
PHYSICAL REVIEW D VOLUME 49, NUMBER 12 15 JUNE 1994

False vacuum inHation with Einstein gravity

Edmund J. Copeland and Andrew R. Liddle
School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 gQH, United Kingdom

David H. Lyth
School of Physics and Materials, Lancaster University, Lancaster LA1 g YB, United Kingdom

Ewan D. Stewart
Department of Physics, Kyoto University, Kyoto 606, Japan

David Wands
School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom

(Received 10 January 1994)

We present a detailed investigation of chaotic inflation models which feature two scalar fields
such that one field (the infiaton) rolls while the other is trapped in a false vacuum state Th.e false
vacuum becomes unstable when the magnitude of the inflaton field falls below some critical value,
and a first- or second-order transition to the true vacuum ensues. Particular attention is paid to
the case termed "hybrid inflation" by Linde, where the false vacuum energy density dominates so
that the phase transition signals the end of inflation. We focus mostly on the case of a second-order
transition, but treat also the first-order case and discuss bubble production in that context for the
first time. False-vacuum-dominated inflation is dramatically dift'erent from the usual true vacuum
case, both in its cosmology and in its relation to particle physics. The spectral index of the adiabatic
density perturbation originating during inflation can be indistinguishable from 1, or it can be up to
ten percent or so higher. The energy scale at the end of inflation can be many orders of magnitude
less than the value 10 GeV, which is usual in the true vacuum case. Reheating occurs promptly
at the end of inflation. Cosmic strings or other topological defects are almost inevitably produced
at the end of inflation, and if the inflationary energy scale is near its upper limit they contribute
significantly to large scale structure formation and the cosmic microwave background anisotropy.
Turning to particle physics, false vacuum inflation occurs with the inflaton field far below the
Planck scale and is therefore somewhat easier to implement in the context of supergravity than
true vacuum chaotic inflation. The smallness of the inflaton mass compared with the inflationary
Hubble parameter still presents a difFiculty for generic supergravity theories. Remarkably, however,
the difBculty can be avoided in a natural way for a class of supergravity models that follow from
orbifold compactification of superstrings. This opens up the prospect of a truly realistic superstring-
derived theory of inflation. One possibility, which we show to be viable at least in the context of
global supersymmetry, is that the Peccei-Quinn symmetry is responsible for the false vacuum.

PACS number(s): 98.80.Cq, 04.50.+h

I. INTRODUCTION

An attractive proposal concerning the first moments
of the observable Universe is that of chaotic infiation [lj.
At some initial epoch, presumably the Planck scale, the
various scalar fields existing in nature are roughly homo-
geneous and dominate the energy density. Their initial
values are random, subject to the constraint that the en-

ergy density is at the Planck scale. Among them is the
inflaton field P, which is distinguished from the nonin-
Haton fields by the fact that the potential is relatively
flat in its direction. Before the inflaton field g has had
time to change much, the noninBaton fields quickly settle
down to their minimum at fixed P, after which infiation
occurs as P rolls slowly down the potential.

Two possibilities exist concerning the minimum into
which the noninBaton fields fall. The simplest possi-
bility is that it corresponds to the true vacuum; that
is, the noninHaton fields have the same values as in the

present Universe. InHation then ends when the inHaton
field starts to execute decaying oscillations around its
own vacuum value, and the hot big bang ("reheating")
ensues when the vacuum value has been achieved and
the decay products have thermalized. This is the usually
considered case, which has been widely explored. The
other possibility is that the minimum corresponds to a
false vacuum, with nonzero energy density. This case
may be called false vacuum inflation, and is the subject,
of the present paper.

There are two fundamentally different kinds of false
vacuum inflation, according to whether the energy den-
sity is dominated by the false vacuum energy density or
by the potential energy of the infiaton field. (For simplic-
ity we discount for the moment the intermediate possibil-
ity that the two contributions are comparable, though it
will be dealt with in the body of the paper. ) In all cases
the false vacuum exists only when the value of the infla-
ton field is above some critical value. If the false vacuum
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energy dominates, a phase transition occurs promptly
when the inflaton Geld falls below the critical value, caus-
ing the end of inflation and prompt reheating. The result
is a new model of inflation which is dramatically differ-
ent from the usual one, and at least as attractive. It
was first studied by I inde who termed it "hybrid infla-
tion, " and it is the main focus of the present paper. The
phase transition may be of either Grst or second order.
A first-order model of false-vacuum-dominated inflation
has been considered by Linde [2] and (with minor dif-
ferences but more thoroughly) by Adams and Freese [3].
A second-order model has been discussed by Linde [4,5]
and explored in a preliminary way by Liddle and Lyth [6]
and by Mollerach, Matarrese, and Lucchin [7]. As far as
we know, these are the only references in the literature to
false-vacuum-dominated inflation with Einstein gravity.
Related models have been considered at some length in
the context of extended gravity theories [8—10]; although
such theories can be recast as Einstein gravity theories
by a conformal transformation, the resulting potentials
are of a different type and this case is excluded from the
present paper.

The opposite case where the false vacuum energy is
negligible (inHaton domination) is indistiguishable from
the true vacuum case for couplings of order unity, though
a variety of exotic effects can occur for small couplings.
This case has been studied by several authors [11—19],
and in the present paper it is treated fairly briefly.

Prom the viewpoint of cosmology, false-vacuum-
dominated inflation differs from the usual true vacuum
case in three important respects.

(1) The spectral index n of the adiabatic density per-
turbation is typically very close to the scale invariant
value 1, and is in any case greater than 1. This is in
contrast with other working models of inflation, where
one typically finds n & 1, viable models covering a range
&om perhaps n 0.7 up to n 1 [6]. We shall, however,
note that the extent to which n can exceed unity is quite
limited, contrary to the claim in Ref. [7].

(2) Topological defects generally form at the end of in-
flation, in accordance with the homotopy groups of the
breaking of the false vacuum to degenerate states, pro-
vided that these groups exist. The defects may be of any
type (domain walls, gauge or global strings, gauge or
global monopoles, textures or nontopological textures).

(3) The energy scale at the end of inflation can be
far below the value 10 GeV which is usual in true
vacuum inflation. On the other hand, reheating occurs
promptly at the end of inflation so that the reheat tem-
perature T~ is of order the inflationary energy scale,
again in contrast with the true vacuum case. The well
known bound T~ & 10ii GeV following from the exis-
tence of a gravitino with standard properties [20] would
therefore require inflation to end below this scale, unless
the gravitinos are diluted later by a decaying particle
dumping entropy.

We are indebted to Subir Sarkar for valuable correspon-
dence about the gravitino problem.

False-vacuum-dominated in6ation is also very different
from the true vacuum case from the viewpoint of particle
physics. Sticking to the chaotic inflation scenario already
described, let us consider as a specific example the infla-
tionary potential

V(P) = Vo+ 2m Q + 4AQ

where Vo is the false vacuum energy density. Consider
first the true vacuum case, where Vo vanishes. Inflation
occurs while P rolls slowly towards zero, and it ends when

P begins to oscillate, which occurs when P is of order
the Planck mass. In order to have sufBciently small cos-
mic microwave background (CMB) anisotropy, one needs
m & 10 GeV and A + 10,with one or conceivably
both of these limits saturated if inflation is to actually
generate the observed anisotropy (and a primeval density
perturbation leading to structure formation). To achieve
the small A in a natural way one should invoke supersym-
metry. As long as one sticks to global supersymmetry this
presents no problem, but there are sound particle physics
reasons for invoking instead local supersymmetry, which
is termed supergravity because it automatically includes
gravity. In the context of supergravity, the fact that P is
of order the Planck mass during inflation is problemati-
cal, because in this regime it is difBcult to arrange for a
sufBciently flat potential.

As will become clear, things are very different in the
false vacuum case. One still needs to have A very small,
and will still therefore wish to implement inflation in
the context of supergravity. But now P is far below the
Planck scale during inHation (after the observable Uni-

verse leaves the horizon which is the cosmologically in-

teresting era). As a result it becomes easier to construct
a viable model of inflation, though the smallness of m in
relation to the inflationary Hubble scale H still presents
a severe problem for generic supergravity theories. Re-
markably, though, it turns out that among the class of
supergravity models emerging from orbifold compactifi-
cations of superstring theory, one can find a large subset
for which this problem disappears. As a toy model, we

will see how things work out with a specific choice for the
perturbative part of the superpotential.

Another crucial difference concerns the mass m. The
CMB anisotropy now determines not m, but a relation
between m and M which is very roughly M/10i2 GeV
(m/1 TeV) ~ . By making m very low one can make M
and therefore the inflationary energy scale very low. It
is usually assumed that the lowest reasonable scale for
the mass of a scalar field in our vacuum is m 100 GeV,
because this is the soft supersymmetry-breaking scale.
However, it is not clear that this constraint should also be
applied to scalar fields during inflation which corresponds
to a different vacuum state.

In the superstring motivated models, we find that a
high value of m probably obtains if the slope of the in-
flationary potential is dominated by one-loop corrections
coming from the Green-Schwarz mechanism, whereas a
low value can occur if these corrections are negligible.
In the former case the spectral index n of the primeval
curvature perturbation is typically around 1.05, the pre-
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cise value being determined by the orbifold. A measured
value in this range might therefore provide a window onto
superstring physics.

A different possibility is that P acquires its mass dur-
ing inflation in the same way and at the same scale
(m 100 GeV) as the superpartners of the standard
model fermions do in our vacuum. In that case the cor-
responding false vacuum energy scale Vo 10 GCV
might be the one associated with Peccei-Quinn symme-

try, a global U(1) symmetry which is perhaps the most
promising explanation for the observed CP invariance of
the strong interaction. This same symmetry provides the
axion, which is one of the leading dark matter candidates,
and the possibility that it might in addition provide the
false vacuum for inflation is to say the least interesting.
We explore this possibility in the context of global super-
symmetry and find that it can easily be realized there.
We have not gone on to explore it in the context of super-
gravity, but there seems to be no reason why it should not
be realized within the context of the superstring-derived
models considered earlier.

