
PHYSICAL REVIEW D VOLUME 49, NUMBER 12 15 JUNE 1994

Multiple field scalar-tensor theories of gravity and cosmology
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We consider multiple scalar fields coupled to gravity, with special attention given to two-field theories.
First, the conditions necessary for these theories to exactly meet solar system tests are given. We find, in
particular, that these constraints require that some scalar kinetic terms be non-positive-definite. Next,
we investigate the cosmological evolution of the fields to see if these conditions can be met. Solutions are
found in the dust era, as well as radiation- and cosmological-constant-dominated epochs. The possibility
of inflation in these theories is discussed. While power law growth of the scalar fields can yield the ap-
propriate conditions to meet solar system constraints, these solutions are unstable.

PACS number{s): 98.80.Es, 04.50.+h, 04.80.Cc, 9S.30.Sf

I. INTRODUCTION

Scalar-tensor (ST) theories are alternative models of
gravity which provide a theoretical framework within
which general relativity (GR) may be tested. Many im-
portant tests so far have used the post-Newtonian ap-
proximation, and have relied upon corrections to dynam-
ics in the solar system. Such tests force ST theories to
limits where they greatly resemble GR. For example, the
current limit on Brans-Dicke theories [1] requires co ) 500
[2], where co~ ao recovers GR and co= 1 would be a nat-
ural value to expect a priori.

However, despite the strong resemblance to GR in our
solar system, gravity may be radically different in other
regimes. The gravitational field in our solar system is
weak, severely limiting the parameter space of gravity
tested. Theories which differ from GR in strong gravita-
tional fields, but agree with solar system constraints, are
needed to further test GR. Recently, a class of ST
theories with multiple scalar fields has been proposed [3].
These theories can satisfy the solar system criteria to ar-
bitrary accuracy, but still diverge from GR in other lim-
its, for example, in the strong field regime around binary
pulsars. Thus, such theories provide an important test of
GR in a previously sparsely tested regime.

Aside from their importance as generalizations of stan-
dard ST theories, multiple scalar field theories have a
second motivation. Such additional scalars coupled to
gravity appear in Kaluza-Klein [4] and string theories [5]
which seek to unify gravity with other forces. Tests of
the correctness of GR thus provide constraints on such
theories. Furthermore, ST theories combined with grand
unified theories can provide adjustments to inflationar
models of the early Universe [6] which allow the phase
transition to complete in old inflation [7] and remove the
fine-tuning of new and chaotic models [8]. The
inflationary Universe not only solves several long-
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standing cosmological problems, but also provides the
only currently known source of seed density fluctuations
which obey the magnitude and spectrum of the mi-
crowave background found by the Cosmic Background
Explorer (COBE) [9]. While these "extended" versions of
old inflation are severely constrained by the solar system
tests [10],multiple ST models may offer successful condi-
tions for inflation which still obey all observational tests.
Thus, we seek the viability of inflation in multiple field
models where the solar system constraints may be avoid-
ed.

In this paper we consider a particular set of multiple
scalar ST theories which are a straightforward generali-
zation of nonminimally coupled models. The one-field
nonminimally coupled model is related to the Jordan-
Brans-Dicke (JBD) theory by a redefinition of the scalar
field. Our starting action is thus different from those
used previously [3], where the action was taken after a
conformal transformation had been made so that the
gravity sector appeared normal. We initially consider a
model with an arbitrary number X of scalar fields, and
derive the conditions necessary to meet the solar system
constraints. Two constraints result from these condi-
tions. First, the scalar field kinetic terms must be non-
positive-definite. Second, the scalars must take on the
correct asymptotic values far from the solar system. Pre-
vious work used the ansatz that these values were con-
stants which satisfy all the equations. However, the actu-
al values of these fields should be set by their cosmologi-
cal evolution.

