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The ionization history of the Universe provides a major source of ambiguity in constraining cosmolog-
ical models using small angular scale microwave background anisotropies. To clarify these issues, we
consider a complete treatment of Compton scattering to second order, an approach which may be appli-
cable to other astrophysical situations. We find that only the O(v) Doppler effect and the O(v8) Vishni-
ac effect are important for recent last scattering epochs and realistic power spectra. The O(v?) Doppler
effect is not significant on any angular scale, and other higher-order effects are completely negligible.
However the O(v?) effect does lead to Compton-y distortions, which, although generally below current
constraints, set an unavoidable minimum level in reionization models. We consider the small-angle ap-
proximation for the Vishniac effect in detail, and show several improvements over previous treatments,
particularly for low ,. For standard cold dark matter models, the effect of reionization is to redistri-
bute the anisotropies to arcminute scales; late reionization leads to partially erased primary fluctuations
and a secondary contribution of comparable magnitude. Using recent anisotropy limits from the ATCA
experiment, we set new constraints on baryonic dark matter models. Stronger constraints are imposed
(in second order) upon models with higher Hubble constant, steeper n, and higher density. These limits
depend on the specific ionization history assumed, but the factor gained by lowering the ionization frac-
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tion is generally small, and may be tested by currently planned experiments on arcminute scales.

PACS number(s): 98.70.Vc, 98.80.Es, 98.80.Hw

I. INTRODUCTION

Temperature fluctuations in the cosmic microwave
background (CMB) are a direct probe of density pertur-
bations at z=1100. Therefore measurements or upper
limits on such fluctuations can be used to constrain
cosmological models for the evolution of structure. How-
ever, there is a possible loophole at intermediate angular
scales, since reionization could make the last scattering
epoch more recent, and erase the small-scale fluctuations,
e.g., [1]. This possibility requires significant levels of ion-
ization back to z >>10, to reach optical depth unity at
z << 1100, which is certainly feasible in some models.
With the recent detection of temperature anisotropies at
large angular scales by the Differential Microwave Ra-
diometer (DMR) on the Cosmic Background Explorer
(COBE) satellite [2] and stringent upper limits on inter-
mediate angular scale fluctuations, e.g., [3], the constrain-
ing of cosmological models has entered a new phase of
precision. It is becoming increasingly important to know
how much leeway reionization scenarios can give for in-
termediate angular scale limits while not violating limits
at small angular scales. In this spirit, we have attempted
to systematically consider the effects of Compton scatter-
ing on CMB photons.

Primary fluctuations arising from the recombination
epoch are erased on scales smaller than that subtended by
the horizon at the new last scattering epoch. However,
secondary fluctuations will be generated on this new sur-
face of last scattering, mainly due to Doppler shifts
among the scatterers. These secondary fluctuations are
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O (v), except that on scales smaller than the horizon size,
there is a partial cancellation of blueshifts and redshifts
through a given overdense (or underdense) region. Since
this new horizon scale subtends more than a degree on
the sky, reionization is often invoked to save models from
intermediate scale anisotropy constraints. The secondary
fluctuations were therefore thought to escape any con-
straint until Ostriker and Vishniac [4] pointed out that a
second-order contribution [of O(vd), the so-called Vish-
niac term], which does not suffer from the cancellation,
could be larger than the first-order term. In practice the
second-order term is of the same order of magnitude as
the degree-scale primary fluctuations which have erased,
but occurs on arcminute scales and below.

Use of reionization to weaken anisotropy limits there-
fore depends on a calculation of these second-order con-
tributions for the particular power spectrum and ioniza-
tion history being considered. Detailed calculations for
some models were performed by Vishniac [5] and
Efstathiou [6]. However, the Vishniac term is only one of
a number of possible second-order terms. Although it
has been assumed that this term dominates over any oth-
ers, this has not been demonstrated. Indeed, we find that
the relative size of these terms depends on the matter
power spectrum for the model in question. Spectra
which peak above the horizon scale at last scattering pro-
duce an effect due to the scattering of anisotropic radia-
tion which can significantly cancel the Vishniac effect.
This is not the case for the cold dark matter (CDM) or
isocurvature baryonic dark matter [BDM, also known as
primordial isocurvature baryon (PIB)] spectra, and we
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show that it is reasonable to neglect all other second-
order terms, save the Vishniac term, for these models.
Secondary anisotropies are therefore calculated to
reasonable accuracy (in the linear regime) if the first or-
der and Vishniac contributions to AT /T are evaluated.
To arrive at this result, we set up in Sec. II a methodolo-
gy which finds all second-order Compton scattering
terms. Along the way, we uncover a number of addition-
al physical effects which have not previously been de-
scribed, e.g., minimal spectral distortions required in
reionization scenarios independent of thermal history.
Our general results, detailed in Appendices A and B, may
also be of use for a wider range of problems. In Sec. III,
we discuss the second-order contributions to anisotropy
and significantly improve the approximations of Efs-
tathiou [6]. Predictions for the CDM and BDM
scenarios are computed in Sec. IV. Recent limits on
arcminute scale fluctuations from the Australian Tele-
scope Compact Array (ATCA) [7] place strong con-
straints on BDM models. Other studies of the effects of
reionization on the microwave background [5,6] have
tended to concentrate on the simplest case of a universe
in which there has been no recombination. Here we have
also considered the effects of more realistic ionization his-
tories.

II. THE BOLTZMANN EQUATION
FOR SECOND-ORDER COMPTON SCATTERING

A. General formalism

The Boltzmann equation in general is given by

of  of ax'  of dvi  df dpo _
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where f is the photon occupation number, y; are the
direction cosines for a photon of four-momentum p, and
the expression C(x,p) is the collision term. Latin indices
range from 1 to 3, and we have employed the implicit
summation convention. There are two distinct classes of
second-order Boltzmann equations that we might consid-
er. The left-hand side of Eq. (1) may be expanded to
second order in metric perturbations, whereas the right-
hand side, in the case of Compton scattering, may be ex-
panded to second order in the energy transfer from col-
lisions. In Appendix A, we carry through a full deriva-
tion of all second-order gravitational terms due to metric
perturbations in the synchronous gauge. However, in
this paper we are primarily interested in the effects of
Compton scattering, which are constrained by causality
to manifest themselves on small scales where gravitation-
al effects are unimportant. Thus we take the zeroth-order
approximation of Eq. (1) with respect to the metric fluc-
tuations and find
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The third term on the left merely expresses the cosmolog-
ical redshift of the photon energy, p, <a ~!, where a(z) is
the usual scale factor. In the homogeneous and isotropic
limit, the second term in Eq. (2) vanishes. Spectral dis-
tortions in the early Universe are often computed in this
approximation (see Sec. IIB). In Sec. III, we calculate
the effects of dropping the assumption of homogeneity.
If, on the other hand, we are only concerned with tem-
perature and not spectral distortions, we may integrate
over momentum p. The third term may thus be eliminat-
ed since temperature and energy redshift in the same
manner.

The goal is to derive the collision term for Compton
scattering, y(p)+e(g)—y(p’)+e(q’), to second order in
the small energy transfer due to scattering. Note that we
are performing calculations in the linear regime. Thus,
the results are of interest only when the effects of the
first-order terms suffer cancellation, as in the case of a
thick last scattering surface. The lowest-order term is
then of second order. Third- and higher-order effects are
therefore negligible as long as the second-order term is
not canceled. Mixed-order coupling (i.e., first to third) is
also insignificant. We discuss these effects in detail in
Sec. III.

Our approach may be of more general interest since it
provides a coherent framework for all Compton scatter-
ing effects, be they spectral distortions or anisotropies. In
the proper limits, the equation derived below reduces to
familiar equations and effects, e.g., the Kompaneets equa-
tion (Sunyaev-Zel’dovich effect), linear Doppler equation
(Vishniac effect). Furthermore, new truly second-order
effects such as the O (v?) quadratic Doppler effect are ob-
tained. These effects predict distortions well below the
observational limits obtainable today. In principle, how-
ever, the fact that they may mix both anisotropies and
spectral distortions makes them distinguishable.

We make the following assumptions in deriving the
equations: (1) the Thomson limit applies, i.e., the frac-
tional energy transfer 8p /p <<1 in the rest frame of the
background radiation; (2) the radiation is unpolarized
and remains so; (3) the density of electrons is low so that
Pauli suppression terms may be ignored; and (4) the elec-
tron distribution is thermal about some bulk flow velocity
v. Approximations (1), (3), and (4) are valid for most situ-
ations of cosmological interest. The approximation re-
garding polarization could be dropped to give coupled
equations for perturbations in the total and polarized
components [8]. Polarization perturbations are typically
an order of magnitude smaller than temperature distor-
tions [9]. Thus the contribution from polarization to the
evolution of temperature distortions is a small effect, as
the microwave background never generates a significant
polarization. For calculations on the generation of polar-
ization in second-order theory, see [6].

The collision term may in general be expressed as [10]

f DgDq’'Dp’'(2m)*8W(p +q —p’'—q")|M|?

X {g(x,q)f(x,p)N1+f(x,p)]—g(x,q)f (x,p)[1+f(x,p)]} , 3)
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where |M|? is the Lorentz-invariant matrix element, f (x,p) is the photon distribution function, g (x,q) is the electron
distribution function, and
d’q
(27)32E (q)
is the Lorentz-invariant phase space element. The terms in (3) which contain the distribution functions are just the con-

tributions from scattering into and out of the momentum state p including stimulated emission effects.
We will assume that the electrons are thermally distributed about some bulk flow velocity v:

Dqg =

—_ — 2
g("’q):(z’”a”e(")[%mTe]‘“26"1’l [zmmTV(X)] } @)

where m is the electron mass, and we employ units with ¢ =#i=k =1. Expressed in the rest frame of the electron, the
matrix element for Compton scattering summed over polarization is given by [11]

% + % —sin’B
p P

IM|2=2(4m)2a? , (5)

where the tilde denotes quantities in the rest frame of the electron, a is the fine structure constant, and cosB=%-7' is
the scattering angle. Note that here and below we define p =p,=|p|. Of course, the matrix element must be expressed

in terms of the corresponding quantities in the frame of the radiation for calculational purposes [see Eq. (B1)].
The result of integrating over the electron momenta can be written

C(x,p)

where we have kept terms to second order in 8p /p. The
explicit expressions for the quantities in Eq. (6) are given
in Egs. (B4) and (B5) of Appendix B and are discussed in
turn below. This equation may be considered as the
source equation for all first- and second-order Compton
scattering effects. However, in most cases of interest only
a few of these terms will ever contribute. We have there-
fore written the collision equation implicitly and ex-
pressed it in terms of the scaling behavior of the contrib-
uting elements.