As will be clear from this Introduction, the present
work is expected to be of interest to a very wide audi-
ence, ranging from observational astronomers to super-
string theorists. With this in mind we have tried to keep
separate the part of the paper that discusses the phe-
nomenology of the false vacuum inflation models, and
the part that relates these models to particle physics.

The outline of the paper is as follows. Section II intro-
duces the specific second-order model upon which most
of our discussion will be focused. We analyze the infla-

tionary dynamics and density perturbation constraints
by a combination of analytic and numerical methods to
delineate the observationally viable models. Section III
then takes our attention onto the formation of topologi-
cal defects, which (almost) inevitably form at, the end of
inflation. Their possible existence constrains the models,
and there is the further opportunity of a reconciliation
of structure-forming defects with inflation. In Sec. IV
we try to realize the model in the contexts of global su-

persyrnmetry, supergravity, and superstring-derived su-

pergravity. In Sec. V we consider the related first-order
model which also indicates the link with extended infla-
tion models. Section VI summarizes the paper.

P„„=AM /A', (2.2)

there is a local minimum at g = 0 on the constant P
slices, corresponding to a false vacuum. Our assumption
is that inflation occurs with the g field located in this
false vacuum, so that the potential is

V(y) = —,'XM'+ —,'m'y'. (2 3)

If the false vacuum dominates, inflation ends when P falls
below P;„,&, the fields rapidly adjusting to their true vac-
uum values g = M and P = 0.

This model was first considered by Kofman and I inde

[11], who pointed out that it might produce cosmic
strings with enough energy per unit length to form struc-
ture. They considered only what we shall term the
inflaton-dominated regime (small false vacuum energy),
as did several subsequent authors studying this and re-

lated models [12—19]. In order to obtain interesting ef-

fects, these authors had to assume (at least) that the cou-

pling A' was many orders of magnitude less than unity.
The case of false vacuum domination, which is our main
focus, was proposed by Linde who termed it "hybrid in-

flation, "
[4] and has received further attention from Lid-

dle and Lyth [6], Linde [5], and Mollerach, Matarrese,
and Lucchin [7]. In this case the couplings can be of or-

der unity, but for completeness we explore also the regime
of parameter space where they are very different from 1.

B. Inflationary dynamics

As usual, the inflationary dynamics are governed by
the equations

(2.4)

P+3HQ =— (2.5)

We make the restrictions 0 ( A, A' + 1, and
M + mp~/~8vr = 2.4 x 10 GeV. Depending on the par-
ticle physics context of the model, there might also be
the restriction m + 100 GeV corresponding to the soft
supersymmetry-breaking scale of our vacuum.

Provided that P ) P,„„,where

II. INFLATIONARY PHENOMENOLOGY
Q+3HQ =— (2.6)

A. The model

Throughout this paper we assume Einstein gravity.
During inflation the energy density is supposed to be
dominated by the potential of two scalar fields, which
is taken to be of the form

This potential possesses the symmetries P f-+ —P and
and is the most general renormalizable po-

tential with this property except for a quartic term

for two isotropic scalar fields in an expanding universe,
with H = a/a the Hubble parameter, a the scale factor,
mpi the Planck mass, and dots derivatives with respect to

The pure quadratic term is the simplest possibility, and is

also the one favored by particle physics considerations (Sec.
IV). Nonrenormalizable potentials, involving higher powers of
the fields, arise naturally in the context of supergravity, but
for simplicity we ignore them here. As ~e discuss later the g
Beld can have several components, but they do not affect the
issues we discuss in the present section.
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1 I'91 && 1 (2.7)

where the two dimensionless functions e(p) and rl(p) are
defined by

time. Our assumption is that there is a transitory regime
during which the g field rolls to g = 0 from whatever its
initial value may have been, and is followed by sufBcient
inflation on the @ = 0 trajectory to erase any evidence
of such a transient. Inflation then proceeds according to
the usual single field equation for P in the potential of
Eq. (2.3). Without loss of generality, we shall assume
that P is initially positive.

We shall utilize the slow-roll approximation through-
out. It is characterized by the conditions

depending on the parameter values. These are as follows.

(1) If P reaches P;„,t while inflation is occurring, then
inflation may end through the instability of the g field
to roll to its global minimum. As noted by Linde [5]
one expects this to happen, at least for A and A' not too
small, if the false vacuum term AM /4 dominates the
potential. We look in some detail at this possibility in
Sec. III, confirming the picture of rapid instability.

(2) If the logarithmic slope of the potential becomes
too large on the g = 0 trajectory, then inflation can end
while the P field is still rolling down that trajectory. This
is symptomized by r growing to exceed unity. Some time
later, P will pass P;„,t and the g field may roll away from
/=0.

The value of P at which e becomes equal to unity iss

(2.8)
8~ ~M4&

1+ 1—
i/16' ( mpi m

(2.15)

mb) V"(P)
87r V(p)

(2.9)

Here and throughout primes indicate derivatives with re-
spect to the field P. With justification from numerical
results, it is standard to assume that if the potential satis-
fies these conditions, then the solutions for a broad range
of initial conditions rapidly approach the attractor

3HQ —V'. (2.10)

When this is satisfied, there exists a simple expression
for the number N of e-foldings of expansion which occur
between two scalar field values Pi and P2.

a2 Svr ~' V
N(pi, p2) = ln —= —

2 —,dQ.
aq mp] 4, V

(2.11)

For our specific potential we have

Pl
m2m2

2vr (AM4 + 2m2$2) '

2 4 2mpim P 1 8'
z' (QM4 + 2m2$2) 2 mp)

2' AM4

(2.12)

Within the slow-roll approximation, the condition for
inflation to occur is simply that e be less than 1. However,
slow roll is automatically a poor approximation should
~ reach this value, though the amount of inflation that
occurs as e becomes large is always small. Numerical
simulation indicates that for this potential, if e and g
grow to unity, shortly thereafter the inflationary condi-
tion ii ) 0 is violated and inHation ends. The number of
e-foldings that occurs between these events is a tiny &ac-
tion of unity, and can be ignored. It is therefore sensible
operationally to identify the end of inflation in this case
with the precise condition that ~ = 1, should this occur,
and we shall assume this subsequently.

There are therefore two separate ways in which infla-
tion may end in this model, the one which is applicable

If 8vrAM /m2pim ) 1, then P, does not exist at all.
In that case inflation must end by instability. In the
opposite limit, the position P, ~ mpi/y 4m is familiar
from chaotic inflation with a single field, and of course
the standard results will be recovered in that limit with
the Q field playing no significant role.

We need to know the number N(k) of Hubble times
of inflation which occur after a given scale leaves the
horizon. 4 With the assumptions (valid in our model)
that H does not vary significantly and that reheating is

prompt, it is given by [6]

10 Ge
N(k) = 62 —ln —ln

V, a0 0
(2.16)

where subscript 0 indicates present value. The largest
cosmologically interesting scale is of order the present
Hubble distance (roughly the size of the observable uni-

verse), k = apIIp, and other scales of cosmological inter-
est leave the horizon at most a few Hubble times after this
one. As for the inflationary energy scale, true vacuum in-

flation typically gives V& 10 GeV, which makes the
observable universe leave the horizon about 60 e-folds
before the end of inflation (the fact that reheating may
be very ineKcient in this model may reduce this number
somewhat). As we shall see, false-vacuum-dominated in-

flation can give values as low as V~ 10 GeV, which
reduces the figure 60 to about 50. However, one only
needs a rough estimate of N for most purposes because
the potential is slowly varying, and for simplicity we sup-
pose from now on that cosmologically interesting scales
leave the horizon 60 e-folds before the end of inflation.

There is also a second root at smaller P, where e drops back
below unity. However, for second-order models it is easy to
show that the attractor solution Eq. (2.10) cannot be attained
for P below this root, allowing inflation to restart, before the
instability sets in.

As usual we say that a comoving scale a/k leaves the hori-
zon when aH/k = 1.
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Provided the parameters are chosen in such a way as
to produce the correct level of density perturbations to
explain the Cosmic Background Explorer (COBE) satel-
lite observations [21] of the CMB anisotropies, there is
no problem in obtaining sufficient inflation to resolve the
horizon and flatness problems or with ensuring that a
classical description of the evolution is adequate. We
thus need only investigate the density perturbation con-
straint in order to completely fix the model.

corresponding value of P:

Centi = max(0m~ 4'inst) ~ (2.19)

$2 (AM + 2m Psp)
75 mme (2.20)

We then use Eq. (2.14) to determine the value of P 60
e-foldings from the end of inflation, Psp, and evaluate bH
as

C. Density perturbations

The adiabatic density perturbation, which is gener-
ally thought to be responsible for large scale structure,
originates as a vacuum fluctuation during inflation. Its
spectrum is determined by a quantity bH, which loosely
speaking gives the density contrast at horizon crossing
and is defined formally in [6]. The inflationary predic-
tion for the spectrum is

32 V, 1
~H(k) =-

75m4p, ~,
' (2.17)

where ~ is the slow-roll parameter defined earlier and the
subscript * indicates that the right hand side is to be
evaluated as the comoving scale k equals the Hubble ra-
dius (k = aH) during inflation.

By virtue of the slow-roll conditions Eqs. (2.7)—(2.10),
this formula gives a value of bH(k) which is nearly inde-
pendent of k on scales of cosmological interest, in agree-
ment with observation. For a sufficiently flat spectrum,
and provided that no significant generation of long wave-

length gravitational wave modes occurs, the central value
of the COBE 10' anisotropy, 30 pK, is reproduced pro-
vided one has bH = 1.7x 10 [6]. Thus the inflationary
energy scale when cosmologically interesting scales leave
the horizon is given by

(2.18)

where a subscript 60 denotes 60 e-folds before the end of
inflation.