In order to study their cosmological evolution we first
find a generic set of solutions which exhibit power-law
behavior, and give exact solutions in the dust-, radiation-,
and cosmological-constant-dominated eras. Next, we
specialize to a two-field model, which elucidates the main
features of the behavior. The stability of these solutions
in time is then examined, and small deviations are found
to diverge from the exact power law behavior as the
Universe expands. Hence, while solutions of multiple
field ST theories are possible which meet the solar system
constraints and field equations for cosmological evolu-
tion, they are unstable. This is not surprising, given the
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II. N FIELD MODELS

We begin by considering the action

~ =fd'&& g—[f(0)R G~—ag 0~,A'a, p

—2U($}+16nL]., (2.1)

where P is an N component scalar field whose individual
components will be denoted with capital Roman letters,
U is a potential, G„z describes the kinetic coupling of the
fields, L is the Lagrangian for other matter and summa-
tion over A and B is implied. The scalar field enters the
Lagrangian with metric coupling to matter. By an ap-
propriate linear transformation and rescaling of the P,
G„z may be taken to be diagonal with entries of +1 for
each scalar field. All other conventions are identical to
those of Misner, Thorne, and Wheeler [11].
f (P)=6 —= 1/~, where G is Newton's constant, recovers
GR with scalar fields, while f(P) =gP with P a singlet is
the standard nonminimally coupled model. Making the
field redefinition 4=gP for singlet P places the action
into standard Brans-Dicke form.

Varying this action with respect to the metric gives the
gravitational field equations

need for negative kinetic terms. This finding calls into
question the ability of these models to provide a true test
of GR. We close with comments on the possibilities of
success of these theories and their potential role in
inflation.

Df = ,'G—„a—f„faR+ U„faG„a . (2.7)

The matter source for the solar system bodies will be
taken to be pressureless dust, with delta function stress-
energy terms. Making use of the representation of the
delta function by V (1/r), we therefore write

'I

T = — 7, T"=0, T= 7
4m. r ' 'J '

4m r

(2.8)

Again, to lowest order, the necessary curvature com-
ponents are

1 2 p Mg — +2g — p2
00 2 00

R =2(1—2y)V
M
T

(2.9)

The (00) equation then implies

Viking lander give co )500 [2].
We will use the (00) and trace equations to determine

the expression for y in the theory of Eq. (2.1). Note that

&f=g'(f~aP~, Aa p+f~0~;.p)=f~&4.
To obtain this last approximation we removed the first
term by using the fact that VP=O(M) and keeping only
lowest order in M. Then, making use of Eq. (2.4) we find

g»( fR +Gulag
—Pa, Pa p+2U) f „„+g„—„Qf.

+fR„„G„agq„Pa—„=8m T„„, (2.2)

(f +f~6—rafa)(1 21'}V' — +fV'

with T„ the energy-momentum tensor corresponding to
L . The trace of this equation is

+ U+ Uq Gq~ fa =2V
T

(2.10)

fR +Gulag
—

Pq ~Pa p+4U+3 f=8m T . (2.3)

Varying with respect to P gives the scalar field equations

where 6 is Newton's constant. If we take the case U =0,
which we will consider throughout the rest of this paper
and define

fqR +26qaOpa 2Uq =0—, (2.4)
C=f~G„afa,

then we find

(2.11)

with a subscript A referring to the partial derivative
8/BP„. In order to be viable, metric theories such as
these must satisfy the solar system experimental con-
straints. Of these, we concentrate in the next section on
the effects arising from first-order space curvature
[parametrized post-Newtonian (PPN) parameter y ].

C —2y(f+C)= —26 .

Similarly, the trace equation yields

(2f+3C)(1—2y)= —26 .

Combining these two equations then gives

(2.12)

(2.13)

A. Solar system constraints

To lowest order in the post-Newtonian approximation,
the metric around a test body of mass M in the solar sys-
tem is [11]

ds2= — 1 — dr~+ I+2y [dx +dy +dz ],2M M
P

(2.5)

where @=1 recovers the value in GR. In the JBD
theory, y=(1+co}/(2+co} and current tests from the

f+C
f +2C (2.14)

This theory will be identical to GR for solar system tests
if y = 1, which then implies

C =f~ G~afa =0 . — (2.15)

As long as the coupling satisfies this last relationship,
multiple ST theories can exactly replicate GR in the solar
system without being identical to GR. However, theories
which satisfy (2.15} may still be quite difFerent in other
gravitational regimes. This behavior is in contrast with
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B. Cosmological evolution

For cosmology we use a spatially flat Robertson-
Walker universe, with metric given by

ds = dt +a (t)—(dx +dy +dz ), (2. 16)

where a(t) is the time-dependent scale factor. From the
(00) component of the gravitational field equations (2.2)
we get

single field ST gravity, where the solar system constraints
force the entire theory to be indistinguishable from GR.

