits of the corresponding
Tolman expressions.

CONCLUSIONS

Lemos originally demonstrated that the Vaidya model
is a null limit of the Tolman model, by taking the limit

f ~ oo and assuming f =const in this limit. His trans-
formation was completely valid for models with constant

f Howeve. r, Tolman shell-focusing singularities also oc-
cur in models with matter at the origin. The existence
of a normal origin of spherical coordinates at r = 0,
(a —t) ) 0 in the Tolman model requires f (r = 0) = 0,
and we have found this cannot be made consistent with
a null liinit. The Vaidya limit does indeed require

f ~ oo, so it cannot be extended to a spherical origin,
where f(0) = 0, or a Schwarzschild-Kruskal-Szekeres-
type topology, which requires f = —1 in the throat.

Thus we conclude that every Vaidya model is the limit
of a hollow Tolman model, acquiring its arbitrary M(v)
f'rom a combination of M(r) and a(r), and must itself
be hollow. If M(r = 0) = 0, M(v = 0) = 0, then
r = 0, v = 0 is a collapsing shell of finite size surrounding
Minkowski vacuum, and the limiting Vaidya model can
form a shell focusing. If M(r = 0) ) 0, M(v = 0) ) 0
then it surrounds Schwarzschild vacuum, and no shell fo-
cusing forms. In this latter case, the shells of incoming
radiation (having f divergent) cannot pass through the
throat (where f = —1) and must hit the future singular-
ity first. A dust filled interior is not possible in the limit,
since a coordinate line cannot be comoving with both a
dust particle and a light ray, but it may be possible to
have an intervening vacuum region. Since t = a on the
singularity, and B is only finite on a collapsing shell of
radiation where (a —t) is infinitesimal, the radiation is
all at infinite R for any finite value of (a —t).

If we assume that M' is finite, then it is apparent from
(41) that a finite change in M and v requires an infinite
change in a. It is interesting to note that a collapsing,
unbound (i.e., hyperbolic) dust cloud of finite total mass
may also have f, a ~ oo and M finite in the asymptotic
regions. At finite (a —t), R is infinite, from (8) and (9),
but as these particles collapse towards the crunch, R be-
comes finite when (a —t) is infinitesimal, and the Vaidya
limit is achieved. In terms of Tolman time, this is in-
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finitely long after the initial formation of the singularity,
but only a finite retarded time in Vaidya coordinates.

The new coordinate transformation (47) and (48) [or
(27) and (42)], makes no assumptions about the three ar-
bitrary Tolman functions f, M, and a, and in particular
the relationship between f and a, beyond those normally

made for a general Tolman model, and the limit f m oo.
Several important physical quantities, the Einstein ten-
sor, the Kretschmann scalar, the null geodesics, and the
strengths of the singularities, all have the correct limit.
This generalizes Lemos' unification of the two metrics
and their shell focusing singularities.
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