The expansion of the Compton collision term to second
order in §p /p has actually involved several small quanti-
ties. It is worthwhile to compare these terms. The quan-
tity T,/m characterizes the kinetic energy of the elec-
trons and is to be compared with p /m or essentially T /m
where T is the temperature of the photons. Before a red-
shift 8.0(Qyk%)!/°x,” /5, where x, is the ionization frac-
tion [this corresponds to z 2 500(Qpgh?)*”° for standard
recombination], the tight coupling between photons and
electrons via Compton scattering requires these two tem-
peratures to be comparable. At lower redshifts, it is pos-
sible that Tz >>T, which produces distortions in the radi-
ation via the Sunyaev-Zel’dovich (SZ) effect as discussed
further below. For the reionization scenarios which we
consider, these two temperatures will typically still be
comparable at last scattering, z, =50 with T/m
~5X1071%1+42z,). The SZ effect, however, will play a
role at lower redshifts even in these scenarios. Note that
the term T,/m may also be thought of as the average
thermal velocity squared (v )=3T,/m. This is to be
compared with the bulk velocity squared v? and will de-
pend on the specific means of ionization. The bulk veloc-
ity is related to the fractional overdensity 8=8p/p by the
continuity equation. On scales much smaller than the
horizon, v << in linear theory.

=n andp'Lfﬂi [Co+Cp/m+Co+Cpo+Cp yy +C

Lp/m+c(p/m)2] ’ (6)

f

It is appropriate at this point to examine the physical
significance and qualitative features of each of the sources
in the collision term of Eq. (6).

1. C,: Anisotropy suppression

In the absence of electron motion, there is no preferred
direction. Thus to zeroth order, scattering makes the ra-
diation distribution more isotropic. The C, term given
by Eq. (B4) of Appendix B indeed equalizes the distribu-
tion function over all directions via scattering into and
out of a given mode. It is therefore responsible for the
suppression of primordial anisotropies as seen by the
scatterers. It can also significantly affect the regeneration
of inhomogeneities when ordinary contributions are
suppressed, as in the case of thick last scattering surfaces
(Sec. IIID). Recall that an inhomogeneity on the last
scattering surface becomes an anisotropy in the CMB to-
day.

2. C, and C,,: Linear and quadratic Doppler effect

Aside from the small electron recoil (see Sec. IT A 3),
the kinematics of Thomson scattering require that no en-
ergy be transferred in the rest frame of the electron, i.e.,

P'=p. Nevertheless, the transformation into the back-

ground frame induces a Doppler shift, so that

§£ l—vy
p 1=vy

=v-(p'—y)+ vy v (' —y)+0 (v?) . 7

Notice that in addition to the usual linear term in v, there
is also a term quadratic in v.

To gain physical insight into these Doppler effects, we
can approximate the photons as isotropic and neglect the
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angular dependence of Thomson scattering (we will post-
pone discussion of the precise effects until Sec. III).
Averaging over the incoming direction ¥, we obtain

<%>zv-y'+(v-y')2 . (8)

Thus the linear Doppler effect introduces an energy shift
whose sign depends on direction, whereas the quadratic
Doppler effect, which is positive definite, always gives
rise to a blueshift of the photons.

Now let us consider the case where there are many
scattering blobs, so that the directions of the electron ve-
locities are in effect randomized. In this case, the net
linear effect vanishes and

(P2)= s ©)
p 3

i.e., since redshifts and blueshifts cancel, there is no net
transfer of energy to the photons to first order in v. The
quadratic Doppler term, however, represents a net energy
gain of

=—"=—(v?), (10)

since the energy density 6 < T*, and the Doppler shift of
a blackbody is a blackbody with T =T,(1+6p /p). Here,
we assume for simplicity that all the photons in the spec-
trum scattered once.

These effects are not wholly equivalent to a uniform
Doppler shift. In averaging over angles above, we have
really superimposed many Doppler shifts for individual
scattering events. Therefore the resulting spectrum is a
superposition of blackbodies with a range of tempera-
tures AT /T =0 (v). Zel’dovich, Illarionov, and Sunyaev
[12] have shown that this sort of superposition leads to
spectral distortions of the Compton-y type with
y =0 (v?). Thus, spectral distortions have a quadratic
dependence on v and may be considered as part of the
quadratic Doppler effect.

In summary, the linear Doppler effect is primarily can-
celed after many scatterings. Nevertheless, some residual
effects remain due to the evolution of the electron veloci-
ties and densities during the last scattering epoch [13]
and the increased probability of scattering in an over-
dense region [4]. The quadratic Doppler effect leads to
an average net energy increase of A=~ %7(v?), and a spec-
tral distortion of the Compton-y type. Here 7= f n,o pdt

is the optical depth, which gives the fraction of photons
scattered if 7<<1. We will now see that the quadratic
Doppler effect for bulk flows is in fact entirely equivalent
to the Sunyaev-Zel’dovich effect for thermal motions.

3. CTe /m and C, ,,,: Thermal Doppler effect and recoil

Of course, we have artificially separated out the bulk
and thermal components of the electron velocity. The
thermal velocity leads to a quadratic Doppler effect ex-
actly as described above if we make the replacement
(v?) —{(v% )=3T,/m [e.g., in Eq. (10)]. For an isotro-
pic distribution of photons, this leads to the familiar

Sunyaev-Zel’dovich (SZ) effect [14]. The SZ effect can
therefore be understood as the second-order spectral dis-
tortion and energy transfer due to the superposition of
Doppler shifts for individual scattering events off elec-
trons in thermal motion. This can also be naturally inter-
preted macrophysically: hot electrons transfer energy to
the photons via Compton scattering. Spectral distortions
result since low energy photons are shifted upward in fre-
quency, leading to the Rayleigh-Jeans depletion and the
Wien tail enhancement characteristic of Compton-y dis-
tortions. The fractional energy change due to scattering
is

A=tp=1r(o}) . an

Note that the thermal and quadratic Doppler effects are
wholly equivalent in this sense.

Even though this is a net energy gain, the effective tem-
perature in the Rayleigh-Jeans region is suppressed due
to photon depletion (up scattering):

A

=—2y=—=. 12
y== (12)

AT
T

RJ,y

This is to be distinguished from the linear Doppler effect,
which provides a frequency-independent shift in tempera-
ture given by AT /T ~A /4 (cf. Sec. I A 2).

If the photons have energies comparable to the elec-
trons (i.e., the electron and photon temperatures are
nearly equal), there is also a significant correction due to
the recoil of the electron. The scattering kinematics tell
us that
., -1
L =

p

Thus to lowest order, the recoil effects are O (p/m). To-
gether with the thermal Doppler effect, these terms form
the familiar Kompaneets equation [15] in the limit where
the radiation is isotropic (as described in Sec. II B). The
combination of thermal Doppler shift and recoil drive the
photons to a Bose-Einstein distribution of temperature
T,. A blackbody distribution cannot generally be estab-
lished since Compton scattering requires conservation of
photon number.

1+-E(l—cosﬁ)

m

(13)

4. Cypymand C ,: Higher-order recoil effects

(p/m)

These terms represent the next order in corrections due
to the recoil effect. In almost all cases, they are entirely
negligible. Specifically, for the CMB, when electron bulk
flow effects become significant (p /m)<0 (v?). Further-
more, since there is no cancellation in the C,,, term,
C(p Jm)? will never produce the dominant effect. We will
hereafter drop these terms in our consideration.

B. The isotropic limit and spectral distortions

Even for an initially anisotropic radiation field, multi-
ple scattering off electrons will have the zeroth-order
effect of erasing the anisotropy (see Sec. I A 1). New an-
isotropies will be generated primarily at the last scatter-
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ing event. Therefore at epochs in which the optical depth
is high, we can approximate the radiation field as nearly
isotropic. We will treat the case of the anisotropy
developed during the last scattering epoch in Sec. III.
Note that the general results of Appendix B can be em-
ployed to study the effects of Compton scattering on
J

C‘X»P)="e0r{—r-vp9a—’{:+ [(Y'v)2+v2]p%+

1 9o
mp? Op

4

of
Teap +f(1+£)

11
= 24— (-
20 Ty

:

WAYNE HU, DOUGLAS SCOTT, AND JOSEPH SILK 49

highly anisotropic radiation. For example, Eq. (B4) con-
tains the anisotropic generalization of the Kompaneets
equation which may be useful in other astrophysical set-
tings.

Under the additional assumption of isotropy, the col-
lision term becomes more tractable and transparent:

)2

*f
297
p 2t |

(14)

The first and second terms represent the linear and quadratic Doppler effects, respectively. The final term is the usu-

al Kompaneets equation.

Notice that in the limit of many scattering blobs (or equivalently the multiple scattering limit), we can average over
the direction of the electron velocity. The first-order linear Doppler effect primarily cancels in this case and we can

reduce Eq. (14) to

1 9
mp? dp

?) 1
2

f
D4a
3 p

8p+

C(x,p)=neoTl

9
dp

Under the replacement (v3 )=3T,/m —v? the SZ
(thermal Doppler) portion of the Kompaneets equation
and quadratic Doppler equation have the same form. We
also regain the factor of % described in (9). Thus, spectral
distortions due to bulk flow have exactly the same form
as SZ distortions and can be characterized by the
Compton-y parameter given in its full form by

e

y=[no; %<v2(n>+ dt . (16)
A full analysis of the Boltzmann equation analogous to
that performed in Sec. III yields this result as well. The
appearance of the photon temperature T in Eq. (16) is
due to the recoil terms in the Kompaneets equation [cf.
Eq. (1D)].

As was noted by Zel’dovich and Sunyaev [16] the ob-
servational constraints on the Compton-y parameter, in
conjunction with other spectral limits, can rule out some
reionization histories independently of the detailed
thermal history of the models. However, Bartlett and
Stebbins [17] show that for a low € universe as implied
by nucleosynthesis, no such model-independent con-
straints exist. Furthermore, for the case where the elec-
tron and photon temperatures are equal, there is no SZ
effect as one can clearly see from Eq. (16). Therefore, the
bulk flow effect places a lower limit on spectral distor-
tions due to any given reionization history (although we
expect the SZ effect to dominate for most realistic
schemes).

For example in an 3=1 universe with full ionization
up to a redshift z; and T, =T,

y=4.1X107%Qph)[(1+2)2—11(vd) , (17)

where (v3) is the (spatially) averaged square of the ve-

4

of

Te$+f<1+f) (15)

|

locity today. Here and throughout the paper (1 refers
to the fraction of the critical density of the intergalactic
medium in baryons; it does not include baryonic matter
in compact objects. We have assumed linear growth of
velocities in an (=1 universe:

5
kp)=i—=—"—« (18)
vk, m)=i X "
where the overdot denotes a derivative with respect to
conformal time n= f dt/a. Given a power spectrum
P (k) for the baryon density fluctuations, we can compute
the average velocity as

2V,
; [ dk Pk,mo)

o

(v(%):( (19)

assuming ergodicity. Here V| is the volume in which the
universe is assumed to be periodic. The result for the
standard cold dark matter (CDM) scenario, normalized
to the COBE measurement [2], is therefore vy ., =1100
km/s assuming that the baryons follow the dark matter
distribution (see Sec. V for details). Note that this value
is rather large, since COBE requires a bias factor b~1
which produces excessive small-scale velocities. For
comparison purposes, the sun’s velocity with respect to
the CMB is 365118 km/s whereas the velocity of the Lo-
cal Group is 622+20 km/s [18]. The upper limit on the
Compton-y distortion from the Far Infrared Absolute
Spectrophotometer (FIRAS) [19] is y<2.5X107°.
Therefore it is appropriate to reexpress Eq. (17) as

4
1

(Qgh)?’
(20)

y
2.5%x107?

z. . ~3.0X10°

max

2 [ 1000 km/s

vO, rms
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where z,, is the maximum redshift at which the elec-
trons can be fully ionized.