The most efFicient way to proceed is as follows. First,
flx the couplings A and A'. Then, having chosen a value
for the mass scale M, find the value(s) of m such that the
density perturbation constraint is satisfied. Assuming
that inflation ends promptly if P falls below P;„„, we

can determine the means by which inflation ends and the

To find the value(s) of m which satisfy the COBE normal-
ization, remember that P,„~, and hence Psp, is a function
of m. In general this procedure cannot be carried out an-

alytically, and we compute using an iterative numerical
method. However, the problem can be solved analytically
and self-consistently in two regimes. As we shall see, pro-
vided M is not too large then for each M there are Italo

possible choices of m which give the right perturbation
amplitude. One corresponds to the traditional polyno-
mial chaotic inflation scenario, where the first term in
Eq. (2.3) plays a negligible role [and by implication the
first term in the numerator of Eq. (2.20) likewise]. (There
is a variant on this regime, also discussed below, where
the instability sets in while the false vacuum energy is
still negligible. ) The second, and for our purposes more
interesting, possibility involves a value of m (( M, and
corresponds to domination by the first term in Eq. (2.3).

D. Delineating parameter space

We shall now examine different analytic and numerical
regimes. The results are concisely summarized in Fig. 1.

The infiaton domina-ted regime

y.„,= mp, /v4~. (2.21)

The condition that our potential Eq. (2.3) be a good
approximation to this one is therefore

The simplest scenario of all is one in which the Q field

plays no role whatsoever, leaving just the P field to gov-

ern inflation. The potential V = m P /2 was proposed
by Linde [1] as a simple realization of chaotic inflation.
With this potential, inflation ends when P starts to os-

cillate around its minimum, which occurs when ~—
corresponding to

This figure assumes a Gaussian beam profile, and is raised
by 1670 if the precise profile of the experiment is used and a
correction applied for the incomplete sky coverage inducing
errors in the monopole and dipole subtractions [22]. For an
accurate analysis one has to include (here and elsewhere) the
effect of spectral tilt and gravitational waves on the COBE
normalization [23]. Such changes are not significant in the
present context except for extreme parameter values, and
for simplicity we shall not include them in the normalization
though we shall discuss tilt and gravitational waves later.

8~ AM' (( ~-
m~p& 4m

(2.22)

In Eq. (2.14) the second term dominates, giving

60
4pp —— —mph2' (2.23)

Note that in this regime the characteristic scale of Pap is
the Planck scale. The density perturbation amplitude is
independent of M, A, and A' in this limit, and the correct
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FIG. 1. The solid line shows the loci of M and m which
satisfy the COBE normalization for A = A' = 1. The two
analytic branches are clearly seen. The dot-dashed line in-
dicates the analytic solution for the extreme vacuum domi-
nated branch, as utilized by Linde [5]; the deviation of the
exact solution from it is caused by the increasing signi6cance
of the exponential term in Eq. (2.37), which is included in
the parametric analytic solution Eq. (2.36), as used in [7] and
indicated here by the dotted line. The dotted line (hidden
under the solid for most of its length) terminates when the
regime becomes invalid, though it actually extends somewhat
beyond the exact solution because we have interpreted « as( in places.

Since we are in the regime P;„,t & mpi/~8m', the con-
dition Eq. (2.22) written down earlier guarantees again
that the modification to V will be negligible.

It therefore appears that, when Eq. (2.22) is well sat-
isfied, the evolution of P will not be significantly afFected
even if P falls below P;„,t. If Eq. (2.22) is only marginally
satisfied, the evolution of P might be substantially al-
tered, leading to a significant change in the predicted
adiabatic density perturbation. The simplest assump-
tion is that the potential is given by Eq. (2.28). In that
case, if one ignores the inhomogeneity of P caused by the
phase transition, the perturbation is still given by the
usual formula Eq. (2.17), with the new potential [24].
However, this formula depends crucially on the assump-
tion that each Fourier mode of P is in the vacuum state
before leaving the horizon, whereas the phase transition
will inevitably populate some of the modes with nonzero
particle number. Taking this into account, the adiabatic
perturbation on scales leaving the horizon after P = P;„,t
might be quite difFerent (non-Gaussian, with a nonflat
spectrum and a diferent normalization). An additional
adiabatic perturbation might also be generated by the
perturbation in Q [13,15,16], as discussed in Sec. III A.

m =
mp&

bH ——5.5 x 10
4 6

(2.24) The vacuum-dominated myime

The condition for the validity of this approximation is
therefore

A'~ M&&3x108~

mp~
(2.25)

The above analysis assumes that P & P;„,t throughout
inflation, which &om Eq. (2.21) fails if P;„,t mpi/~4z. ,
or equivalently

& —AM
i i

&10
4 (mzpi)

(2.26)

@„'., (y) =M i1-
,'..t) (2.27)

It oscillates around the minimum, losing energy through
the expansion of the universe so that after a few Hubble
times g @,(if its spatial gradient is not negligible it
may settle down more quickly through thermalization. )
Inserting g = @,into Eq. (2.1) gives [24]

[The final inequality is Eq. (2.25).] If P falls below P;„,t,
then as discussed in Sec. IIIA f may roll towards its
minimum at fixed P,

mp) 4m2 2

S~ AM4
(2.31)

Thus, the requirement that g ( I in this regime is pre-
cisely the opposite of the condition Eq. (2.22) which char-
acterizes the regime in which the vacuum does not dom-
inate. The parameter e decreases as inf}ation proceeds,
and during the era P & Pep that we are interested in we
have

1 8m
e & esp ——

z t7 /so.
2 mpl

(2.32)

The condition for vacuum domination is

Sm

z &sorI « 1
mp~

(2.33)

We now explore the opposite regime, where the vac-
uum energy density notionally associated with the g field
dominates the potential. Special cases of this regime of
parameter space have already been considered in [4]—[7].

As noted earlier, in8ation is expected to occur only if
g and e are small compared with unity. The first of these
parameters is independent of P in the limit of vacuum
domination, with the value
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or equivalently

60 (2.34)

~2 M2 120r]&60—A'
(2.35)

The first term of Eq. (2.14) dominates the formula for

&so, giving

while for larger values it increases only logarithmically
giving the normalization

m2 m2
0.004 —0.04

8~ AM4
(2.44)

with the upper limit corresponding to q = 0.15.
We have yet to invoke the false-vacuum-domination

condition Eq. (2.33). Using Eq. (2.37), it becomes

The COBE normalization Eq. (2.20) is therefore
g e "«2x10

A
(2.45)

~s~ JA'M = 10~3mbHpe 60

mph

=9.3x 10 ge

(2.36)

(2.37)

It involves the two masses and the two coupling constants
only in the dimensionless combinations

With A' /A = 1, this bound is saturated for rI = 0.09,
and a similar limit is obtained for any value of the ratio
within a few orders of magnitude of unity. Setting g =
0.09, one learns that the false-vacuum-dominated regime
is restricted to

'
VYM,

mp~

i/8~
m = m I}

mp) A

(2.38)

(2.39)

~8vr, (4 &,(A" 5
M 2x10

mp} qA)
(A"

m & 8 x 10
mp} }, A)

(2.46)

(2.47)

since g = 4m2/M4. The restrictions M & mp}/~8m and
A' 1 that we have agreed to impose because of particle
physics considerations mean that we are in the regime
M & 1, which with the COBE constraint corresponds to
g & 0.15.

The situation becomes especially simple in the regime
60' « 1, which we call the extreme vacuum-dominated
regime. It corresponds to M « 10, and the quantity
rI varies linearly with M leading to [4,5]

M5

m2
= 40@ 3m hH = 3.7 x 10 (2.40)

Inserting the Planck mass and working with the masses
themselves this formula becomes

2

AI —1/10
A

—1/5
5.5 x 10» Geg 1 TeV

(2.41)

a —i/4
A'i'M«4x10 'i

( A) 87r

In this regime g increases linearly with A / M,

(2.42)

In the other regime 60}7 & 1 [6,7], rl varies only logarith-

mically with M, and the power m2/ gradually changes
to m'/'2.

Although the CMB constraint can be expressed in
terms of just the two quantities m and M, the vacuum
domination condition involves three quantities which are
conveniently chosen to be m, A ~ M, and A' /A. It is
therefore useful to express the CMB constraint as a con-
straint on m and A ~ M at fixed A' /A. (Another good
reason for doing this is that AM is the false vacuum
energy density. ) The extreme vacuum-dominated regime
60@ (( 1 corresponds to

The upper limit on A / M is not far below the one

following just from the fact that e, ( 1 in the CMB
constraint Eq. (2.17), which using 4AM4 & V iss

A'~4M & 5 x 10-'.8vr

mp~
(2.48)

The inter mediate v egime

We have now investigated the extreme cases, first the
one in which the false vacuum energy is negligible, and
second the one in which it, dominates. There remains the
intermediate case where both are comparable, during at
least part of the cosmologically significant era P & /so.

Plotted with m the vertical axis and A / M the hori-

zontal axis, we have learned that the first regime corre-
sponds to a straight horizontal line, whereas the second
one corresponds to a line with positive slope. Unless
A' /A is several orders of magnitude away from unity,
comparison of Eqs. (2.24) and (2.25) with Eqs. (2.47) and

(2.46) shows that the right hand ends of these two lines

are separated by at most an order of magnitude or so in

the m and A / M variables. Therefore the intermediate

regime is not very extensive, but it is still important to
investigate it in order to see if new physics occurs.

Even in the intermediate regime the upper bound

Eq. (2.48) holds. Apart from this fact, numerical tech-

niques are required to solve the density perturbation con-
straint. The solution, as might be expected, is that as
A / M is increased the two solution branches approach

= 270r} mp, m (A" ) ~8m

4 8vr AM4 ( A) mp}™ (2.43)

To understand the relation bet@men the two limits, note

that, when the vacuum domination condition Eq. (2.33) is

saturated, V = —AM and @6O ——g.
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each other and merge continuously. This merger specifies
the maximum allowed value of A ~ M; for higher values
it becomes impossible to obtain a sufBciently low per-
turbation amplitude regardless of the choice of m. (The
maximum value does depend on A and A', of course. ) Fig-
ure 1 illustrates the complete set of viable models for the
couplings both set to unity, showing both the asymptotic
regimes and the merger region.