Of course, y need not be exactly unity, but need only
satisfy the current experimental limits. Indeed, nature
may dictate that y is not 1 but only some value close to 1,
in which case GR would fail. If this should be the case,
both single and multiple ST theories could meet the new
constraint with a C that is a small but nonzero value,
while higher order effects would cause a larger discrepan-
cy with GR in other regimes.

Whether the condition of Eq. (2.15) can be met de-
pends on the values of the scalar fields. Because G~~
may be diagonalized and rescaled, the vanishing of C im-
plies either the f„are all 0 in the solar system, or that
some of the scalars have negative kinetic coupling. Also,
if C =0, then Eqs. (2.12) and (2.13) demand that f be
equal to the gravitational constant, setting another condi-
tion. For a large number of models, including the one
here, setting the background value of the fields to zero
certainly meets these conditions. In many other models,
such as that of [3], values constant in time will suSce.
However, these values are actually determined by the
cosmological evolution of P, to which we next turn our
at tention.

f~ 0~ = —,'f—~G~sfaR =0 (2.21)

f (0)=f, +Foal'~Pa (2.22)

with f, and F„ti constant. This model is a straightfor-
ward generalization of the standard one-field nonminimal
coupling. There are no added dimensional coupling con-
stants. Only f„which corresponds to a modified gravita-
tional constant, has dimensions.

Because these equations are nonlinear, general solu-
tions will be difficult, if not impossible, to obtain. We
therefore look for power-law solutions, by making the an-
satz

t
'

a(t)=a
C

C

r

C

(2.23)

where a„ t„b„,p, and q are all constants. Although this
power-law assumption restricts the generality of our solu-
tions, the problem does become tractable. The depen-
dence of the solar system constraints upon cosmological
evolution is manifested, a feature missing from just a con-
stant P solution. For GR we know that the cosmological
expansion is power law, with p being —', and —,

' in the dust
and radiation regimes, respectively. Thus, physically, our
solutions allow easy comparison with the standard
cosmological behavior.

With the above simplifications, Eq. (2.21) gives

a rather strong constraint on the behavior of the scalar
fields in a dust Universe. The limits imposed by the null
summation (2.21) will be more obvious when we consider
a two-field case in the next section.

To better understand this constraint we consider par-
ticular choices for f ( P ) of the form

3H'f 2G~t 0~ 4a—+3Hf U=8~p, — (2.17)
2q 2

F&sb.bs, (q' q+3pq—)=0
)2q

(2.24)

,'G„tiftiR + UtiG—„~'=0,

with the Ricci scalar given by

R =6K+ 12H2.

(2.19)

(2.20)

One equation of the set (2.17)—(2.19) is extraneous due to
the symmetries of the spacetime and the contracted Bian-
chi identities.

1. Dust era

where H—:a/a is the Hubble parameter, p is the energy
density, and an overdot indicates differentiation with
respect to time. The trace equation gives

f (6H+12H )+G„~)„hatt 4U+3f+—9Hf
= Sn(p 3P), .(2.—18)

where P is the pressure of matter, which is assumed to be
a perfect fiuid. Finally, the scalar field equations (2.4)
yield

f, +Fd
2q

q Gd

2t

This equation is solved either by q =0, q =1—3p, or
F„ttb„btt =0. The last condition causes f to be constant:

f=f, =G. The gravitational constant does not evolve.
The first condition, q =0, corresponds to constant fields,
while the middle condition relates the evolution of the
fields to that of the scale factor.