However, our assumption that the electron density fol-
lows the dark matter is invalid at high redshifts. At red-
shifts z > 4, ~160(Qph%)'°x, 2%, Compton drag on
the electrons and protons prevents matter from falling
into the dark matter wells. Thus, (20) will not give a con-
straint if z,,,,, >z 4,,. Correspondingly, the prediction for
CDM is y (zg,,) =3 X 1077, almost two orders of magni-
tude below the current limits. Almost certainly, fore-
ground contamination from hot clusters will make this
effect unobservable. Estimates employing cluster model-
ing yield y~2-6X107°, but are extremely sensitive to
the normalization of the power spectrum and cluster dy-
namics [20]. Therefore in flat ;=1 models, the quadra-
tic Doppler effect does not yield a measurable average
(isotropic) Compton-y parameter. In Sec. III F, we calcu-
late the fluctuations in the Compton-y parameter at
arcminute scales and show that it too is negligible. Note
that the isotropic Compton-y distortion is an integral
over optical depth dr; i.e., it has a contribution from all
scatterings. On the other hand, correlations (i.e., temper-
ature fluctuations) come from an integral over the visibili-
ty function exp(—7)dr, i.e., they are dominated by the
last scattering event.

The O(v?) Compton-y distortion is non-negligible in
the case of open universes. In an open universe, veloci-
ties grow more slowly so that they are still reasonably
large at the scattering epoch. Furthermore, last scatter-
ing happens at lower redshifts for baryon-dominated
open models. In models with relatively low €}, predic-
tions for the quadratic Doppler effect are comparable to
estimates of the cluster SZ effect, although still below the
present constraints. If the intergalactic medium has been
collisionally or photoionized, the average thermal SZ
effect will generally be larger than the quadratic Doppler
effect; higher 15 models with early ionization of this type
can already be ruled out from their larger thermal y dis-
tortion (see, e.g., [21]). However, it is worthwhile to note
that quadratic Doppler distortions are the minimum re-
quired in the case of reionization and unlike the SZ effect
do not suffer from uncertainties in ionization mechanisms
or cluster dynamics.

III. SMALL-SCALE
BRIGHTNESS FLUCTUATIONS

A. The sources of brightness fluctuations

Having shown that spectral distortions are minimal
and simply described by the Compton-y parameter, we
will concentrate on temperature anisotropies; i.e., we
shall no longer be concerned with frequency dependence.
Therefore let us integrate the distribution over frequen-
cies to obtain the fractional energy, or brightness, pertur-
bation to the spectrum A=86/6 [22]. It is appropriate
at this point to specialize our discussion of the sources for
the case of weakly anisotropic brightness fluctuations in
an inhomogeneous universe.

1. O(A—Ay): Anisotropy suppression
in the presence of sources

The C, term in Eq. (6) reduces anisotropies. The an-
isotropy can be expressed as A— A, where

A= ‘i‘; Py(u)A 21
are the Legendre moments of the brightness fluctuation.
For future reference, note that we take p to be defined
with respect to the symmetry axis x;, u=v-X;. We as-
sume that for plane wave situations there is an azimuthal
symmetry about the direction of the wave vector X;, since
to lowest order the source term possesses this symmetry
(see [23] and Sec. III D).

The anisotropy suppression term plays an interesting
role when in the presence of another source that gen-
erates an anisotropy. For example, the first-order
Doppler term generates a local dipole anisotropy of order

A—Ay= f(4v"y)d7' ,

since photons are blueshifted in the direction of the elec-
tron velocity and redshifted in the opposite direction.
However, we know that this cannot continue to be true
for arbitrarily high optical depth. The Doppler anisotro-
py saturates precisely at A—A,=4v-y since once all the
photons have been scattered, further scattering has no
effect. This is easy to see in the electron rest frame. Here
the photons are now isotropic and scattering changes
only the direction, not the magnitude of their momen-
tum. This constraint on the anisotropy is imposed by the
anisotropy suppression term. When the anisotropy
reaches its maximum allowable magnitude, this term ex-
actly cancels the source of the anisotropy. We shall now
see that it can also play a significant role in second-order
theory.

2. O(v8)and O([A—A(18): Scattering in overdense regions

In a universe growing ever more inhomogeneous via
gravitational instability, there are additional effects due
to the enhanced probability of Compton scattering off
overdense regions caused by the increase in the electron
number density:

n,=x,(n(1=Y,/2)ng(x,m)=n,(n)[1+8(x,7)], (22)

where Yp is the primordial mass fraction in helium, x, is
the ionization fraction (assumed to be independent of po-
sition), np is the baryon number density, and 6 is the
fractional overdensity in baryons [24].

The overdensity 8, which is of first order in perturba-
tion theory, couples with ordinary first-order terms to
produce effectively second-order terms. Therefore, there
are two possible additional terms of O(v8) and
O([A—Ag]d). The former is the Vishniac term.

The Vishniac effect operates since in an overdense re-
gion there is an increased probability of scattering and in-
ducing a Doppler shift. This leads to a brightness fluc-
tuation on the scale of the overdense region 8. Of course,
just as in the first-order effect, this mechanism cannot
operate once all the photons have already scattered. If



654 WAYNE HU, DOUGLAS SCOTT, AND JOSEPH SILK 49

scattering has already taken place in the underdense re-
gions, the increase in probability of scattering off over-
dense regions can have no effect. Again the end result is
an anisotropy of order A—Aj;=4v-y with no small-scale
fluctuations in the brightness. This limitation is of course
handled by the O ([A—Ay]8) term. If A— A, reaches the
maximum allowable magnitude of 4v-y, it will erase the
Vishniac effect. In the presence of an anisotropy, the in-
crease in probability of scattering off overdense regions
causes an enhanced reduction of the anisotropy in those
regions via the anisotropy suppression term. Of course,
this term is also present even in the absence of sources
such as the Vishniac effect. In the case where the in-
cident radiation is anisotropic and the electrons station-
ary, this effect describes the preferential erasure of the
anisotropy in overdense regions. It would then actually
generate small-scale brightness fluctuations while simul-
taneously reducing the anisotropy. However, in the
present case of interest, this term operates by placing a
physically necessary constraint on the Vishniac effect.

When is this constraint important? Notice that the an-
isotropy suppression term is only effective in the presence
of a significant anisotropy A—A,. However, for veloci-
ties on a scale much smaller than the thickness of the last
scattering surface, the cancellation of redshifts and blue-
shifts guarantees that no such anisotropy can be estab-
lished. Thus it is only if the velocities which generate the
Vishniac effect are on the scale of (or larger than) the
thickness of the last scattering surface that it can be can-
celed by the O([A—Ay]8) anisotropy suppression term.
We find that for the CDM and BDM models discussed
later, this is not the case, and the O ([A—A]8) term may
be dropped. However, it would be possible in principle to
have a power spectrum which peaks on horizon size
scales, and then the anisotropic effect would be important
for eliminating the Vishniac effect arising from velocities
on these scales, as physically required.

3. The second-order brightness equation

Now let us write down the equation expressing the evo-
lution of the brightness under the above-mentioned

IITA1 and IITA2. The O(A—A,) term represents the
anisotropy suppression. In the case when A—A, has
reached its maximum of A—Ay=4v-y, it cancels both
the first-order Doppler and the Vishniac terms. The A,
term arises since we employ the true angular dependence
of Compton scattering. This does not affect the qualita-
tive picture, however.

The O([A—A,]v) term has been left implicit. We will
show that the O (v?) term itself is negligible. Therefore,
since on all scales of interest A— A, Sv and the equations
governing the two are similar, these terms are negligible
as well. We have also assumed that the cluster SZ effect
is unimportant at the last scattering epoch. The average
SZ effect will produce an isotropic Compton-y distortion
and have no effect on small scale anisotropies.

We can rewrite Eq. (23) implicitly as

A+y,8,A++n)A=Hn)S(x,7,1) , (24)

where the conformal time derivative of the optical depth,
#(m)=n,0 ra, can be interpreted as the probability of
scattering in the interval dn. Note that the source term
S (x,7¥,7m) includes the anisotropy suppression (A,) part.
The first-order term generates fluctuations which are can-
celed by opposing fluctuations as the photons travel the
full length of the perturbation. However, the anisotropy
suppression term acts to rescatter the photons into the
direction that avoids such cancellation. This of course
reduces the local anisotropy of the brightness at the ex-
pense of its small-scale inhomogeneity. We will make
this argument more concrete in Sec. III D.

B. General formalism and definitions

To solve the brightness equation (24), we transform to
its Fourier space analogue,

A(k,r,n):%f‘ﬂx A(x,y,mlexp(—ik-x),  (25)

which has the well known solution [6]

Ak, y,m)= [ 7S (k7,708 (m,m dexplikpln' —m)ld 7',

sources. Integrating both sides of the Boltzmann equa- (26)
tion [Egs. (2) and (6)] over the spectrum, we obtain the .
brightness equation to second order: where u=y k/k and
. Y — s N N BN TRV ENT)
A+y,9,A= 7,0 ra[1+8(x)] glmm )‘T‘")CXP[ fn,dﬂ (n >}
— w—p?2
X{ Ag— A+ 1Py (u)A,+4y-v—u = di” expl —(n,7)] 27)
+7(y-v)+0([Ay—A)} , (23 o ,
is the so-called \visibility function [note that
where the overdot represents a conformal time derivative.  g(n,)=17(7n)]. For the case of full ionization where
Notice the presence of the effects described in Secs. x,=1,
|
iz =0.0=""T00 1y 122 (5 300+ (140 Qg2 +329-2)] (28)
) 47Gm, P Q 0 02 02 0 )

(where m, is the mass of the proton) or, alternatively,

( )= orH,
o7 47Gm, p

Q
(1-Yp/2)9—§ 2—3Q,—(1—Qy)*2coth

M

3— 2
R coth

sl
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for Qy<1, where #=Hg '(1—Q,) !/ is the curvature
scale today, which merely translates our convention for
conformal time to the usual development angle ¥ =7/R.
For Q3=1, the expression in braces should be replaced by
{(mo/m)P—1}.

We are primarily interested in the solution at small
wavelengths, i.e., kK §7>>1 where 67 is the conformal
time “thickness” of the last scattering surface, located at
7,. The precise definition of 7,is somewhat arbitrary,
e.g., 7, could be defined as the epoch at which optical
depth becomes unity (we will employ this definition un-
less otherwise stated). For late last scattering dn~17,; it
is in this sense that we mean the last scattering surface
for reionization scenarios is “thick.”

Neglecting the evolution of the source term and the
optical depth, the integral over the plane wave for u#0
in Eq. (26) will in general cancel except for a small por-
tion of the order of a wavelength. Therefore the resulting
brightness fluctuations will be of order

A(kr‘}’,n)zs(k,‘}’,ﬂ)ﬁ(n), /—L#O ’ (30)

where 7,=(27/k)#(n) is the optical depth across one
wavelength. If the perturbation has many wavelengths
over the last scattering surface, 7, <<1 since the optical
depth across the whole surface is of order unity. There-
fore, the brightness fluctuations are suppressed as com-
pared with the source terms, ie., A(k)<<v(k) for
kn,>1.