E. Tilt and gravitational waves

Although the inHationary prediction in Eq. (2.17) for
the spectrum hH(k) is almost flat, there is always some
k dependence, usually referred to in the literature as tilt.
On cosmologically interesting scales the tilt can usually
be well characterized by a constant spectral index n, such
that bH2 oc k" i, and in that case one learns from the slow
roll conditions Eqs. (2.7)—(2.10) that [25,6]

g-dominated

io' io4
M/mph

10

FIG. 2. The spectral index n is shown for the exact COBE
normalized models of Fig. 1.

n —1 = 2g60 —6&6o . (2.49)

As always, we take "cosmologically interesting" to mean
scales that leave the horizon 60 e-folds before the end of
inflation.

In addition to the adiabatic density (scalar) perturba-
tion, inflation also generates gravitational waves, whose
contribution R to the CMB anisotropy (b,T/T)2 relative
to that of the scalar modes is [26,25,6)

R = 12e60. (2.50)

For true vacuum inflation with a potential V oc e+~,
g = 2e so that n is less than 1 and R 6(1 —n). Replac-
ing the exponential by a power gP gives tilt n —1
—(2 + n)/120, still negative, and for n ) 2 it gives
3(1 —n) & R + 6(1 —n). Thus, true vacuum inHation
with a gP potential typically makes n a few percent be-
low unity and it makes R tens of percent. Both of these
predictions are big enough to be cosmologically signifi-
cant.

The case of false-vacuum-dominated inflation is dra-
matically different. The condition Eq. (2.33) for false
vacuum domination is e && g, and unless it is almost sat-
urated g is very small. As a result, the tilt and gravita-
tional wave contribution are both indistinguishable &om
zero, for generic choices of the parameters. For fixed
couplings, they become significant only at the upper end
of the mass range allowed by Eq. (2.33), and in con-
trast with the true vacuum case n is greater than 1 until
Eq. (2.33) is almost saturated.

The value of n for a given parameter choice is ob-
tained by substituting Eq. (2.35) into Eq. (2.49). With
A' /A = 1, n is equal to 1.0001 for the minimum value
m 100 GeV at the lower end, and rises to a maximum
value n = 1.14 near the upper end of the allowed range
[6]. The biggest possible value of n, corresponding to
g = 0.15 and e « 1, is n = 1.30, but this is only achieved
with extreme values of the parameters M mpi/~8'
and A' /A + 10 .

We have extended these results numerically to the in-
termediate regime for the case where the couplings are
unity. The result for n is shown in Fig. 2 as a function of

A / M. The two solution branches are as in Fig. 1. The
analytic vacuum-dominated result agrees well with the
exact one until well beyond the maximum, and in partic-
ular the maximum value n 1.14 is essentially the same.
This number is considerably less than that which was
suggested could be obtained in this model by Mollerach
et al. [7]; they extrapolated the vacuum-dominated case
beyond its regime of validity and neglected e to obtain
their larger values. As we commented above, this conclu-
sion is not altered unless the couplings are changed (and
separated) by orders of magnitude.

Another interesting feature is the dip in n to around
0.92 as one exits from the inflaton-dominated regime
into the intermediate region, indicating that these mod-
els are also capable of providing a significant (though
not startling) tilt in the opposite direction. In the limit
of small M, the vacuum-dominated case asymptotes to
unity and the inflaton-dominated case to the standard
value 0.97.

We have also calculated the gravitational wave compo-
nent, though we have not attempted to include it (or the
tilt) into the COBE normalization. Gravitational waves
make only a small contribution to COBE except in the
intermediate regime where they can reach a peak of tens
of percent (though as expected when n exceeds unity the
gravitational wave component is suppressed by the small
e required), indicating that a proper treatment of them
is required to develop the precise phenomenology of the
intermediate regime.

III. THE SECOND-ORDER PHASE TRANSITION

If P falls below P;„,q before the end of inflation, the
false vacuum is destabilized and there is a possibility of
a second-order phase transition, of a kind quite diferent
from the usual thermal phase transition. In this section
we consider the nature of this transition, treating sepa-
rately the very difFerent regimes of inBaton domination
and vacuum domination.

For simplicity we continue to suppose that @ is a single
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real field with the potential Eq. (2.1). This potential has
the discrete symmetry g ~ —@, which of course implies
that the phase transition creates domain walls located
at surfaces in space where Q vanishes. One can instead
have N real fields, and replace @ by g [@,~

in the po-
tential Eq. (2.3), which has O(N) symmetry. This will

give global strings (N = 2), global monopoles (N =3),
or textures (N & 4) if the symmetry is global, or gauge
strings (N = 2) or gauge monopoles (N = 3) if it is local.
We expect that in all cases our discussion of the evolu-
tion of P and Q should be roughly correct, provided that,

g is taken to represent the "radial" degree of freedom
with respect to which the potential has a maximum, as
opposed to the "angular" degrees of freedom with respect
to which it is constant.

One other significance of having a local symmetry
rather than a global one, emphasized by Linde [5], is
that one might have no defects forming simply because
the lowest homotopy groups all vanish. This takes ad-
vantage of there being no such thing as local texture or
nontopological texture, due to the gauge degrees of free-

dom canceling the scalar gradients. For global symme-
tries, however, scalar gradients can still play a harmful
role even in the absence of topological constraints.

We will see that the formation of topological defects
at the end of a period of inHation oH'ers the intriguing
possibility that we could make use of the inflationary
epoch to solve the Hatness issues of our universe, and yet
retain the possibility of utilizing defects as the source of
the density Huctuations to seed large scale structure.

A. The in8aton-dominated regime

In Sec. IID, we saw that in the inflaton-dominated
regime the false vacuum is maintained right up to the
end of inflation unless A' is very small. In that case the
phase transition to the true vacuum will take place after
inflation, and will presumably be of the usual thermal
type, any topological defects forming by the usual Kibble
mechanism [27].

If A' is sufficiently small, P can fall below P;„,& before
the end of inflation. Depending on the regime of param-
eter space, the transition to the false vacuum and the
formation of defects may then occur before the end of
inflation. This case has been treated by several authors
[11—19], and we look briefly at the results of these authors
because they provide a starting point for our discussion
of the vacuum-dominated case, which is our main focus.
As we noted in Sec. IID, the back reaction of g on P is

negligible in the vacuum-dominated regime. As a result
we can in principle follow the evolution of Q explicitly,
using quantum Field theory in curved spacetime [12—19].
Depending on the values of the couplings A and A' and the
mass scale M, we can have very difFerent situations; in-

Some of these authors consider a couphng of Q to the space-
time curvature R rather than to the inHaton field, but this is
equivalent for the present purpose.

deed even when considering the same regime the authors
cited above are not always in agreement. Still, a reason-
ably definite picture emerges provided that the values
of the parameters are not too extreme (discounting the
necessarily small A' of course), which we now summarize
before mentioning more exotic possibilities.

For a rough description of what is going on, we can
ignore the spatial gradient of Q, and treat it classically.
As long as it is small in the sense that

(3 1)

its equation of motion is

with

Q+ 3HQ+ M~(P)g = 0, (3.2)

Mg(&) = &'(&' —&,'..~) (3.3)

As long as P & P;„„,the effective mass M& is positive
and Q is equal to zero apart from its quantum fluctua-
tion. When P first falls below P;»i, [Mq[ is negligible
compared with H, and P remains almost constant. Af-

ter some time, which may be either small or large on
the Hubble scale depending on the regime of parameter
space, [My~ grows to exceed H, and one can start to use

the opposite approximation of ignoring H:

g+ M~(P)Q = 0. (3.4)

There are now two possibilities, according to whether or
not the adiabatic condition [Mq

~

(( [My[ is satisfied. If
it is, the solution of Eq. (3.2) is

const x /M~[ ~ exp
/

lt

[Mq(&) /d&
[

. (3.5)

Taking t = 0 to be the epoch when [M~[ = H, the expo-
nential becomes large within a Hubble time, and Eq. (3.1)
will be violated more or less independently of the initial
value of g. When that happens g will quickly roll down

to its minimum g, . If on the other hand the adiabatic
condition is not satisfied when My[ first grows to be of
order H, there will typically be little change in Q un-

til it is satisfied, after which Eq. (3.5) will again hold.
Thus the conclusion is that g rolls down rapidly towards
its vacuum value at the epoch [My~ H or the epoch

[Mq[/~My[ = 1, whichever is later. (The insufFiciency

of just the former condition was pointed out in [19].)
Though the spatial gradient of g is not crucial initially,

it becomes so after roll down, because domain walls form
at the places in space where @ is trapped with its false
vacuum value g = 0. As we already noted, more general
defects can form if g is replaced by an N-component ob-

ject. To determine the stochastic properties of the spatial
distribution of the defects, one needs to consider the spa-
tial variation of g. The basic assumption is that during
inflation Q vanishes except for its quantum fluctuation.
Once P falls below P;„,~, the fluctuation in @ can be easily
evaluated, because its Fourier modes decouple, until its
rms has grown to be of order g, . The classical equation
for each mode is the generalization of Eq. (3.2) including
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the spatial gradient

(3.6)

where k is the comoving wave number of the mode un-
der examination. Now cosmologically interesting (and
smaller) comoving scales presumably leave the horizon
many Hubble times after inflation begins, with the corre-
sponding Fourier modes initially in the vacuum, i.e., con-
taining no Q particles ( [6], p. 46). As a result the ini-
tial value of the quantum expectation (~Qs~ ) is known,
and so is its time dependence, which is given simply by
the modulus squared of the solution of the classical Geld
equation. For the nonrelativistic modes k/a « ~M~~,
Eq. (3.6) reduces to Eq. (3.2), and (~gi ~ ) begins to grow
as the solution Eq. (3.5) becomes valid. At this point,
but not earlier, gs can be regarded as a classical quan-
tity in the sense that its quantum state corresponds to
a superposition of states with almost well defined values

Qs(t) [28,29]. Thus after smearing the field over a dis-
tance 1/M@ (i.e., dropping the relativistic modes), one
has a classical field g(x) which has a Gaussian inhomo-
geneity whose stochastic properties are speciGed entirely
by the spectrum (~ps~2). Once the behavior Eq. (3.5)
sets in the spectrum grows rapidly, and the rms of the
smeared field rolls down to g„, in accordance with the
earlier conclusion.