We now examine the scalar field equations (2.19) which
imply

b„(q q+3pq)=G„~F—ticbc( —6p+12p ) . (2.25)

If q equals either 0 or 1 —3p, then the left-hand side must
be 0, giving p =0 or p =

—,'. The first case corresponds to
a static Universe, in conflict with observation, and wi11 be
ignored. We thus retain only p =

—,'.
Next consider the (00) equation, which for power-law

behavior becomes

In the current dust-dominated universe, with U =0,
the constraint for the solar system (2.15) must be
satisfied Contracti. ng Eq. (2.19) with f„gives

6pqI'd t 8~pd t+
t t, a

3p
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with the definitions

d AB~A ~B~ Gd GABb A bB (2.27)

8mp, t
4

(2.33}

in the dust era. As noted from Eq. (2.25), if q =0 or
q =1—3p, then p =

—,'. However, plugging these values
into Eq. (2.26) shows that the (00) equation cannot be
solved, because the powers of time will not balance.
Therefore, of the three possible solutions to Eq. (2.24),
only the last one, Fd =0, has the possibility of being con-
sistent with both an expanding universe and the other
field equations.

Now, Eq. (2.25) implies that

If q =0, then the fields do not evolve, and

Sap„—+F„
4 K' a r

(2.34)

This is similar to the Einstein GR case, except that the
gravitational constant is shifted by F, .

When q
= 3F„—/(G„+ 12F„),the (00) equation that re-

sults is solved by any one of three conditions. These are

—6p + 12p

q
—

q +3pq
(2.28}

F„=O~q =0,
G„=O q = —

—,', (2.35)

Using the fact that both Fz and Gz are zero, the (00)
equation simplifies to

S~Pd ', ' '&

(2.29)
a,

3p
K2t 2

2. Radiation era

For a radiation-dominated Universe the energy density
is given by

identical with the GR case. Thus, because of the cancel-
lation necessary to meet the solar system constraint
(2.15), the dust-dominated Universe with power-law ex-
pansion resembles GR in all cosmological aspects. How-
ever, this does not mean that other cosmologies, such as a
radiation-dominated Universe, necessarily resemble GR,
as we shall see below.

8mp,r

4K Q„
(2.36)

which is exactly the same as in GR. All of the above
solutions also satisfy the scalar field equation.

Much as with the dust case, these solutions strongly
resemble GR, due to cancellations of the scalar field
terms. If the scalars are constant during the radiation
era, the gravitational constant may be shifted. This may
have observable consequences on nucleosynthesis, for ex-
ample. Deviations from exact Robertson-%alker
behavior, caused by primordial black holes or density
fluctuations, could also lead to regimes where the scalar
fields play a more dynamic role.

G = —6F ~q= ——'.
r r 2

This first case just reproduces the q =0 case above. The
latter two conditions cause cancellations such that

p(t) =p„a (t), (2.30) 3. Cosmological constant era

with p„a constant, and P=p/3. Since the current
Universe is not radiation dominated, the solar system
constraint, Eq. (2.15), need not apply. Because the stress
energy tensor for radiation is traceless, the trace equation

—6p+12p q G t
2q—+F

J

6q (2q —1)F„ t 18pqF„+ +
2 2

=0

(2.31)

is most convenient to consider first. Here t, is a constant,
and F„and G„correspond to the quantities (2.27) in the
radiation era.

Balancing the powers of time then requires that p =
—,',

exactly as in the standard GR case. With this value, the
first term in Eq. (2.31) vanishes, and the resulting time in-
dependent part is solved by

—3F„q=0 or q=
6,+12F„ (2.32)

We then plug this result into the (00) equation, which is
identical with equation (2.26) except with a right-hand
side

p=po=const, P = —
p . (2.37)

Such a situation arises, for example, in the inflationary
Universe [6], where po is the energy density of a scalar
field either trapped in a false minimuin or slowly rolling
down a potential. The (00) equation again is similar to
(2.26), except that the matter side is now given by 8mpo,
and Fd and Gd are replaced with the appropriate Fo and

Go in this regime. Examining the powers of time, there
are three, namely, —2, 2q —2, and 0. Unlike the previ-
ous matter conditions, where the right-hand side had p
dependence, these three powers cannot in general be
matched. ' However, we may find approximate solutions

~There is one exception. An exact solution can be found if the
terms of power 2q —2 in the {00)equation cancel. In this case,
Eq. (2.38) is again valid, and exponential solutions for the scale
factor a (t) and the P are found. By using the (00) and P equa-
tions, these conditions can all consistently be met if Go = —4FO

and q =0{—3+&3)/2. However, this exact solution is really a
special case of our first approximation, {2.38)—{2.41) when the
terms ignored exactly cancel.