The p=0 mode escapes this cancellation. Thus the
brightness fluctuation has a significant value only if the
wave vector k is perpendicular to the direction of the
photon momentum, y. The interpretation of this state-
ment is simply that if the wave vector were not strictly
perpendicular to the photon momentum vector, photons
in a given direction would have scattered off both crests
and troughs of the perturbation, yielding net cancella-
tion.

In the case of the first-order (linear Doppler) term,
S(k,y,m)=4y -v=4uv, which vanishes for the p=0
mode. Therefore, as pointed out by Kaiser [13], the
first-order term is primarily canceled up to a factor which
involves the time evolution of the perturbation. It is im-
portant, however, to note that the general cancellation
argument holds for any source term, while near perfect
cancellation will occur for S (k,u=0,7)=0.

Having determined which perturbation modes give
large contributions to brightness fluctuations, we need to
translate this information into the temperature fluctua-
tions on the sky today. First we must relate the bright-
ness distortion A to a fractional temperature perturba-
tion. For linear Doppler effects which change the tem-
perature uniformly across the spectrum and leave it as a
blackbody, A~4AT /T. Quadratic and thermal Doppler
effects create Compton-y distortions such that
A~ —2(AT /T)gy [see Eq. (12)]. To keep the expression
applicable to both sorts of distortions, we will write

AT K

T TA R (31)

where K =1 for the linear Doppler effect and K = —2 for

quadratic and thermal Doppler terms (Compton-y distor-
tions).

We will use the small-angle approximation given by
Doroshkevich, Zel’dovich, and Sunyaev [25] for the ob-
served mean squared temperature fluctuation:

2
V.

AT | _ Vs pen, K2 r1 2
o fo k?dk= f_ldmA(k,u,n)l

T

X W(kR,(1—p»)'7?) ,
(32)

where W(q) is the experimental window function,
q =kR,(1—p?)!"2=~] (i.e. the multipole number) at small
scales, and R, translates comoving distance at epoch 7 to
angle on the sky. It is given by

2
QH(1+2)

X [(Qz +(Qy—2)[(1+Q2)"2—1]}, (33)

R,(2)=

or equivalently,

_ Mo—n =1,
RyM=1% sinh[(go—n)/R], Qo<1 . (34)

Efstathiou [6] takes the asymptotic form of Eq. (34) for
19>>7 [or (Qyz)!/>>>1]. This is not a good approxima-
tion for Q< 1 models in which the surface of last scatter-
ing was relatively recent. For example, if ;,=0.2 and
h =0.8, then z, ~20.

For Compton-y distortions, the mean squared tempera-
ture fluctuation in principle has contributions from a uni-
form background y distortion, estimated by Eq. (17), as
well as from fluctuations in the background. If no spec-
tral information is obtained, it is not possible to observe
the effects of the uniform distortion. However, in prac-
tice, given any realistic experimental window function,
this is unlikely to be a concern; in small-scale experiments
the uniform background is always subtracted out. For
example, many experiments measure some algebraic com-
bination of correlation functions

AT

AT
C(9,0)=<T(‘}’1)—T—(1’2)> , (35)

sky

where the average is performed with fixed beam throw
O0=arccos(y,'y,) and with Gaussian beam width o
[C(6,0) is not to be confused with the Compton scatter-
ing collision terms C(x,p)]. The corresponding window
function is given by

Wos(@)=Jo(g0)exp[ —(go)*] . (36)

Actual experiments employ beam switching to minimize
noise, e.g., a double beam experiment measures
(AT /T3 e =C (0,0 —C(6,0). Whereas C(6,0) is sen-
sitive to fluctuations from all scales greater than o,
C(0,0)—C(6,0) is effectively only sensitive to angular
scales between o and 6, as one can see by examining Eq.
(36). Even maps generated by interferometry are only
sensitive to fluctuations below the size of the primary
beam 6,,.
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The cancellation arguments, which say that |A(k,u,7)]
is sharply peaked at u=0, allow us to set £=0 in the
slowly varying terms, so that
2

AL = ["ouow (kR dk /k | (37)
where
KV, k*
QU==—"— [ |atk ) ’dp (38)

expresses the power per logarithmic interval of the fluc-
tuations.

Note that technically speaking since the square of the
brightness distortion enters into (38), we need to worry
about cross terms between first- and third-order process-
es. However, they are suppressed for two reasons. First,
we are only interested in second-order effects when the
first-order term is suppressed. The cross terms are there-
by also suppressed. Second, as we shall see in Sec. III C,
for the linear Doppler effect, the third-order terms that
couple with the first-order term are also themselves
suppressed. We will denote the order of the term by su-
perscripts. For example,

A:All)+A(2)+ e
5= 480+ .. | (39)
v=v(1)+v(2)+

where superscript (1) refers to the values given by linear
theory and (2) refers to the mildly nonlinear next order
correction, etc.

Finally, it should be mentioned that Eq. (32) is only
strictly valid for a thin last scattering surface. It assumes
that there is a one-to-one correspondence between angles
and length scales at last scattering given by Eq. (34). It
also assumes that the phases of neighboring modes have
been correlated by the scattering. We expect errors from
these approximations to be of order &7/(n,—n,)
~1, /7o ( $0.2 for realistic reionization scenarios).

C. Geometrical considerations

The physical picture becomes much clearer if we exam-
ine the geometrical aspects of the linear Doppler effects.
Evolution under the linear Doppler and isotropic source
terms can be expressed as

A+y,3;A+HA=F)[Ag+1A,P,(w)+4y-j(x)],
(40)
where

jx)=[1+8(x)v(x)=vV+8VyV4v@ 4+ ... @1

is the so-called normalized matter current introduced by
Vishniac  [S]. As discussed in Sec. IIIA,
A(k)<<v(k)<<8(k) at small scales. It will be demon-
strated that for CDM and BDM power spectra, the mode
coupling arises from a small enough scale that this condi-
tion is always satisfied. We have therefore dropped the

second-order terms involving the anisotropy.

We can reinterpret Eq. (40) as representing scattering
off a uniformly dense medium of electrons with velocity
j(x). The increase in probability of scattering off over-
dense regions is then accounted for by a rescaling of the
velocity field.

For the linear Doppler terms, we can also think of the
cancellation argument [see discussion following Eq. (30)]
as follows. If the matter current has zero vorticity, the
contribution to the brightness fluctuation is approximate-
ly the line integral of the gradient of a field. The contri-
bution is thus canceled apart from contributions from the
end points. This is equivalent to the cancellation argu-
ment: if VXj(x)=0 then j(k)|k and thus S(k,u,n)
ap=0.

Now let us consider the matter current vorticity:
VX j(x)=[1+8(x)][VXv(x)]—v(x)XV5(x). Since
gravitational perturbations of a pressureless fluid are irro-
tational, VX v(x)=0 to all orders. However, this is not
true of the second term. The vorticity of the (v8) term
(and in second-order theory this term alone) does not
vanish. Although the velocity field is the gradient of a
potential, it is not the gradient of the local density field.
Small-scale overdensities can move coherently with some
peculiar motion along the line of sight. In these regions,
there is an increased probability of scattering and induc-
ing a Doppler shift in the background radiation tempera-
ture. This will imprint an anisotropy on the CMB at the
scale of the scattering blobs. Note that this is an in-
herently nonlinear process since we are coupling a large
scale (the scale of the velocity field) with a small scale (the
scale of the overdensity). Recall that the Fourier trans-
form of a product is a convolution, and

jva(k)=v*a=f0°°d3k'v<k')5(k—k'> :

which shows the mode coupling explicitly. Since
v(k')||K’, this gives a net nonzero contribution perpendic-
ular to k. In other words, we can have plane waves of the
vector field j(x), with wave vector perpendicular to the
line of sight, but with components parallel to the line of
sight. This is exactly as required above: there is no can-
cellation between crests and troughs for the mode kly,
but the Doppler effect does not vanish since y - j70.

It is also useful to note that the perpendicular and
parallel components add in quadrature, i.e., the cross
terms between the Vishniac term and other second-order
terms cancel when we calculate lA(k,,u,n)P, as we now
show. In all cases of interest, the source terms can be
separated into a term dependent on conformal time and
terms dependent on the mode coupling:

7.8 (1,m)S(k,y, )= A (kn,)G(r=7"/n,,m)
X3 [Fly,k k)8 (k,n,)
<

x&8(k—k',n,)], (42

where we have written the conformal time ratio n'/7, as
r. Therefore employing Eq. (26), we obtain the solution



45 REIONIZATION AND COSMIC MICROWAVE BACKGROUND. ... 657

AP(k,y,m)=~ A(kn,)G(kun,)
Xexp(—ikun) [ 3 F(y,k,k)8M (k' 1,)
<

x8W(k—k',m,) | »
(43)

where we have approximated the integral over conformal
time as a Fourier transform by taking 7— o in both the
limits of the integral and in G: i.e.,

fonG (r,m)explikun,rdr
~ fowG(r,'q= o Jexplikun,r)dr
=G (kun,) . (44)

Hence G (kun,) is the Fourier transform of G (r,7= )
with r=7'/7n, as the Fourier conjugate of kun,. Note

that the quadratic Doppler term also obeys Eq. (43) as we
J

shall see in Sec. IIIF. On the other hand, the linear
Doppler terms have the additional property that
F(v,k,k’')=v-D(k,k’) with D(k,k’) only a vector func-
tion of k and k’. Choosing our coordinate system so that
k||X; and ¥ lies in the x; —x, plane, we can rewrite

F(y,k,k')=a? (k,k’,cos0)y k+a'> (k,k’,cos0)y k|
= a{? (k,k’,cos0)kpu

+a'P (k,k’,cos0)(1—u?)'"2k'sin6 cose ,
(45)

where k| =k’'(sin6 cos¢,sinf sing,0) is the component of
k’ perpendicular to k, and a(”,a{?’ are arbitrary func-
tions independent of the azimuthal angle ¢. Thus we can
separate the contributions into A?’=A{»+A{? which are
due to j|/k and jlk.

Cross terms such as

ArPAR < Fr (v, k,kKF (v, k)8 (K, n,) 1?18 (k—K',1,)*k *dk"sin6 d6 d ¢

27
o« fo cos¢p dp=0

(46)

then vanish under integration over the azimuthal angle ¢. Here we have used the random phase hypothesis to eliminate
one of the sums over modes. Of course, cross terms between first and second order vanish under this assumption as
well.

Now consider the mixed first- and third-order term. This can be expressed as

A*DAB) o f:”[a;]wk,k',cose)ky+a‘f>(k,k',cos9)(1—y2)'/2k'sinecos¢]d¢ ) (47)

The perpendicular part vanishes under the integration over azimuthal angle. However, the parallel part (for the linear
Doppler effect) is suppressed, as we can see, by the additional factor of x in Eq. (47). Hence mixed first- and third-order
terms are not only suppressed by the smallness of the first-order term but also by a corresponding suppression in the
third-order portion. These contributions are thus entirely negligible.

Since all relevant contributions add in quadrature, we can calculate them independently. In Sec. III D, we will calcu-
late the first-order Doppler and isotropic effects; in Sec. IIIE, the Vishniac effect; and in Sec. III'F the quadratic
Doppler effect.