In order for this simple picture to be self-consistent,
the smeared field g must still be small enough to satisfy
Eq. (3.1), at the epoch when the nonrelativistic modes

gs begin to grow according to Eq. (3.5). This can fail
to be true if the parameters are far from their natural
values, for instance if A is very small, and then one has a
more complicated situation which has been looked at by
various authors [13,15,16,18,19]. In particular, the inho-
mogeneity in g might generate an adiabatic density per-
turbation on scales far outside the horizon, which would
then survive the subsequent phase transition.

Topological defect production in the
infkaton dominated cas-e

From the stochastic properties of Q(x) just before roll
down, one can in principle calculate the stochastic prop-
erties of the initial configuration of the defects, since they
will form at the places in space where Q(x) = 0. In par-
ticular one can estimate the typical spacing of the defects.
The smallest possible spacing corresponds to the defect
size, which at least for couplings of order unity is of

order M . For a thermal phase transition the typical
spacing at formation is (AM) [27]. We would like to
know if the same is true in the inflationary case. The
different estimates [12,14,18,19] do not entirely agree but
they do seem to indicate that the spacing is still very
roughly M, at least to within a few orders of magni-
tude.

It does not, however, follow that the cosmological ef-

fects of the defects are the same in the two cases, their
subsequent evolution being quite different. In the ther-
mal case, where the defects are created during a nonin-

flationary (typically radiation-dominated) era, the Hub-
ble distance H increases steadily in comoving distance
units. Except in the case of gauge monopoles, the spa-
tial distribution of the defects typically loses all mem-

ory of the initial conditions on scales smaller than the
Hubble distance, exhibiting scaling behavior whereby the
stochastic properties become more or less fixed in units
of the Hubble distance. In particular the typical spac-
ing becomes of order the Hubble radius H . Only on
scales much larger than H does the initial distribution
expand with the Universe, remaining fixed in comoving
distance units. (The case of gauge monopoles, which do
not scale, is considered in greater detail in Sec. III C.)

The case where the defects are created during infla-
tion is quite different. During inflation, H decreases,
typically dramatically, in comoving distance units. As a
result the distribution of the defects is frozen in comoving
distance units, and in particular the typical spacing re-
mains roughly of order the comoving distance scale which
left the horizon (became bigger than H i) at the epoch
when the defects form. This remains true until the era,
long after inflation ends, when that scale reenters the
horizon. Only then will the defect distribution become
the same as in the thermal case, as the "scaling" solution
is established.

The cosmological significance of this different evolution
depends on when the defects form. If they form after cos-
mologically interesting scales leave the horizon (50 or 60
Hubble times before the end of infiation), the scaling so-
lution has been established by the time that these scales
enter the horizon and there should be no significant dif-
ference from the thermal case. If they form before, their
typical spacing is still much bigger than the horizon size
and we presumably see no defects (uiiless of course we are
in an atypical region of the universe [12,18]). Finally, if
they form at about the same time, the configuration of the
defects will differ from the scaling solution, as has been
discussed at some length in the case of structure-forming
gauge strings [12,14,18].

Since ~M~ ~
)) H, these modes have yet to leave the horizon

and so are still in the vacuum state.
As has already been pointed ont [30—32] in the somewhat

diHerent context of axions, failure to take proper account of
the phase transition has led some authors to draw incorrect
conclusions from this type of calculation.

The thickness of a domain wall or string, or the radius of
a monopole, outside which Q has its vacuum value.

B. The vacuum-dominated regime

Coming now to the regime of vacuum domination,
Linde [4,5] has argued that at least for couplings of or-
der unity infiation will end promptly (within less than a
Hubble time) after P = P;„,r. He demonstrated this by
assuming that P continues to slow roll down the poten-
tial Eq. (2.3) for a Hubble time, and showing that this
inevitably leads to a contradiction. We present below
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V' 2 mpi m2

3H ~gp ~g~ M' (3.7)

where we have used the vacuum-dominated value for 0:
0 = 2

AM
3mp~

2 (3.8)

During one Hubble time the change in P is given by

a more detailed version of this argument, repairing an
omission in the original and examining also the case of
small couplings.

To proceed, one has to make the technical assumption
that the spatial gradients of both P and g are negligible.
It is hard to see how they could be crucial in maintaining
slow roll, so the contradiction which we shall establish
presumably indicates failure of slow roll rather than sig-
nificant gradients in the presence of slow roll.

The slow-roll expression for P is

For couplings of order unity it is easy to check that the
CMB constraint Eqs. (2.43) and (2.44) implies that r
and ~rI~ are both )) 1. The slow roll solution we started
with is therefore presumably invalid. (Even if valid, it is

certainly not inflationary since e )& 1.) More generally, it
follows from Eq. (2.48) that ri ) 1 unless A' & 10 At~2,

which again presumably means that the slow-roll solution
is invalid. (The condition that e ) 1 is too complicated to
be worth discussing in the general case, but one expects
slow roll only if both rl and s are less than unity. )

The conclusion is that (unless A' is very small) slow-

roll inflation ends within a Hubble time of the epoch

P = P;„„.Since the field equations contain a mass scale
M )) 0, it is reasonable to suppose that in fact infla-
tion ends altogether, giving way to an epoch when the
energy density is dominated by the spacetime gradients
of the fields. What happens next is associated with the
question of defect production, to which we now turn.

—4m mph
2 2

(( &. (3.9)
Defect production in the vacuum domin-ated case

It follows that after one Hubble time

8m' m'
AM' P'

&& M'
AM4 8' (3.iO)

and

) M@ )
96m (mp& ~

H2 %Ms ( 8rr )
(3.ii)

Using Eqs. (2.43) and (2.44), we see that this is much big-

ger than unity unless we are in the regime of Eq. (2.43),
which then requires

A' & SO-', M' & &0-'.Svr

mp]
(3.12)

We shall not consider these very small values of A'. One
also Ands after one Hubble time

[My[ 1 (AM ) 8rr

)M~[ 2 i, 96m ) m2pi
(3.13)

A' m4 I'm' )p-]28
As Mio '( 8rr

8A' mp,rl-
AM2 8~

(3.14)

(3.15)

Comparing with Eq. (3.11) one sees that except for the
factor 1/2 the right hand side is just H/~M~~. Thus the
adiabaticity condition is satisfied as well {it was not con-
sidered by Linde). As a result Eq. (3.5) shows that g
will have rolled down to become of order g, given by
Eq. (2.27).

The next step is to demonstrate that the roll down of
r/i is actually inconsistent with slow-roll infiation. Since
only one Hubble time has elapsed vtr will be oscillating
around Q, rather than located in it, but for a crude es-
timate we can ignore the oscillation, so that the potential
is given by Eq. (2.28). Using Eqs. (2.29) and (2.30) we

find

In contrast with the inflaton-dominated case, defect
production has not previously been considered for the
vacuum-dominated regime. The following discussion as-
sumes that the couplings are of order unity, or to be more
precise that they are not extremely small for in that case
a qualitatively diferent scenario could ensue. In partic-
ular, we assume that A' is not small enough to satisfy
Eq. (3.12), so that as argued above the phase transition
marks the end of infIation.

Ideally one would like to follow the evolution of the
fields using quantum field theory in curved spacetime,
as in the inBaton-dominated case, and hence calculate
explicitly the typical spacing and other stochastic prop-
erties of the initial distribution of the defects. However,
that calculation relies crucially on the fact that the back
reaction of g on P is negligible which one easily checks
is not the case in the vacuum-dominated regime, and
indeed an estimate using the techniques described in Sec.
III A indicates rather that the back reaction hits P long
before g has had a chance to roll down. In the absence
of this simplifying feature, it is not even possible to give
a qualitative account of the evolution, let alone follow it
in detail. When P is hit by the back reaction from g,
it will acquire a spatial gradient of order M~, which will

soon become much bigger than m. As a result of the

"It is important in this connection not to be misled by the
evolution discussed in the previous subsection, which was sim-

ilar to that seen in the inBaton-dominated case. That discus-

sion was a purely hypothetical one, used to establish a contra-
diction; the premise that slow roll continues for one Hubble
time leads to that evolution, which in turn leads to the contra-
dictory result that slow roll does not continue for one Hubble
time. One does not expect anything like it to actually oc-

cur, and in particular there is no reason to suppose that Q
first rolls down to Q„,(P), after which @ falls down due to
the destabilizing action of Q. (This "waterfall" sequence of
events was suggested in [5].)
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back reaction, P will look more like a collection of inter-
acting plane waves than a homogeneous field, and cannot
be said to "roll down" to its true vacuum. Moreover, g
will in general still be an essentially quantum object at
this stage (i.e., the state of the system is not a superposi-
tion of states in which it has an almost well defined value
over an extended period of time), so P will become one
as well.