When the Universe is dominated by a cosmological
constant, the matter is given by
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to the general case by assuming that one of the two terms
dominates gravity.

If the fields are small, then the gravitationa1 constant
may dominate the field contribution, I/~ &&F„tie„hatt.
Neglecting terms involving the P then gives the standard
GR equation

3a'= 8~~'p, ,

which is solved by
' 1/2

(2.38)

8 2a (t) =ao exp na—po. (t t, )— (2.39)

This exponential growth corresponds to an inflationary
Universe. The scalar field equations give

6H F„ttgtt —G„tt(gtt+3Hptt ) —0 . (2.40)

—3HGO++9H G +24H FoGo

2Go

(2.41)

as a solution. Thus, for the small field approximation,
the P may grow, decay, or oscillate.

If the P are large compared to the gravitational con-
stant, then a power-law ansatz for the growth of the scale
factor and fields gives for the (00) equation

Contracting with P„and solving the resulting equation
gives

y„=h~e'" ",

[13] type, then this solution is a generalization of the soft
inflationary scenario [8]. In soft inflation, modifications
of Einstein gravity can remove the fine-tuning of poten-
tial parameters found in regular gravity. The same situa-
tion can arise here, with the added advantage of avoiding
the solar system constraints.

More interesting is if the potential is of the old
inflation [14] type, giving rise to a first-order phase transi-
tion. Simple nonrninimal coupling allows the phase tran-
sition to complete [7]. However, to avoid an overproduc-
tion of big bubbles of true phase, which would produce
an excess of microwave background anisotropy, requires
parameters which violate the solar system constraint.
Our theory can avoid this problem, and can do it with pa-
rameters which exactly reproduce GR in the solar system
regime. Unfortunately, as shown in the next section, the
models which reproduce GR are unstable in the dust era.

III. T%0 FIELD CASE

Studying the N field case has the advantage not only of
being general, but also of allowing compact notation.
However, the interrelationship of parameters in these
models can become obscured. We next consider the
simpler case of a two field model to better elucidate such
features, which include some stability problems. The ac-
tion for two fields, in analogy with Eq. (2.1), is

S= dx —g, R ——V

2

3p'F — G +6pqF t' '=8' t q . (2.42)

(P'P) +16' ],

f(P, g)= —+h, P +h, g'+h, Pg .

(3.1)

(3.2)

Equating powers of time demands q =1, so the fields
grow linearly, and remain dominant over the GR term.
Combining the field equations with the time-independent
part of the (00) equation gives two possibilities:

p =0 Go = —16mpoto
(2.43)

1 Go 15 7 3 Gop= —+ ~ F +—6+ =8npt
2 4F 4 4 16 F

The first case gives a static Universe, while the second
has the power of expansion depending on the parameters
of the theory. For p ) 1, the second could give rise to ex-
tended type inflation [7] if the phase transition is first or-
der, or soft inflation [8] if the potential is slowly rolling of
either the new- or chaotic-type.

An exact solution can be found if the terms of power
2q —2 in the (00) equation cancel. In this case, Eq. (2.38)
is again valid, and exponential solutions for the scale fac-
tor a(t) and the P are found. By using the (00) and P
equations, these conditions can all consistently be met if
Go= 4FO and q =H( ——3+&3)/2. In fact, this exact
solution is really a special case of our first approximation,
when the terms ignored exactly cancel.

In the inflationary scenario, the potential of a scalar
field acts as an efFective cosmological constant to drive
the expansion. For Go&2FO, Eq. (2.43) gives power-law
inflation. If the potential is of the new [12] or chaotic

g(h p+32h, p) +co(h3$+2h2$) =0 . (3.4)

Therefore, co and g must be opposite signs. We choose co

to be positive. Furthermore, by rescaling the fields in the
original action, these kinetic constants may be chosen to
be m=1, q= —1, without any loss of generality. Thus,
one important fact clearly shown in the two field case is
that multiple scalar tensor theories must have negative
kinetic terms if they are to agree with post-Newtonian
tests of general relativity.