D. First-order Doppler and isotropic effects

In Fourier transform space, the solution to the residual first-order effect is given by
AV(K,p,m)= fon A&”‘F%Pz(#m‘z”ﬂuv‘” g(n,m"explikp(n’'—n)ldn’ . S @8)

Here we have retained the A contributions to the source in the first-order integral despite the suppression discussed in
Sec. I1I B, since there is a corresponding suppression of the first-order linear Doppler source term that makes these two
comparable. Note furthermore that for the first-order effect the source term is only a function of ¥ -k=kp and not of ¥
in general.

Taking the zeroth moment with respect to i of Eq. (48), we obtain

Ak, )= [ dn'g () (A Golk (n—m)]—4iv Vji [k (=)= 3801k (n—=m)]} (49)

r

tions around k(np—7')< 1. Since k7, >>1, this implies
n=7' (and of course, this is just the cancellation argu-
ment in a different guise). Therefore we can take the
slowly varying quantities g, A, and v'! out of the in-
tegral. As we have discussed in Sec. III B, the first term

where we have employed the identity
j,,(z)=%(—i)”f_llexp(ip,z)P,,(u)dp . (50)

Because of the oscillation of the spherical Bessel func-
tions, in each case the integral only has strong contribu-
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and third term are suppressed by a factor of order the op-
tical depth across one wavelength of the perturbation.
We can perform the integration over the second term in
Eq. (48) by noting

- _gin I+n+1)]
fo Jn(2)dz == T[i(n+2)]° 5D
and therefore
(1)
Ag”(k,n>z~‘“”—;k”ﬂf<n> . (52)

Taking the second moment of Eq. (48), ignoring the A
terms, and extracting the slowly varying quantities, we
obtain

AV (k,n) =~ 4iv'V(k,n)Hn)
><fo"dn'{%ja[k(n—n’)]—%jl[k(n~n’)]} .
(53)

However, employing Eq. (51), we see that A" vanishes.
The quadrupole term can thus be neglected as compared
with the other sources.

Let us briefly discuss this somewhat counterintuitive
result. Equation (52) tells us that the first-order Doppler
effect can lead to a small isotropic fluctuation in the local
brightness even though the fluctuation produced immedi-
ately after scattering is dipole in nature.

Consider the following idealized case: initially isotro-
pic photons scatter off electrons in a plane wave velocity
field with wave vector perpendicular to the line of sight.
At a given zero crossing of the wave, there will be pho-
tons that arrive after scattering off a trough, and photons
that arrive from the opposite direction having scattered
off a peak. Both of these photons will carry the same en-
ergy shift and the directionally averaged brightness fluc-
I

n2’ Q():l b
D(n)

“ |3 sinh(y/R)[sinh(n/R)—(n/R)]/[cosh(n/F)—12=2, Q,<1 .

tuation will not vanish. Of course, this effect is not cumu-
lative. After the photons have traveled another half
wavelength, the average brightness fluctuation at this
same zero crossing will be of opposite sign. This is the
cancellation argument specialized for the present case:
all but the most recent scattering will cancel. Equation
(49) reflects this by providing strong contributions to the
directionally averaged brightness perturbation only if
n=n'.

However, there actually is a secondary cumulative
effect. Notice that from the original scattering the u=0
mode which escapes cancellation has zero fluctuation in
first-order theory. However, at the zero crossing, scatter-
ing off the stationary electrons takes the perturbed pho-
tons from the p~+1 modes and populates the u=0
mode. These photons travel parallel to the line of sight.
Furthermore, now all the brightness fluctuations are ad-
ditive along the line of sight, and one observes a pertur-
bation in brightness on the same scale as the velocity
field. In this way, the isotropic term can contribute
significantly.

The isotropic term is in practice of the same order of
magnitude as the residual first-order term which arises
because of the growth of perturbations during the transit
time of the photon across the perturbation [13]. Let us
separate the time dependence of the perturbations. If we
express the growth of density perturbations in linear
theory by

8'V(k,n)=D(n,m, )8 (k,n*) , (54)
then the growth of velocity perturbations is
.k | d
u”>(k,n)=z7(7 —;;1)(17,77*) 8V(k,m,), (55)

where D(7,n,)=D (n)/D(n,) is the ratio of the growth
factors [26]:

(56)

Hence, for Q,=1 or /R << 1 [alternatively (Q42)!/?>>1], D(n,1,)=(n/7,)*. Efstathion [6] employs this approxima-
tion for ;<1 models. Again this is not a good approximation because of the fact that last scattering is so recent in
these models. We use the correct growth factors here. Equation (48) can then be written as

(1) 2
86 (k’n*)e—ikun 7 M
(km,)? 0o 2

d
dn’

A(l)(k’#’n):

The two optical depth factors in the isotropic contribu-
tion reflect the nature of this double scattering effect. Let
us check that this solution is consistent with the assump-
tion of small AS". Taking the second moment of Eq. (57)
and employing (50), we obtain

_ 88k, m,) o

(1) CE 4
Mtkm=—00 7w
2
;";'—[%i 7‘%1)(11,77.) +(n>’. (58)

D(n',m,)

[#(n") +ikulg (g, q )e* M dy" . (57)

f

We see that AS /AN ~0(1/km,)<<1 and A} is indeed
small compared with the other source terms.

The integral over the conformal time in Eq. (57) is
again approximately a Fourier transform [13] of

G,(rm=~ | LDirn,,n,) | Hrn, g (nrmon
2 | dr
d |14
E —2_ ;;«-7)(’7]*"'7*) g(n,”fh)ﬂ* ’
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where the transform is defined in Eq. (44). Hence

64P(k,n,)

A(”(k, , )'2___
| T8 km.)*

|G, (kun,)?, (60)

where we have implicitly used the ergodic and random
phase hypotheses. The power per logarithmic interval
Q (k) for the first-order Doppler effect is therefore

-

V.
Qv(k)=%— P(k,), 61)

ny (kn,)?
where
_ 1 k"hr 2
Iﬂ'v:Ef—kn,lG”(k‘un*)l d(kun,)

Mo/7
~J “ NG, (rmg)2dr (62)

and we have used Parseval’s theorem to approximate
I,,. For full ionization with Q,=1 and Ny <<7o»
I, ,~6.38. Efstathiou [6] employs this value in cases
where the approximation is not very good. We shall see
in Sec. IIT F that this can lead to a significant correction.

One might worry about the appearance of 7, in the ex-
pression for Q (k), since there is a certain arbitrariness in
the definition of the epoch of last scattering, e.g.,
Efstathiou [6] picks 7(n,)=1, whereas we might equally
well have chosen the peak of the visibility function. Nev-
ertheless, inspection of the growth factors in P(k,7, ) and
I, shows that all dependence on 7, vanishes, as it must,
since it has only been introduced as a convenient normal-
ization epoch.

E. The Vishniac effect

Contributions to the brightness fluctuation due to the
Vishniac term S,5(x,7,7)=48(x)[y-v(x)] may be ex-

pressed as
APk p,m)= A,5(k1,)G,5 kun, exp( —ikun)
E (7, kK8 V(K )8 (k—k',7,)
(63)
where
4i
A,,s(k'r],,)=k—m ,
_11|d
Gl =7 | - D) | Drny,n, )8 (0, rn, )7,
k'’ k—k'
F v,k k)= +—7 |k, 64)
ws'Y Y lk,|2 ‘k_k,lz (

with G 5(kun, ) defined from G,s(r,7) as in Eq. (44). The
cancellation argument manifests itself here in that
G,s(kumn,) is approximately the Fourier transform of a
wide bell-shaped function G,s(r,74). If k7, >>1, this im-
plies that only for |u| <<1 does G,5(kumn,) have strong
contributions. Therefore we can set ylk for the other
slowly varying functions of u. We are thus calculating the
perpendicular part A{>) alone as the Vishniac term.

We find that
2
1 Vx ; 2
0,5(k)= —ﬂ-n—ﬁ(kn,,) I, vslivs(kK)P (k) , (65)
*

where I, 5 is defined as in (62) in the obvious manner
and

o 1 (1—cos20)(1—2y cosh)?
k)= d d(cos6)
) fo yf—l 08 (1+y2—2y cos)?

Plk(1+y%*—2y cosf)%,n, ]
P(k,m,)

Plky,m,]
Plk,m,]

For full ionization I, ,5~6.38 when Q;=1 and 7, <<7,.
Again Efstathiou [6] uses this value for all cases. In the
next section, we shall see what corrections are necessary
for the general case.

Care must be taken when evaluating the mode cou-
pling [Eq. (66)]. The integrand has a divergence on the
boundary at y =1, cos6=1. As described in Sec. IV A, a
resonance occurs when the density field 8''(k’) has a
wavelength of k ~k' (which implies y ~1) and the veloci-
ty field is coherent: |k—k’| <<k (i.e., cosf@~1). Further-
more, since kly to avoid cancellation, (k—k’)||y and
yields a strong Doppler contribution. The integral itself
does not diverge however, since for reasonable power
spectra, the power on the largest scales tends toward
zero. Nonetheless, it complicates the integral, since we
can have significant coupling between the largest and
smallest scales. Thus even though for pure power laws
I, ,5 is independent of k, we expect that realistic power
spectra will deviate from this prediction. This is especial-
ly true for steeply red power spectra, where the large-
scale velocity field is determined far above the scale of in-
terest (i.e., k) where the power spectrum is quite different.
Figure 1 displays the magnitude of this effect as a func-

Ik,ué(

(66)
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FIG. 1. Mode coupling integral for the Vishniac effect (v8)
[see Eq. (66)] for various power laws [P(k)=k" for large k]
with a large-scale cutoff at k., =0.001. Note that for steep
power spectra the integral never approaches a constant. This
represents a correction to the approximations in Ref. [6].
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tion of k for various choices of the small-scale power law
n and an arbitrary large-scale cutoff in power at

ki =0.001 Mpc~!. For reference the standard CDM
model predicts n =—3, whereas BDM models prefer
n =—1 but may plausibly lie in the range 0>n > —1.

This figure should only be taken heuristically since we
have not included the proper large-scale behavior of a
realistic power spectrum.

Now let us briefly consider the O ([A—A(]8) term. As
shown in Sec. III A, A(k)<v (k) for all k, so that the
O([A—A]8) term is smaller than the Vishniac term for
all modes. An analysis of the Vishniac integral (66) for
both CDM and BDM power spectra shows that it is
dominated by modes well under the horizon for which
A—Ay<<v. The O([A—Ay]8) term is thus completely
negligible in these models.

J

F. The quadratic Doppler effect

The quadratic effect escapes cancellation since it is not
directly proportional to y-k=u, but velocity perturba-
tions are smaller than density perturbations at small
scales, since in linear theory v x§8/km, if Q=1 or
(Q42)1/2>>1. The effect is therefore relatively minimal at
scales far below that of the horizon as long as the mode
coupling is not significantly different from the Vishniac
term.