In the absence of an explicit calculation one must rely
on order of magnitude arguments, which as we now see
actually point to rather definite conclusions. The cru-
cial point is that the P and Q fields are coupled to each
other, and also in general to the quark, lepton, etc. , fields.
Since at least the scale M is much bigger than H (and
even m is not many orders of magnitude less), one ex-
pects the fields to thermalize quickly on the Hubble time
scale; reheating in the vacuum-dominated case will oc-
cur promptly at the end of inflation. The reheat tem-
perature T„h is therefore given by the familiar formula
T„},= (30/7r g ) ~ p'~ or

T„h = (30k/4x g, ) ~ M, (3.16)

where g, is the effective number of degrees of &eedom
at that temperature, presumably at least of order 102

(e.g. , in the minimal supersymmetric standard model
g, = 229). Thus the reheat temperature is of order M.
The defects that have been formed find themselves effec-
tively in a thermal bath at a temperature T„h, and may
be in thermal equilibrium. If so, then for a string net-
work, for example, the most likely configuration will be
the one which maximizes the allowed density of states.
For the case of cosmic strings, such a configuration be-
low the Hagedorn transition consists of maximizing the
number of possible loops that can form, with the long
strings being exponentially suppressed [34]. Since this
distribution is similiar to that found soon after a ther-
mal phase transition has produced strings, it is possible
that the efFect of such a rapid reheating could lead to a
configuration of defects much the same as if there had
been a thermal phase transition. However, we have not
explicitly demonstrated this to be the case here; it would
require a detailed numerical simulation of the reheating
to rigorously establish how the network behaves.

Local cosmic strings are perhaps the most interesting
defect for cosmology. The primary Inotivation for em-
ploying them here would be so they could contribute
as seeds for the observed large scale structure and the
anisotropies in the microwave background. However, if
we do try to make use of them in the context of this in-
flation model, we must be cautious; it is expected that
strings would have a very important influence on the
CMB if they are to be massive enough to affect struc-

ture formation [35]. Therefore we must reassess the es-

timates of the allowed model parameters determined in
the previous section, for these were obtained assuming
that the inflaton field alone was responsible for the CMB
anisotropies. With two sources (assumed uncorrelated)
of anisotropies, the contributions add in quadrature. As a
benchmark figure we reduce the inflation contribution to
10% of the total anisotropy, corresponding to dropping
bH by ~10. Numerical calculation shows that for unit
couplings, this only reduces M „from 2.4 x 10 mp~ to
1.3 x 10 mp~.

Recent simulations of cosmic string networks have
shown the importance of the small scale structure on
the network. An important effect of this structure is to
renormalize the string mass per unit length p, relating it
to the original mass per unit length po by p 1.4@0
[36]. Recalling that po vrM (provided scalar and
vector masses are not too disparate), we are therefore
allowed a mass per unit length of up to 9 x 10 mp&,
which is comfortably high enough to allow p to fall in the
favored range of values for structure formation p (2—
4) x10 mpi [37]. An equivalent calculation indicates
that global textures can be similarly reconciled, though
more marginally. Indeed, for the highest values we can
obtain, the strings would create excessive microwave fluc-
tuations; the best current bound on p arises from CMB
anisotropies on scales less than 10 arc min, and yields

p ( 3 x 10 sm2pi [38]. Defect production can therefore
provide an additional constraint on the viable parameters
of the inflationary theory.

Finally, recall that the above is with the unfavorable
assumption of unit couplings; the analysis of Sec. II in-
dicates that the upper limit on M is yet higher if the
couplings are reduced, which to lowest order does not
alter the string tension.

C. Nonthermal monopole production

We now consider gauge monopole production in a non-
thermal phase transition. Some aspects of such produc-
tion have already been discussed in [39]. The case of
gauge monopoles is particularly interesting because they
do not reach a scaling regime. Let the initial corre-
lation length be some fraction ( of the Hubble radius,
( = (H i. For the thermal case, it is easy to show that

g, M/Ampi. In the vacuum-dominated case allX/2

we can be sure of (for fast roll down) is that (, & 1. Of
course the uncertainties in the initial distribution will be
reflected in our lack of knowledge of the form (, should
take.

Now in general we can write the initial number density
of monopoles and temperature as

n; 1 1H3
T, ( T, ( T,

(3.17)

Both here and in the earlier discussion, we are assuming
that the defects are stable structures that do not "know"
about the expansion of the Universe. This assumption has
recently been questioned [33j, and the subject deserves more
attention, particularly in the case of false vacuum inBation.

Once we know T we can determine H, and hence the
future evolution of n/T for a given value of (. We
have demonstrated that, in the false-vacuum-dominated
case, reheating is prompt, leading to a temperature af-
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ter inflation given by Eq. (3.16). Now this means that
in Eq. (3.17), for a given reheat temperature and assum-
ing ( ( 1, we obtain a similar scenario to the thermal
case [40,41]. Neglecting the efFects of annihilation, which
should be valid for monopole masses, M „&10 GeV
and ( 1, we obtain

1o" ( T,.„l ( M.„
1O,4 GeV I 1Ois GeV I

(3.»)

where 6 is the Hubble parameter today in units of 100
kms Mpc and 0.4 ( h ( 1 [41]. In other words, we

are unable to differentiate between the thermal produc-
tion of monopoles and this particular nonthermal case,
for a given initial temperature. The original grand uni-
fied theory (GUT) scale monopole problem still exists in
the nonthermal case.

Demanding 0m~„h ( 1 constrains us to a region
M „(10 GeV. This is not the strongest bound
though, especially for the case of light monopoles. The
Parker limit [42] (see [41] for details), places a constraint
on the allowed lux in monopoles of mass below 10
GeV. For consistency we find that M~~„( 10" GeV,
slightly tighter than the density bound. Thus it ap-
pears that, at least under the assumption that ( 1,
the monopole problem is still very much present in the
vacuum-dominated region.

vated purely by particle physics would subsequently be
seen (in this case nine years later) to lead to an observa-
tionally viable epoch of inflation without any fine-tuning
of its parameters.

Unfortunately, there are sound particle physics reasons
for rejecting global supersymmetry and replacing it by
supergravity [43]. In a general supergravity theory it
is difFicult to construct a model of inflation without fine-

tuning, because in addition to the global supersymmetric
type terms there is an infinite series of higher order non-

renormalizable terms, the first of which usually gives any
would-be inflaton an effective mass of order H.

However, supergravity can only be regarded as an ef-

fective theory with a cutoff at the Planck scale. So in

order to get a better handle on the crucial nonrenormal-
izable terms we should consider a theory of everything.
Superstrings provide one possible candidate theory. Here
we find another superstring miracle. The class of super-

gravity theories derived as the low-energy limit of orb-
ifold compactifications of superstrings can automatically
cancel the harmful nonrenormalizable corrections to the
inflaton's potential. We go on to make the first steps to-
wards constructing a truly realistic, superstring-derived
model of inflation.

A. A simple supersymmetric model

IV. PARTICLE PHYSICS MODELS
The simplest superpotential [43] that spontaneously

breaks a U(1) symmetry is

No matter how simple it might be, and no matter how
well its predictions agree with observation, no model of
inflation can be regarded as satisfactory unless it emerges
from a sensible theory of particle physics. In the present
context [Eq. (2.1)] this means that we want to identify

P and g with fields belonging to such a theory, and to
show that P can have a sufficiently flat potential without
fine-tuning, in particular to show that the mass m of the

P field can be sufficiently small (m (( H) and that there
is no P term.

We start by considering the case of global supersym-
metry [43]. Here it is natural to focus on the regime
100 GeV to 1TeV for m, which is the smallest one com-
monly considered for scalar fields. The requirement of
having no P term means that one cannot identify P
with a Higgs field, but it might be one of the scalar
fields suggested by supersymmetric theories. With m
in this range, the COBE normalization requires that M
is of order 10 GeV which, as noted earlier [6], suggests
the possibility that the false vacuum is that of Peccei-
Quinn symmetry. One is therefore led to ask whether,
by considering Peccei-Quinn symmetry in the context of
supersymmetry, there emerges a field P with a quadratic
coupling to the Peccei-Quinn field and a mass of order
1TeV, but no P coupling. For global supersymmetry
the answer to our question is remarkable; the very first
model of supersymmetric Peccei-Quinn symmetry, pro-
posed by Kim in 1984 [44], indeed has a suitable field P.
Ef we could stop at this point, we would have satisfied the
wildest dreams of particle cosmologists. A model moti-

W = o(@,C, + A')4, (4.1)

OW BW BW
04 ' 6e. ' Be. (4.2)

= ~' I+i+2+ A'I'+ ' (i@i]'+ I@.l') I@'I': (4 3)

where 4, 4'i, and 4'2 now represent just the (complex)
scalar component of the respective chiral superfields.
Adding a soft supersymmetry-breaking mass m of order
1 TeV, for 4, we obtain

I' = a' @i@2+A' + a' (1@ii'+ 1@21') I+'I'

+m'lC l'. (4.4)

We want to show that 4 can be the inflaton, and so
to obtain the effective potential during inflation we will

where 4, 4q, and 42 are chiral superfields which we take
to have canonical kinetic terms, A is a mass which sets the
scale of the spontaneous symmetry breaking, o is a cou-

pling constant, and the U(1) symmetry is iIii m e' ~iii,

42 ~ e ' 4'2. This superpotential is often used in super-
symmetric model building [43,44], and in particular was

used by Kim [44] to construct the first supersymmet-
ric realization of Peccei-Quinn symmetry. We shall now

show that, for fairly generic initial conditions, it leads to
the false vacuum inflation model of the previous sections
with the identifications A' = 2A = a /2 and M = 2A.