From the relation (3.4) one can also see the interplay
between the kinetic terms co and g, the coupling to gravi-
ty through the h,-, and the values of the fields themselves.
Again, the asymptotic values of these fields are deter-
mined by cosmology, and specifically, by their evolution
in the present dust era. We now study that evolution to
derive further constraints on the parameters of the

A derivative cross term could also exist, but a proper ro-
tation of the fields will eliminate this term, so we set it to
0 without loss of generality.

The solar system constraint, Eq. (2.15), now becomes

(h 3co+4h, g)P +4h3(h, g+h2co)gg

+(h, rt+4h2co)g =0, (3.3)

which may be rewritten as
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theory.
In a Robertson-Walker universe, the field equations be-

come

1s

q =
—,
'

I
—1+[1—

—,'(h —h, )]' (3.12)

(2h, g+h3$)(3H+6H ) (P—+3HQ) =0,
(2h z/+ h 3$)(3H+6H )+(g+3HQ) =0 .

(3.5)

Again, we make the assumption of power-Iaw behavior:

The solutions for two fields in radiation and cosmological
constant dominated universes also proceed in analogous
fashion, and are easily obtainable from the more general
N field case by substituting the appropriate expressions
for Fand G.t'

a (t) =a —,P=b
t

C

P=c
t~

t
'

tc
(3.6} IV. STABILITY ANALYSIS

The field equations (3.5} then combine to give

—2(h, +hz }bc

b2+c2 (3.7)

Substituting this relationship back into the solar system
constraint (3.4) implies

b =+c,
which also yields the relationship between the h, :

h3= T(h, +hz)

(3.8)

(3.9)

These conditions also mandate that f =1/a. in the
dust era, as noted earlier for N fields. The (00} and trace
equations for the two field case become

3H f +3Hf ,'(P g)—=—8np—, (3.10)

(6H+ 12Hz)f+3f+9Hf +P i' = 8m(p —3P), —

(3.11)

respectively. As in the N field case, power-law solutions
exist. In dust, the Universe will expand with power —, just
as in GR, and the same relation for the energy density,
(2.29), still holds. The power q at which the fields evolve

While the above solutions are exact, a crucial aspect of
the system's behavior is whether these solutions are
stable. Only exceptionally fine-tuned solutions will start
with exactly the initial conditions to fit the form of the
above solutions. Further, any slight physical fiuctuation
can move the system away from the exact solutions, and
the solar system constraints will be violated. Only solu-
tions which return to the exact behavior when deviating
slightly will likely satisfy the observable tests of these
theories. We therefore examine the evolution of initially
small perturbations about our power-law solutions for the
two field case in the current dust universe.

We start by writing the dust solutions for the case
b =c, h, = —(h, +hz) as

' 2/3

a (t}=ao — [1+a,(t)],t

L

P(t) =b —[1+ez(t) ], (4.1)
0

1(i(t)=c —[1+e3(t)],t

0

where e; « 1 and q is given by Eq. (3.12) above. The sca-
lar field equations then become

4h) 2(h, +hz) e3—
q (q + 1} ——2(q + 1}——iz — —+ [8(h i

—hz }—3q]—+3(h i
—hz }f'&=0, (4.2)

4hz e, i~ 2(h, +hz) ez—
q (q + 1) ——2(q + 1)—f3+ — —z+ [8(h i

—h z ) —3q]—+3(h, —h z )ii =0, (4.3)

while the trace and (00) equations give
r

12qz+6q+ —(h, —hz)+2q +[6(2q+1)(h, —hz}+2q]

+3(h —h )(E e' )+—1~22K p

4E) 16E(+ — +6E) =0,
t2 t

(4.4)

t

(6q +7q +2q) +(3q +2q)(e i)+—3 2 E2 E3 2

bK tp

2q 4
+4E) =0 .

t (4.5)

First consider the case of GR, with /=/=0. The trace equation then gives

2 8.—2E)+ E)+3E) =0 . (4.6)
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This equation is solved by

(4.7)

with A, and A2 constant. The perturbation to the scale
factor decays in time, and hence GR is stable, as expect-
ed.