The source term for the quadratic Doppler effect is

S, (x,7,m)=—vv D47y D2 67)

In Fourier space, a product becomes a convolution so
that the solution can be written as

A2k, y,m)= 4,,(kn,)G,, (kun,)exp(—ikun) 3 F,,(y,k,k )8k, 7,8 (k—k',7,) , (68)
<
—
where o= kk’cos@+ k' —Tk'*sin’0 cos’p k?
v k2+k'?—2kk’cos6 k2’

4
Auv(k )=,
M« (kn*)2
1| d 2
Gvu(r,’fl)'—: l; E\@("n*an*) }g(n,rn*)n* , (69)
—_— ’. — ’ . ’ . _ , 2
F,(v,kkX)= k'-(k—=k')+7(y-k)y-(k—k') k°

|k_k:12 k!Z :

Again G(kun,) is approximately the Fourier transform
of a wide bell-shaped function G (r,7,), and thus we can
set ¥ 1k in the other terms. Notice that with this approx-

imation |

so the cross terms between this term and the Vishniac
term, F,5<cos¢, vanish under integration over the az-
imuthal angle ¢. Furthermore, the quadratic Doppler
effect produces spectral distortions in addition to aniso-
tropies so that in principle they can be isolated from the
linear Doppler effect. In practice, however, we will find
that the distortions from the quadratic Doppler effect are
too small to be presently observable.
The solution is

2

X

V
Qw(k)=——1 — (k) ol w(K)PHKM,) ,  (70)
3 6 7 s
L

where I, is defined as in (62) and

(y —cos8)?—7(1—cos*0)(y —cosf)y +( 147 /8)(1—cos’6)%y?

L= ["ay [ d(coso)

(1+y2—2y cosh)?

Plk(14+y*—2ycos6)'’%n,] Plky,7,]

Plk,m,]

We have inserted the K = —2 factor from (31) under the
assumption that we are observing the Rayleigh-Jeans
temperature distortions from this effect. For full ioniza-
tion, Q,=1, and 7, <<7,, we find I, ,,~3. In the gen-
eral case, this value will be different, as will I,, and
I, 5. This is because I, reflects the growth of perturba-
tions as compared with their value at 7, weighted by the
probability of scattering at such an epoch. Perturbations
grow more slowly in an open universe. If the integral is
peaked above 7,, asis I, ,s and I, ,,, the integral will de-
crease; if it is peaked below 17),, it will increase, as with
I, ,. There is also a small effect due to cutting off the in-

Plk,m,]

tegral at the present time 7). Figure 2 shows the values
of I, as a function of Q5 for Q,=(p and for Q,=1.
Note that Eq. (71) is very similar to the Vishniac I, ,5
integral. Therefore the k dependence of Q (k) will resem-
ble the Vishniac power spectrum save for the extra
1/(kn,)? term suppression at small scales. Thus, unless

> 7 )2 177»')8
I,,s 8 I ’

7,00

I

w2 Lk (72)
we expect the quadratic Doppler effect to be smaller than
the Vishniac effect at small angular scales. We calculate
this ratio explicitly for a range of power laws, again with
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FIG. 2. The conformal time integrals I, [see Eq. (62)] for the
O(v), O(vd), and O(wv) effects for various models. Note that
for 0,<<1 the values depart significantly from the asymptotic
02,=1,2p <<1 result. Again this significantly improves upon
the approximations of Ref. [6].

an arbitrary large-scale cutoff in power at k_;, =0.001
Mpc~! (see Fig. 3). In no case is the ratio sufficiently
large to satisfy Eq. (72) for kn, >>1. At scales nearer the
horizon at last scattering, the linear first-order Doppler
effect is not canceled, since there are only order 1 scatter-
ing blobs of this size across the last scattering surface.
Therefore, the quadratic Doppler effect plays no
significant role at these scales either. Note that this also
implies that the O ([A—A(]v) term is negligible as well.

IV. CALCULATIONS FOR
SPECIFIC COSMOLOGICAL MODELS

A. Cold dark matter (CDM) scenario

Recent comparisons of anisotropy limits from the
South Pole 1991 experiment [3], with CDM normalized

6 T

T T TTT T T T T T T T TTTT
I T T T

b
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T W N W Y

n=-2

n=-3
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FIG. 3. Ratio of mode coupling integrals, i.e., I; of the quad-
ratic Doppler effect (vv) to that of the Vishniac effect (v8). For
no power law does the ratio become sufficiently large to make
the quadratic Doppler term significant compared with the Vish-
niac term, at small scales [see Eq. (72)].

to COBE, have suggested that some CDM models, espe-
cially those with high Q5, may be ruled out, e.g., [27,28].
One possible resolution is to have early reionization to at
least partially erase the primordial anisotropies on degree
scales. If this were the case, then secondary anisotropies
would tend to be generated on smaller scales, which we
now consider in detail.
The CDM power spectrum is given by [29]

Ak
P(k,mg)= , (73)
1T 1 ak + (6K 2+ (ck 2T
where a@=6.4(T’h)~! Mpc, b=3.0(Th)~' Mpc,

c=1.7(TCh)"! Mpc, and v=1.13. For standard CDM,
I'=0.5. The normalization constant A is given by
COBE to be [29]

Q rms

2
(h ! Mpc)?
16uK '

|4

X

A=5.2X10° (74)

Figure 4 shows the radiation power spectrum Q (k) for
the various effects in a universe that never recombines:
x,(z)=1. For comparison, we have plotted the primordi-
al fluctuations from standard recombination [30] in Fig.
4. As expected, first-order and quadratic Doppler terms
are suppressed at small scales. Furthermore, the quadra-
tic effect never dominates on any scale. The result for the
correlation function is plotted in Fig. 5. Here the corre-
lations are given for infinite beam resolution o =0. Note
that the coherence scale is somewhat under an arcminute.

To obtain observable quantities, the formulas of Wil-
son and Silk [31] can be employed, or we can note that
for CDM on arcminute scales and greater, a double beam
experiment essentially measures C (0,0 ), whereas a triple
beam experiment measures i C(0,0) for the Vishniac
effect, due to the small coherence scale. In Fig. 6, we
show the predictions of C(0,0) for CDM with several
values of .

b
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FIG. 4. CDM radiation fluctuation power spectrum for the
first order Doppler (v), Vishniac (v8), and quadratic Doppler
(vv) effects. Here Q(k) is the power per logarithmic interval,
ie., C(0)= fQ(k)dk /k. The shape parameter I [see Eq. (73)]
is 0.5 for standard CDM. Note that the (vv) term is never
significant: (v) dominates at large scales and (v8) dominates at
small scales.
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FIG. 5. CDM predictions for a double beam experiment with
infinite resolution. The primordial fluctuations for standard
recombination are normalized to COBE [2]. Note that at sub-
arcminute scales the Vishniac (v8) term dominates over the
first-order Doppler term (v) and can be larger than the primor-
dial fluctuations. Also note that the coherence scale of the
Vishniac effect for CDM is somewhat under an arcminute.

Recently, Tegmark and Silk [32] have shown that
reionization may plausibly occur as early as z; ~50. Fur-
thermore, they show that reionization is sudden in realis-
tic models, so that x,(z) is essentially a step function at
z;. For these models, the optical depth will never reach
unity until the standard epoch of recombination, and
hence some primordial anisotropies remain. We will ap-
proximate this by employing the cumulative visibility
function

Mo
gc(nﬂ:fn g(ne,m')dn", (75)

which tells us the fraction of the CMB photons which
have been rescattered since z; and have thus suffered
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FIG. 6. CDM predictions of the Vishniac effect for C(0,0)
with various choices of Q5. Because the coherence scale is un-
der an arcminute, experiments at arcminute scales and greater
will essentially only measure C(0,0).

suppression of primordial fluctuations. In terms of the
temperature fluctuations, only a fraction f;,(%;)
=1—gc(7;) of the original signal remains after rescatter-
ing. We have checked this estimate against the numerical
solutions in Sugiyama, Silk, and Vittorio [33] and found
good agreement.

Of course, the Vishniac effect decreases if the optical
depth never reduces unity on the new last scattering sur-
face. In this case, the epoch of new last scattering 7, is
not the conformal time when optical depth reaches unity.
We can, however, characterize this epoch by the max-
imum of the visibility function. Employing this
definition, we can express the fraction of the full effect for
these models as f7s(7;)=Q,5/Qysl xy,)=1- Figure 7 plots

the weighting fraction f(7);) for the Vishniac effect and
the primordial fluctuations. Notice that these fractions
are dependent only on the cosmological parameters
Q4,Qp,h and not on the power spectrum of a given mod-
el. This fraction squared should be multiplied by the
values in Fig. 4 to obtain the radiation power spectrum in
cases when optical depth never reaches unity on the new
surface of last scattering. Notice that we still obtain a
fairly large Vishniac effect even when only a fraction of
photons have scattered and the primordial fluctuations
are only partially reduced. For example, if 15 =0.1 and
z;~20 then f ;= f,5==0.83, i.e., 83% of the primordial
fluctuations remain whereas 83% of the fluctuations from
the Vishniac effect are generated. This is because the
Vishniac effect becomes stronger at later times due to the
growth of the velocities. Therefore, even though only a
small fraction of photons are rescattered, a relatively
large anisotropy is imprinted on them. So late reioniza-
tion will not yield smaller CMB fluctuations on the
arcminute level.
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FIG. 7. Weighting fraction for models with sudden reioniza-
tion at z; in a flat Qy=1 universe. For example, in the CDM
model, the full values of Fig. 4 should be weighted by f? to
determine fluctuations for these ionization histories. Notice
that we still obtain a strong Vishniac effect even in cases where
the primordial fluctuations are only partially erased. At z; =20,
we have approximately 83% of both the Vishniac and primordi-
al fluctuations. Late reionization therefore does not necessarily
yield smaller fluctuations.
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TABLE 1. Predictions of C(0,0) (X 107?) for the Vishniac effect for various models which can be
tested by future experiments at the VLA, ATCA, and OVRO. We have chosen three representative
values of the beam smoothing . ATCA and OVRO have similar effective beam smoothing. Ranges
given in the sixth and seventh columns represent the uncertainty in predictions due to nonlinearity.
The observed signal will also depend on the first-order effect which in turn depends sensitively on the

nature of the experiment and not on C(0,0) alone.

Model Qp h Spectrum X, 0=0.1 arc min g=0.5 o=1.0
BDM 0.2 0.8 n=0 1.0 2.61-11.50 1.17-1.19 0.48
BDM 0.1 0.8 n=-—0.5 1.0 2.17-3.26 0.80 0.48
BDM 0.1 0.5 n=-—0.5 1.0 1.77-2.36 0.49 0.25
BDM 0.2 0.8 n=0 0.1 1.23-1.35 0.13 0.05
BDM 0.2 0.8 n=-—0.5 0.1 0.83 0.18 0.09
CDM 0.1 0.5 r=0.5 1.0 0.38 0.25 0.18
CDM 0.1 0.5 r=o0.2 1.0 0.04 0.03 0.03

We have also tested a phenomenologically successful
model inspired by CDM that sets I'=0.2. This has the
effect of suppressing the small-scale power with respect to
the large leading to an extremely small Vishniac effect
(see Table I).