The scalar potential derived from this superpotential
1S
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minimize this potential for fixed O'. The potential is min-
imized at arg 4q + arg 42 ——x, and the canonically nor-
malized field corresponding to the phase of the 4 field
with smaller magnitude has an effective mass & crA there,
and so arg4q + arg@2 will be anchored at the value

The potential is independent of the other two an-
gular degrees of freedom, namely, arg @i—arg 4z (which
corresponds to the axion field) and arg@, and Hubble
damping will make them practically time independent
more or less independently of the initial conditions. This
leaves only the radial degrees of &eedom, corresponding
to the three canonically normalized real fields 4) = ~2141,
@i ——i/21@ii, and Q2 ——~21@21. In terms of them, the
potential is

the potential is

P(P, g) = —(f' —4A') + —4'g'+ —m'P'. (4.6)
16 4 2

Thus we have the model of Secs. II and III, with A' =
2A = o /2 and M = 2A. From Eq. (2.41) it follows that
the usual axion parameter f is given by

2

f =2A=(8 x10" GeV) o ( ) (4.7)

which is at the right scale for the axion.
Note that for chaotic initial conditions A and m will

initially be negligible and so the potential Eq. (4.4) will

initially have the simple form
2 2

((l & Wl & (l'2) (0 i P2 2~') + —(0i + 02) 0 V = O' C i%2 + C2C + CC i (4 8)

+-m'P'.1

2
(4.5)

For P & 0, the degree of freedom orthogonal to Qig2
(which corresponds to the saxino) has its minimum at
gi ——@2, and it is straightforward to show that the ef-
fective mass of the canonically normalized saxino field is
everywhere & oP/~2 and so the saxino will be firmly
fixed at its minimum during inflation. Then in terms
of P and the canonically normalized field g = i/2gig2,

Thu»f i»tially 141 & 1@,1, 14'21, i.e. , one-third of the
initial condition space, the fields will rapidly approach
the i~fl~ti~g trajectory 1@ii = l(I121 = 0 and
given above.

B. Supergravity

The scalar potential in supergravity [43] has the gen-
eral form

f 8' ) . ( 8 K ) ((9W 8z BK) ((9W 8m — (9K) 8z

&mpi ) «&& ~6) I && pi & ) (~&~ pi &6 ) pi

(4.9)

where the Kahler potential K(P, P) is a real function of
the complex scalar fields P and their Hermitian con-
jugates P, and the superpotential W((t)) is an analytic
function of P. The D term is quartic in the charged fields,
and we will assume that it is flat along the inflationary
trajectory so that it can be ignored during inflation. It
may, however, play a vital role in determining the trajec-
tory and in stabilizing the noninflaton fields. The term
given explicitly is called the F term.

The kinetic terms are

where the ellipsis stands for higher order terms. Then
the F-term part of the scalar potential becomes

V =exp ) 1@~1 +
(mp,

- '
)

x ~ ) (S., + .) +, (y. +.. .
) W

(9W 8vr

02K) gy gy
Pgc1 40 'I

cx P
(4.lo) , (4 + " ) s' —', ls'I')+ p+

(4.I2)
where p is a spacetime index. It follows that for canoni-
cally normalized fields Thus, for any model of inflation, the lowest order (i.e.,

global supersymmetric) inflationary potential

K = ).14-I'+- (4.II)

P & P;~.t ——~2 4 during intlation [see Eq. (4.6) and Secs. II
and III].

Global supersymmetry corresponds to the case vrhere these
terms are absent, and one has taken the limit mph m oo to
obtain the potential V = P 18W/Bg

1
that we used earlier.

Supergravity corresponds to keeping mp~ 6nite.
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OW
Vglobal = ) (4.13)

Minimizing with respect to iIIi and iIr2 for I@I ) A, as in
the previous section, gives

will receive corrections giving

87r
V = Vsiob~i I 1 + 2 ) Igo I

+ other terms
mph

+other terms . (4.14)

pl )
( I 8~, 1(8~)',)x 1 —— P +-

2mzp] 4 m» )
=rrA II+ —

4 Q +
1 8~',
8 m4p, )

(4.16)

The IP I
term in this equation gives a contribution

8+Vsi b i/mp& 3II to the effective mass squared of all
scalar fields; therefore, assuming the inflaton is the mod-
ulus of a scalar field, it gives a contribution of order
unity to rI = mp&V"/8vrV (see Sec. IIB). But IrII « 1
is necessary for infiation to work (at least in the usual
slow-roll form). As a result practically alii of the su-

pergravity models of infiation proposed so far [46] have
involved unmotivated fine-tuning of the Kahler potential
and/or the superpotential in order to cancel the harm-
ful nonrenormalizable corrections [i.e. , to get the "other
terms" in Eq. (4.14) to cancel the IP I

term]. However,
supergravity can only be regarded as an effective theory
with a cutoff at the Planck scale. So in order to get
a better handle on the crucial nonrenormalizable terms
we should consider a theory of everything. Superstrings
provide the most promising candidate, and in the next
section we will find that for the Kahler potential derived
from orbifold compactification of superstrings the cancel-
lation can occur without any fine-tuning.

To end this section we just note that for the special
choice of supergravity with minimal kinetic terms (i.e. ,

Eq. (4.11) and Eq. (4.12) without the higher order correc-
tions. . . ] and the superpotential of the previous section,
the "other terms" in Eq. (4.14) cancel the IP I

term for
the inflaton, as we will now show.

Substituting K = I4[ + IiIriI + IiIIzI and the super-
potential of the previous section, Eq. (4.1), into Eq. (4.9)
gives

Thus the problematic mass term cancels out. However,
we do not regard this as a realistic model and so will not
pursue it further.

C. Superstrings

3

K = —lnY —) lnX, , (4.17)

The inflation that inflated the observable Universe be-
yond the Hubble radius, and could have produced the
seed inhomogeneities necessary for galaxy formation and
the anisotropies recently observed by COBE, must occur
at an energy scale V / & 4 x 10 GeV [23], well be-
low the Planck scale. At these relatively low energies,
superstrings are described by an effective N = 1 super-
gravity theory [43]. The properties of that supergravity
theory are known in most detail for orbifold compactifi-
cation schemes, and so we will restrict ourselves to such
compactifications, although our results may be more gen-
eral. Also, for simplicity, we will ignore the twisted sector
of the theory. For the remainder of this section we set
mpi/~8vr = 1.

Following [47], we will assume the following form for
the one-loop corrected Kahler potential K of the super-
gravity theory derived from orbifold compactification of
superstrings [48,49,47,50].

V(c' @i @2) =~'e» I, IC'I'
I

& mr'„)
I@I'+

rnp~ m pi )

+(@ I'+I@ I') IC'I' . (4.15)

with

and

3

Y=S+S+ ) b, lnX, , (4.18)

X, =T, +T, —) (4.19)

' We assume that the corrections are small as will be the
case if IP I

« mp~/~8vr. If IP I

+ mp~/~87r then a glance at
the exponential factor in Eq. (4.12) shows that the problems
will then be even more severe.
' Natural inflation [45] avoids this problem because its in-

Haton is the phase of a complex scalar field.
The only exception known to us is "natural inIIation" [45],

as mentioned above.
Although this is in some sense the simplest supergravity

theory, it is not well motivated physically and its adoption
must be regarded as fine-tuning to some extent.

where S is the dilaton whose real part gives the tree-
level gauge coupling constant (Re S gGUT), T, are
untwisted moduli whose real parts give the radii of the
three compact complex dimensions of the orbifold, and

are the untwisted matter fields associated with T,
The terms with coeKcients b,- are one-loop corrections
coming from the Green-Schwarz mechanism, but their
matter field dependence is speculative [47) (note that our
convention for the sign and magnitude of these coeK-
cients follows [49,50], not [47]).

For initial orientation we make the standard assump-
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1V= s WIg, , X,

Y
+ - y + i gGS

i=1 4m~

1 GsBW BW
4ir2 * BS *BT;

BW BW-' )- BP-"BT, (4.20)

To lowest order in bGs and the matter fields, the kinetic
terms given by Eq. (4.10) are

1
2B„SB"S+) 2B„T;B"T,p- - 1

(S+S)' . (T'+T')'

+) B„P;B"tt; .
T;+T, "'

i,a
(4.21)

tion that the dilaton and moduli have expectation values
of order 1, showing later how this may be achieved. (In
our vacuum, (Re S) 2 [50], but as we note later it may
have a difFerent value during inflation. ) We will also make
the standard assumption that the matter fields have ex-
pectation values much less than 1. The fact that this can
and does include the inflaton is an important advantage
of this model of inflation. The values of the dimensionless
coefBcients b, depend on the orbifold assumed. Some
values for bGs that have been calculated in [49] are 0, 5,
and 15. We will assume hGs & 0 as is the case for all
orbifolds considered up to now [49,51], and that we are
in the perturbative regime hGs/4ir2 (( S+ S so that the
loop corrections are small.

The F-term part of the scalar potential corresponding
to this Kahler potential is [47]

~ n n e

n=1
(4.24)

is the Dedekind function. It will also be useful to define
the modular-invariant dilaton field [49,47]

S' = S — ) P, in[i'(T, )] (4.25)

from which the transformation properties of the dilaton
can be deduced. Requiring modular invariance then puts
strong constraints on the form of the low-energy super-
gravity theory and in particular on W„~ [53,52,47,50].

As we shall see, the Kahler potential of Eq. (4.17) has
some very special properties as far as inflation is con-
cerned. The crucial point is the cancellation of the X,.
factor in front of the global supersymmetric BW/Bg;
term in Eq. (4.20). This has the consequence that if
the BW/BP, ter.ms for one value of i, say i = 3, dom-
inate the inflationary potential energy then the canon-
ically normalized Ts and pe fields do not acquire cor-
rections of order H to their effective masses as would
be expected in supergravity in general (see the previ-
ous section). This opens up a path to inflation with-
out fine tuning. Note that the above conditions for
inflation are asymmetric with respect to the i sub-
scripts which means that the Kahler potential K
—tn(S+S) —Bl (T+nT —P ~tP~ ) [N]cennntbere-

garded as equivalent to the Kahler potential of Eq. (4.17)
and does not share its inflationary properties. We will
now go on to chart this path to inflation for the case of
false vacuum inflation.

Since we are assuming ]P; ] &( 1, it is not unreasonable
to assume that the BW/B$; terms dominate the poten-
tial during inflation. Then

The superpotential TV is composed of a perturbative part
W~„i(P, T), and a nonperturbative part W„~(P, S,T).
To lowest order in the matter fields, W~„t has the general
form [48,47,50]

2

. ; (I +,', SGs) g,.~, X,
(4.26)

Wp-b = ).~-O.&i»&s
~P,~

(4.22)

where m p~
——0 or 1. TV„& is not very well understood.