Now, consider the perturbations of the scalar fields.
Subtracting one scalar field equation from the other gives

2
e23+ —(q +1)e23=0, (4.8)

where @23—e2
—

e3 and Eq (3..12) was used to remove the
E23 term. This equation is solved by

+Q 1 —(8/3)( h
2
—h ) )

@23=8 lnt, q = —
—,', (4.9)

with B a constant. For the q = —
—,
' case the perturbation

grows logarithmically, and the scalar fields are unstable.
When qX —

—,
' there are two roots, one of which grows in

time with positive power. In general, the scalar fields will
pick up a combination of these two roots, with
coeScients depending on initial conditions in the dust
era. Thus, the perturbation @23 will generally have a com-
ponent which grows in time, and hence the scalar fields
are unstable.

That the solutions are unstable is not a surprise, for
one of the fields has a negative kinetic term. Such kinetic
terms cause instability by allowing for infinitely many
negative energy states when the system is quantized.
They also can lead to the classical instability observed
here. In addition, our power-law solutions include the
case where the fields are zero far from the solar system,
so that these values too will be unstable to perturbations
as the Universe evolves. Hence, while multiple ST
theories can satisfy the solar system constraints, the re-
quisite values will be unstable, and hence are unlikely to
actually occur.

There are possible modifications to evade this instabili-
ty. One of the motivations for multiple ST theories is
that they arise in string theories and other models which
attempt to incorporate gravity with the other forces. The
action used here may be just an approximation of the full
theory, whose other terms stabilize the evolution. Or, on
a classical level, a mass or potential term for the scalars
could freeze the P at some minimum, thus preventing the
runaway growth of small perturbations. Any such
modification mould have to be examined in more detail to
see if stability arises. However, given the problems asso-
ciated with negative kinetic terms, multiple ST theories
that are consistent with GR in the weak-field limit seem
to be unstable.

V. CONCLUSION

Multiple scalar ST theories offer the possibility of pro-
viding a new theoretical framework in which to test GR.
Because such theories can mimic GR in the solar system,
where regular BD theories are severely limited, but yield
substantially different results in other regimes, they are
especially valuable. Our results complement previous
work [3], which used values constant in time for the sca-
lar field far from massive compact objects. The authors
of this previous work also note the need for negative
kinetic terms, and point out the potential for problems
with quantum and stellar stability. We have found still
another problem. In theories like this, with negative
kinetic energy terms, the cosmological solutions which
meet the solar system constraints are unstable as they
evolve in time, and thus cannot be maintained.

Our time evolving solutions for the scalars are con-
sistent with both solar systein tests of GR and the cosmo-
logical field equations. If these solutions can be stabilized
by some means such as an explicit potential term or a
more complete theory of gravity, then they will be a use-
ful probe of GR. However, without such stabilization,
the only way to make these theories agree with GR in the
solar system is to choose constants that make the theory
approximate GR not only in the post-Newtonian approx-
imation, but also in other regimes. This situation is in
analogy with the single scalar JBD theory, and going to
multiple scalars would have no advantage.

Finally, we note that our solution in the cosmological
constant dominated regime exhibits power-law growth
when the fields dominate, as seen in Eq. (2.43). For
power greater than 1, this yields inflation. The extended
inflation scenario [7] used the JBD theory to create
power-law inflation, in which case the first order phase
driving inflation would eventually complete, in contrast
with the GR case. However, the JBD theory was inade-
quate, because values of the JBD constant which met the
solar system constraint produced too many big bubbles,
and thus an inhomogeneous Universe [10]. One might
hope to use multiple scalar ST theories to give both
power-law inflation as well as meeting both the solar sys-
tem constraint and the big bubble constraint. However,
this scenario will not likely occur, as the dust values of
the fields are unstable. Should a stabilizing mechanism
be found, then further investigation of the inflationary
scenario in these models would be warranted.
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