B. Baryonic dark matter (BDM) scenario

Baryonic dark matter models with isocurvature fluc-
tuations contain relatively large amounts of small-scale
power (for the power spectrum in these models, see
[34,35]). For this reason, primordial fluctuations from
the first-order Doppler effect at standard recombination
are overproduced on the scale of the comoving particle
horizon (i.e., 7). The angle subtended by the horizon at
redshift z is

Qy(Qez +1)172
Qoz +(Qo—2)[(Qez +DV2—1]

2sin(0y /2)= (76)

At standard recombination z ~1100 and 6y ~1°. Reioni-
zation is therefore necessary to remove these degree scale
fluctuations. Generally, anisotropies will be erased up to
the scale of the horizon size at the epoch z, where the
optical depth reaches unity. Secondary fluctuations from
the first-order Doppler effect on the new last scattering
surface will of course be generated, and will peak near the
horizon size at z,. Since the horizon scale is then larger
than at standard recombination, the degree scale con-
straints on CMB fluctuations can be avoided. Primary
fluctuations on degree scales will be erased and secondary
fluctuations will be smaller because they have lower am-
plitude and because degree scales are well below their
peak.

In Fig. 8, we plot the angle subtended by the horizon at
7(n,)=1 for h =0.8. Notice that if 23=0.1-0.2 as sug-
gested by some dynamical measurements, the horizon at
last scattering subtends ~ 15° today. Therefore at degree
scales, there is significant cancellation as described above.
However, for the case in which the total density includes
matter that does not contribute to the free electron densi-
ty in the intergalactic medium (IGM), i.e., if baryons are
hidden in compact objects or the ionization fraction is
less than unity, then the last scattering surface is further

away. In low Q, universes, the angle subtended by the
horizon at last scattering is only marginally larger than
that at standard recombination. These models are there-
fore in danger of producing secondary fluctuations on de-
gree scales which are as large as the primordial ones that
have been erased.

The relatively high amount of small-scale power in
these models also leads to large (and in fact observable)
fluctuations at arcminute scales due to the Vishniac
effect. Thus even models with a relatively late last
scattering epoch can be constrained. We normalize the
spectrum to the fractional mass fluctuation on a scale of
8h ! Mpc, i.e.,, 0g=1. One complication arises, howev-
er. We have performed our calculations in linear theory
and therefore can only realistically predict fluctuations
on scales larger than the nonlinearity scale. We define
the nonlinearity scale as the value k,; for which
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FIG. 8. Angle subtended by the horizon at last scattering
(optical depth unity), i.e., 174 [see Eq. (76)], for A =0.8 in models
with complete reionization, i.e., x,=1. In models where
Q5 =y, the horizon size is sufficiently large to escape degree
scale constraints. However, models which hide matter in com-
pact objects or have low ionization fraction will have horizon
sizes close to the degree scale. We have plotted for illustrative
purposes a model in which 90% of the baryons are in compact
objects (3 =0.1€,) or alternatively ionized fraction x, =0.1.
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V. .k,
ﬁfo Pk, kdk =1, (77)

corresponding to the scale on which 6p/p=1. The max-
imum anisotropy comes from taking the linear power
spectrum out to infinitely small scales. The minimum an-
isotropy we expect comes from cutting off fluctuations at
scales smaller than the nonlinearity scale, i.e., setting
Q(k >k,;)=0. Thus the true prediction lies somewhere
between this minimum and maximum, the uncertainty
being caused by our ignorance of nonlinear effects, al-
though we would expect the prediction using the cutoff at
k,; to be more realistic. Choosing Q,=0.2 and h =0.7
as an example, we plot the results of using this prescrip-
tion for various choices of the power law index » in Fig.
9. Note that for n > —1.5 the fluctuations due to the
Vishniac effect increase with decreasing angular size, and
therefore all experiments will effectively measure C (0,0 ).

Recent measurements from the Very Large Array
(VLA) have yielded significant improvements in the con-
straints on arcsecond fluctuations in the CMB. Fomalont
et al. [36] report C(0,0)"/2X10°<1.9,2.1,2.3,4.0,
5.8, 7.2 for 0 =0.56,0.40,0.22,0.15,0. 10 arc min respec-
tively. Unfortunately, due to the uncertainty about
effects below the nonlinearity scale, the arcsecond mea-
surements cannot be used to constrain most of the BDM
models, and the larger angle measurements do not yet
yield an improvement over the Owens Valley Radio Ob-
servatory (OVRO) [37] measurements at o=0.78 arc
min. On the other hand, a small improvement in the
measurements at ¢ > 0.2 arc min would rule out many
favored models, e.g., 2,=0.2, h =0.8, n =0, x, =1 (see
Table I).

The most stringent constraints to date come from the
Australian Telescope Compact Array (ATCA) which
uses interferometry to make a sky map. They place an
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FIG. 9. BDM predictions for C(0,0) from the Vishniac
effect with Qy=0.2,h =0.7,x,=1.0. Notice that at arc-
seconds, we are in the nonlinear regime; uncertainties here
greatly inhibit our ability to constrain models. We have plotted
predicted fluctuations with (heavy) and without (light) the cutoff
at k,;. These should be taken as lower and upper bounds for the
predictions.

upper limit of (AT /T)srca <0.9X 107> on an angular
scale of / =~4500 or equivalently 0.76 arc min [7]. Howev-
er, care must be taken when interpreting this limit due to
the peculiar nature of the ATCA window function. This
window function is given by Eq. (8) and Fig. (6) of Ref.
[7]. Note that the filter function depicted in their figure
(6) has been arbitrarily normalized to peak at unity. In
the definition of the window function appropriate for
temperature fluctuations [see Eq. (32)], the peak value of
the filter function is 0.52 [38]. This normalization is im-
portant for comparison to other experiments. For exam-
ple, OVRO quotes an upper limit for temperature fluc-
tuations with a window function appropriate for a triple
beam experiment with 6=7.15 and o =0.78 arc min [37]:

AT ={2[C(0,0)—C(6,0)]
r OVRO
—1[C(0,0)—C(26,0)]}'?
<2.1X107° . (78)

We plot the ATCA and OVRO window functions with
their proper normalization in Fig. 10. The two window
functions are similar in the range kR, ~1%4500. There-
fore, the upper limits are directly comparable for fluctua-
tions on these scales. Since the upper limit of ATCA is a
factor of 2 more stringent, ATCA places the strongest
constraints for / * 4500. However, OVRO is significantly
more sensitive for / $4500. Because the Vishniac effect
peaks at small scales for n > —1.5, the ATCA experi-
ment is the most sensitive probe of these secondary fluc-
tuations. For effects that do not peak at the smallest an-
gular scale, e.g., the first-order Doppler effect, the OVRO
experiment will be more sensitive.

The ATCA and OVRO limits correspondingly place
constraints on the BDM model parameters (), and » (see
Fig. 11). We have included the first-order term Q,, but
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FIG. 10. The ATCA and OVRO window functions com-
pared. Notice that the two window functions are comparable
for [ R 4500. OVRO, however, is far more sensitive to fluctua-
tions with /<4500. We use the small-angle approximation:
kR, =I.
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FIG. 11. The constraints on fully ionized (i.e., x, =1) BDM
models from the measurements of ATCA (AT/T)arca
<0.9%X107° (solid line) and OVRO (AT /T)gyro<2.1X1073
(short dashed line). The constraints are strong functions of the
Hubble constant; here we show three representative values of 4,
the lowest and highest values generally considered and the
specific value (h =0.8). This value and the region of Qy—n
space enclosed by the box (long dashed line) represent the pa-
rameters chosen by Ref. [35]. Low n and high Q, are excluded.
Note that other assumptions about x, would alter these limits.

given the scale and the width of the ATCA window func-
tion, the ATCA constraint essentially comes from the
Vishniac term alone. The OVRO constraint has a small
contribution from the first-order effect for steep values of
n. Notice that for n > —1.5, ATCA constrains BDM
models more stringently than OVRO. It might also be
mentioned that the constraint is a sensitive function of
the upper limit. An improvement in the upper limit of
less than a factor of 2 would rule out the favored model
of 0,=0.2, h =0.8, n =—0.5, x,=1 [35].

Our constraints differ from those of Efstathiou [6],
even accounting for the new limits. In particular, his
scaling relations cannot be extended to certain regions of
parameter space. The correction for the angle to distance
relation R, [Eq. (34)] tends to increase the Vishniac effect
for large n and decrease the first-order term for small n.
The true conformal time integrals 7, (Fig. 2) tend to de-
crease the Vishniac term and increase the first-order term
for low ,. The net effect is an increase in the predic-
tions for low Q, and high » and a decrease in the predic-
tions for low €, and low n. It is also interesting to note
that the smaller scale experiments do a better job of con-
straining high n as opposed to low n. This is useful since
the arcminute measurements tend to constrain low n (see
Table I).

Such constraints could be avoided by changing the ion-
ization history. In fact, some modification from the fully
ionized scenario is also necessary to escape limits on the
Compton-y parameter [21]. Excessive spectral distor-
tions can be avoided by a relatively late ionization so that
the optical depth during the reionization epoch, while
greater than unity, does not reach large values. However,
since anisotropies unlike spectral distortions come mostly

from the last scattering event, the small angular scale
constraints cannot be evaded in a similar manner. The
secondary anisotropies are most sensitive to the location
of the last scattering surface rather than the events that
preceded it. An ad hoc way of moving the last scattering
surface would be to lower the ionization fraction to a
smaller constant value, e.g., x, =0.1 [35], but it is difficult
to see how the ionization fraction can be kept at a small
but significant value since the recombination time tends
to be short. In these models, the predictions of the Vish-
niac effect for the ATCA experiment are then below the
observational limits (see Table I) for all interesting
choices of the BDM parameters. On the other hand, an
increase in the first-order term would appear in any of the
larger angle experiments such as OVRO or, even more
significantly, the degree scale experiments. This is be-
cause the last scattering surface becomes distant and can-
cellation incomplete. In general, whereas O (vd) secon-
dary anisotropies decrease with z,, O (v) anisotropies ac-
tually increase with z,. If we decrease the ionization
fraction substantially more than x, 0.1, although pri-
mordial anisotropies will be erased, new ones of roughly
the same size will be generated. These models may there-
fore overproduce fluctuations on degree scales (see Fig.
8).

A more physically motivated way of avoiding the con-
straints would be to hide the baryons in black holes [21].
Obviously, this has an effect quite similar to lowering the
ionization fraction. For simplicity let us assume that the
matter power spectrum is unchanged from the Q=0
case [recall that we have defined Qp as the fractional
baryon density in the intergalactic medium (IGM)]. Fig-
ure 12 shows how the combined Vishniac and first-order
anisotropies are changed in this case of Qp <, We
have plotted here the predictions for an experiment with
a setup similar to OVRO (6=7.15, 0=0.78 arc min).
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FIG. 12. Combined first-order and Vishniac predictions for
the OVRO triple beam experiment (6=7.15,0=0.87 arc min)
from three representative BDM models with a significant frac-
tion of the baryons in compact objects which do not contribute
to the baryon density in the intergalactic medium, Qz. The
first-order effect dominates for low 5, since the last scattering
surface is then at such high redshift.
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The increase in fluctuations for Q5 /Q,<<1 is from the
first-order term and, as described above, is quite
significant. For models in which the last scattering sur-
face would already have been distant (e.g., Q;,=0.1,
h =0.5) the increase in the first-order term is strong
enough so that lowering the number of baryons in the
IGM actually increases the predicted fluctuations on
arcminute scales. In most cases, hiding the baryons can
only decrease the predictions by a factor of ~2. With
modest future improvements in experiments, the isocur-
vature BDM model can be tested for all ionization his-
tories.

V. CONCLUSIONS

We have shown that anisotropies on arcminute angular
scales can provide a powerful probe of the ionization his-
tory of the Universe. The COBE DMR detection of
large-angular scale anisotropies implies intermediate an-
gular scale anisotropies (when combined with CDM or
BDM power spectra) that, in the absence of reionization,
exceed or are comparable to observational limits. Reioni-
zation is essential in BDM models, and may be essential
in CDM models, e.g., [27,28]. Moreover, efficient reioni-
zation must have occurred at z>5. Reionization has
sufficiently modest energetic requirements (at least for
photoionization) that it plausibly occurred when only a
small fraction of the Universe was found in nonlinear
structures [32]. This occurs as early as z~ 1000 in BDM
and z =50 in unbiased CDM models. While reionization
helps suppress, or at least reduce, primordial fluctuations
on degree scales due to the first-order Doppler effect at
standard recombination, it inevitably regenerates secon-
dary fluctuations on arcminute scales.

We have considered all Compton scattering effects to
second order and have shown explicitly that only those of
O (v) and O (v8) play a significant role in regeneration for
realistic power spectra; i.e., no other higher-order effects
are important, and there are no hidden terms to cancel
the Vishniac term. However, for a (less realistic) power
spectrum that peaks above the horizon scale at last
scattering, the O ([A—A,]8) term can significantly cancel
the Vishniac effect. Furthermore, we have substantially
improved the approximations involved in calculating
these effects in an open universe. The O (v?) effect, al-
though small, sets the minimal spectral (Compton-y) dis-
tortion in reionization scenarios. For the CDM model,
all of these secondary effects predict fluctuations well
below present observations. However, one should note
that even in cases where the primordial fluctuations are
not efficiently erased due to relatively late reionization,
the Vishniac effect still generates fluctuations that are of
the same order as primordial fluctuations at arcminute
scales. For BDM models where early reionization is
necessary, new measurements from ATCA already ex-
clude a significant region of ({,,n) parameter space.
Changing the ionization history can avoid the present
constraints, but it is difficult to decrease the secondary
fluctuations by a significant amount. If one arranges the
ionization history to produce a small Vishniac effect, the
first-order Doppler effect will be correspondingly in-

creased. We therefore find for both CDM and BDM that
changing the ionization history through what might be
considered physically well-motivated prescriptions does
not in fact greatly change the predictions for the secon-
dary anisotropies.
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APPENDIX A:
COLLISIONLESS BOLTZMANN EQUATION

Second-order gravitational effects play an important
role when the first-order gravitational effect vanishes, e.g.,
if there are no metric fluctuations on the last scattering
surface as in the case of late phase transition scenarios.
These effects will primarily manifest themselves on large
scales. Martinez-Gonzalez et al. [39] have performed the
calculation for weakly nonlinear effects due to second-
order density perturbations. Here we complete the pro-
gram by deriving all possible effects to second order in
the metric perturbations. Note, however, that recently
Jaffe et al. [40] have shown that scenarios in which there
are no fluctuations on the last scattering surface must in-
volve strongly nonlinear effects to generate the observed
gravitational potentials today. They find that such mod-
els must generate CMB fluctuations on the order of, or
greater than, the standard primordial fluctuations.
Therefore, even for this class of models, weakly nonlinear
effects such as those derived here may only play the role
of a small correction to the full gravitational effect.

We choose to work in the synchronous gauge, follow-
ing closely the notation of Peebles and Yu [41]. In this
gauge, perturbations to the metric are expressed as

go=1, 80;=0, g;=—a()’[8,;—h;(x,0)], (Al
where Greek indices run from O to 3 and Latin indices
run from 1 to 3. Summation over repeated indices is as-
sumed throughout even when all indices are lowered.
The momentum of the photon will be denoted by p* and
for convenience we express

pi=—poaltley; , (A2)

where y; are the direction cosines. In order to satisfy
p'p, =0,
21—
er=1—h;vv;, (A3)

to first order.
The equations of motion for the photons are [41]
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dp 1 By ¥
L= 3,8, .
dt 2 po

(A4)

The general expression for the collisionless Boltzmann
equation is

df L df dx' | df 4V
ot ax" dt 9dy,; dt

of dpo

=0. A5
dp, dt (A3

We integrate this equation over energy to obtain the
equation for A, the brightness. Each term in the integral
of (A5) is now discussed in turn.

1. Redshift term

The redshift term is

4T pidp of Po

é’ 03 dt ; da(1+A(1)+A(2))

dh,; an?
g e 3 i 3t

+{ _ZYinA( )_4hkj7/k7’i

+2hk17’i7’j7’k7’11—87 , (A6)

where & is the average energy density of the photons.
The first term represents the universal redshift due to the
expansion. Note that the brightness fluctuation is in-
dependent of the redshift factor since all photons redshift
in the same manner. Thus, the term from the explicit
time dependence of the spectrum will cancel the first
term (see part 4). The other terms represent gravitational
redshifts due to perturbations of the metric.

2. Anisotropy term

Anisotropy is generated as a first-order gravitational
effect due to gravitational redshifts from overdense re-
gions, i.e., the Sachs-Wolfe effect [42]. Therefore 3f /9y,
has a contribution to first order in the metric perturba-
tions. Gravitational lensing, dy; /dt, is also a first-order
effect. Thus the whole term is second order:

fodoafdy,

dAD 1 | Ohy
oy, dt

3y, 2 ot Yiv¥ivYk

1
+;aihjk7j7k ] .

(A7)
3. Inhomogeneity term
The inhomogeneity term is
4m ooy, Bf dxi_ ¥i[2A | 3A®
6 fpodpo ox' dt a | ax’ ax’
1 A 1
+; O’ hinj_EhjijYkYI

(A8)

This term represents the effects of a spatially dependent
perturbation in the photon energy density. The first term
has no dependence on the metric fluctuations and is the
flat space approximation used in Eq. (23). The second
term represents corrections due to the mass shell con-
straint, Egs. (A2) and (A3).

4. Explicit time dependence term

The explicit time dependence term is

4617 Od oaa{_—;_ lda(1+A(1)+A(2))
(1) (2)
+52 92 (A9)

The first term represents the uniform redshift of the spec-
trum. It cancels with the energy redshift leaving no effect
on temperature perturbations.

5. Complete first-order expression
Summing the above, we arrive at

A vi 3A _ dhy
ot a ax’ i at ’

(A10)

to first order. This term represents the gravitational red-
shift of the photons due to the metric fluctuations and
gives the conventional Sachs-Wolfe effect [43].

6. Complete second-order expression

In second order,

aA? i aA? i W Oy
a1 +7 P Yiv¥; 3t +{27/i7/jA F4h v Vi = 2hgY Y YRV 1) at
aAD 1 | Bk, 1 1 | 3AV 1
oy, 2 | Tar Yavet Ok v (— T YT vy | (ALD

This expression gives the second-order Sachs-Wolfe effect and gravitational lensing effects.

APPENDIX B: COMPTON COLLISION TERM

Here we present the general expansion of Eq. (3) to second order, and give the explicit sources in the collision term of
Eq. (6). First we must express the matrix element in the frame of the radiation background:
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|M|*=(4m)%a?2 { (14cos’B)—2 cosB(1—cosB) ﬂ£+ﬂ_P_ l—cosﬁ)ZL'i"—cosB(l—cosB
+(1—cosB)(1—3 cosB) | LB + A +200sB(l—cosB)—qu— ho. (B1)
mp mp pp

where higher order (h.o.) represents third and higher order in v and p /m. The following identities are very useful for
the calculation. Expansion to second order in energy transfer can be handled in a quite compact way by denoting it as
an expansion in §p =g —gq' of the delta function for energy conservation:

8(p+q—p'—q')=06(p —p’)+?lg{Z(p—p’)-qu(p—-p’)z}

a ’
8p’8(p p')
2

apl2

1
8m

—+

s{2(p—p')-q+(p—p')?}? 8(p—p') | +h.o. , (B2)

which is of course defined and justified by integration by parts. Integrals over the electron distribution function are
trivial:

(-Z;%g(q) n, ,

_,.<L(2 )ng(q) mo;n, , (B3)

d3
f(z—ﬂggq,»qj g(@Q)=m%v;n,+mT,5;n, .

Now we substitute all of this into the general collision equation (3) and obtain the explicit expressions for the terms of
Eq. (6):

Co=8(p —p")(1+cos’B)F,(x,p,p’) ,

C,= 5%,—8(p—p’) (1+cos’B)v-(p—p’)—8(p —p")2 cosB(1—cosB) _V_pP__;_LpI,’_ F(x,p,p"),
cwzé apz,za(p—pﬂ (1+cosB)[v-(p—p') °F, (x,p,p’)
- 5}—,8(17—17') 2 cosB(1—cosB) —R+—& (p—p)F,(x,p,p’)
+8(p —p’){—(I—ZCosB+3coszﬁ)v2+Zcos/3(1~cosB)i£P#ﬂ
+(1—cosB)(1—3 cosB) %R+11% 2 Fiixpp), (B4)

)2
(1+COSzﬁ)'(‘%nE_‘)‘F2(X,pyp’) s

) ,
Coym="— Igp—,ﬁ(p —p')

AV
(1+acos23)19—2*i— %5([)—[)') 2 cosBl1—cos?B)(p —p)

e

3?2 )
Cr /m= 8(p —p’
T,/ ap” p—p

T,
+&(p —p’)[4cos3ﬁ—9cos25—1] —m—Fl(x,p,p’) ,

and the higher-order terms,
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Cop/m= [aa,za(p~p) (1+cos?B)(p— p)z——P—p——Fz(x p,p)
5%75(17—17’) |2cosB(1-—coszﬂ)(p—p')v—.(Pm;P—)Fg(x,p,p')

+cosB(1—cosB)(p—p')?

vp VP
mp

’

Fz(x,P,P')]

+8(p —p') l—t(—pm;pl[2(l~2 cosB+3cos2B)F3(x,p,p’)—(1+c052B)F1(x,p,p’)]

—2cosp(1—cosB) [—E——COSB L—cosﬁ F;(x,p,p’) },
(B5)
C(p/"ﬂz: {aa 50p—p") (1+coszﬁ)—E—L) ——F‘(x p,p’ ) +F5(x,p,p")
{aa,S(p —p’) [2cosB(1—cos?B)(p —p )*P——-p—)—F;(x p,p’)
2
+8(p —p')[ (1—cosB)? | Fy(x,p,p ')+(1+coszﬁ)—p——p——F2(x p.p)
-2 cosB(l—cosB)(}-P,COSB)(};,—P cosB)F3(x,p,p’)
2
—[1—2cosB+3cos’B1 BB F (x,p,p")
m
where we have written
F(x,p,p)=f(x,p')—f(x,p)
Fy(x,p,p")=f(x,p)+2f (x,p)f (x,p") + f(x,p"), (B6)

Fy(x,p,p")=f (x,p )1+ f(x,p)]

for compactness.
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