However, it should have an expansion in powers of e
to reflect its nonperturbative nature [52,50]. Also, orb-
ifold compactifications of superstrings are invariant un-
der target-space duality symmetries to all orders of string
perturbation theory and, it is thought, nonperturbatively
as well [53,52,54]. These duality transformations act on
the moduli as

a;T; —ib;
ic;T, +d; ' (4.23)

The parameters a;, b;, c, , d; are in general a discrete set of
real numbers. In many cases the duality group is given by
the product of three modular groups, i.e., a, , 6, , c;,d, g Z,
and for simplicity we will assume this to be the case here.
Then the matter fields ttt; transform in the same way as
1/[il(T;)]2 where

Next we minimize the potential, with respect to the mat-
ter field dependence of the BW/B$, terms, 2z for a fixed
inflationary value (i.e. , p ) p;„,b, see Sec. II) of the infla-

ton (whatever it may turn out to be). We assume that the
BW/BP, terms will then be independent of the inflaton,

An important exception to this statement is a ttts field
whose BW/Bgs term contributes to the inflationary potential
energy. Such fields are likely to pick up masses of order H
from the [W[ terms in Eq. (4.20).

One of us will consider the case of true vacuum in8ation
elsewhere [55].

Vfe will consider what e8ect the other terms might have
on the in8aton's potential later.

These matter fields are likely to have masses of order V
much greater than the other fields (such as the dilaton, etc. ,
which are likely to have masses of order H) and so they will

settle to their values on the inQationary trajectory before the
other fields have moved significantly.
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as will be the case for false vacuum inflation. We also as-
sume that some of them will be nonzero. Dropping tem-
porarily the superscripts on the matter fields, R' trans-
forms under modular transformations like Pqg2gs, and
therefore OW/BP, transforms like Q.&, P~ which, as we

noted earlier, transforms like Q &, [1/g(T~)] . Since the S
dependence arises entirely from nonperturbative efI'ects,
one therefore expects the functional form [53,52,47,50]

o (T)e b„—S'

(4.27)
H,. [~(T,)]'

where the a,„'s will in general be arbitrary modular in-
variant functions of the T, , but for the most part we will
assume that they are constants as is the case in gaugino
condensation scenarios [50]. Also, we will assume that
the b 's are positive as in such scenarios.

Now, as will soon become clear, in order to get inflation
we need the false vacuum energy density Vo to be domi-
nated by one or more BW/BP,. terms with the same value
of i, say i = 3. For the moment let us ignore the other i
values altogether. Then the potential during inflation is
given by

(V+,„', SsGs) g,„X,'

2

E. E.

(4.28)

2 2~'+~'+ 4.
' ~s'+ 4.' 2;=i&; '»

I
T*+T*—Zp &, I

ln(T*)l' ll;gs I
T'+T' —Ep &, I

le(T*)l'
) . '

4 )
(4.29)

(4.30)

where

2
n —b„S'

Vo (S', Ty, T2) =
(~'+ ~'j H, &. (T. + T.) l~ (T') l

(4.31)

As pointed out by Brustein and Steinhardt [57] and
Carlos et al. [58], the dilaton provides the biggest obsta-
cle to constructing a model of inflation in superstrings.
Our model helps with the diKculty pointed out by
Brustein and Steinhardt, because Vo can give S' a suit-
able minimum during inflation in much the same way
as double gaugino condensation scenarios do in the true
vacuum [50]. Since we are supposing that the b„'s are
positive, we need for this purpose at least two distinct
values of n for some o. so as to obtain a minimum at a
finite value of S', and then at least one more term with
a different value of o. to make Vo nonzero. A minimum
with Vo ) 0 and mass greater than H can then be ob-
tained for reasonable, but significantly constrained, val-
ues of the a's and 6's. There is, though, still the problem
pointed out by Brustein and Steinhardt that for a poten-
tial of the form of Vo, and for generic initial values, S'
will tend to roll past the desired minimum and on to the
minimum at S' = oo. As this is also a problem for the
true vacuum it should be regarded as a problem for the

At least if we do not assume something like S duality [59],
which requires some of the b to be negative.

assumption of all positive 6„'s rather than of the model
of inflation. It might be solved by anthropic arguments,
which in any case seem likely to be needed because of the
huge degeneracy in the superstring vacuum.

There remains the problem that the Vo-induced expec-
tation value for S' is likely to be diferent from its vacuum
expectation value after inflation because Vo disappears at
the end of inflation. As pointed out by Carlos et al [58], .
this might lead to cosmological problems because S' will
in general be left far from its minimum at the end of
inflation. We do not address that difhculty here.

Next consider the moduli T, for i g 3. The function

(T, + T, ) ~q(T, ) ~

has its maxima at T, = e' ~ and points
equivalent under modular transformations, and

(T'+ T')ln(T*)l' T ...g.,~,

= Ks q (e*") [i —(~;P + o (~,')], (4.32)

where ~g (e' ~ ) ~

0.8006. Therefore Vo is minimized
for T; = e* ~s, i g 3, and since, to lowest order in bGs

and the matter fields, the canonically normalized T; fields
[see Eq. (4.21)] have masses ~Vs there, they will be firmly
anchored during inflation. However, after inflation they
will be left far from their true vacuum minima (which are
close to T=1.23 in some models [50]) potentially giving
cosmological problems [58]. Note that, if the as„'s were
functions of the T, for i g 3, then they would merely
shift the T s expectation values during inflation, while if
they depended on T3 they would fix T3 during inflation,
simplifying the following discussion.
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Next, the canonically normalized g matter fields [see

Eq. (4.21)], for i g 3, acquire masses v Vo ~3H [see
Eq. (4.30)], making them unviable as infiatons and firmly
fixing them during inflation.

Having argued for the stability of Vo during inflation,
let us consider the possible inflatons. The canonically
normalized P~s fields acquire a mass squared (to lowest
order in b'Gs and the matter fields)

b V
4z'(S+ S)

' (4.33)

where Cts and ts are the canonically normalized 4ts and
Ts fields. Then defining the canonically normalized (in-

P 2Baton) field tt = n 2 /Pt @a + ~ta~, and making the

reasonable assumption that the orthogonal degrees of
keedom are time independent, we get the potential dur-
ing inflation,

1 bcs
1+ (4.35)

Therefore, from Sec. IIE, the density perturbations pro-
duced during inflation will have a spectral index

gGSn=1+
27r2(S+ S)

' (4.36)

directly related to fundamental superstring parameters.
For example, taking (S+ S} = 4 [50] and bs ——5 [49)
gives n = 1.06.

For bsG = 0 [49], Ts and P~s receive no contribu-
tion to their potential &om V;„g and so either the terms
in Eq. (4.26) neglected in Eq. (4.28) or the terms in
Eq. (4.20) neglected in Eq. (4.26) will dominate. In the
first case, if the BW/8$, terms for i g 3 are non. zero
but still much smaller than the i = 3 terms, then they
could provide Ts and the P~s with masses && H in the
same way as the i = 3 terms provide the T, and P; for
i g 3 with masses of order H. Note that if the OW/t9$,
terms for i g 3 are of the same order as the i = 3 terms

much less than Vo (assuming that we are in the perturba-
tive regime so that the loop corrections are sinall). Note
that here (S + S) is the expectation value of the dila-
ton during inflation, which is probably di8'erent from its
value in our vacuum. However, it may be reasonable to
assume that it has a similar value during inflation as now
because, in both cases, we need to be in the perturbative
regime, Re S & 1, but avoid the potentially runaway be-
haviour at large Re S [57]. Also, V;„s is minimized for
Ts ——e' ~s. Defining Ts ——e' ~s + its, and assuming

l
t3

l
« 1 (and butts « 1, which we have been assuming

all along), the P~s and Ts dependence of the inflationary
potential energy is given by

bGs ( 2
V s = Vo 1+

2
— ).@s +Ital +'''

4+2(S+ S)
I )

(4.34)

then all the fields will have masses of order H and in-
flation wiB not be possible. In the latter case, the ne-
glected terms are the terms that are thought to provide
the soft supersymmetry-breaking terms in our vacuum
and so, during infiation, they might also provide the Ps
with soft supersymmetry-breaking mass terms and give
T3 a minimum with a mass of the same order. How-
ever, as the expectation value of the dilaton during infla-
tion may be different from its value in our vacuum, the
soft supersymmetry-breaking scale may also be different.
Thus for bsGs = 0, the results will depend on the specific
sup erpotential.

Finally let us consider briefiy the possibility that P 1.
Then Eq. (4.30) will no longer be a good approximation.
For example, consider the simplest case of constant T3
and, without loss of generality, one (Ps field which we
will call Ps. Then, to lowest order in b and the other
matter fields, Ps's kinetic term is

82K
8 s Des , lB„Psl' . (4.37)

T3+ T3—

Therefore the canonically normalized real field P corre-
sponding to lPsl is given by

]P l

= gT +T tanh
2

(4.38)

bGs
V;„s = Vo 1+ 2 lncosh +4~' S+ S

. (4.39)

For examPle, taking (S + S) = 4 [50], bsGs = 15 [49], and

Vo could give an observable signature of super-
strings in the varying spectral index of the density per-
turbations produced during inflation, although one would
need the two-loop result to quantify this. Note that we
must be in the vacuum-dominated regime for the loop
expansion (expansion in b /47r (S+ S)) to be reliable.

A specific gnodel

The arguments that we have given suggest that false
vacuum inflation can be achieved, provided that the su-

Note that these terms, although not inBationary, could
lead to a scaling a oc t of the scale factor of the Universe,
taking us down from the Planck scale to the energy scale at
which in8ation proper starts.

Note that ttt ) 1 corresponds to ltttsl fit/Ts + Ts but,

still lPsl & QTs + Ts a This is the only place where we

will relax the assumption of lPsl « QTs + Ts a One of
the problems of relaxing this assumption is that we ne-
glected the terms in Eq. (4.20) proportional to 1/Xs ——

cosh (P/~2)/(Ts + Ts). This will be reasonable for
ttt « 1 but is unlikely to be so for P )) 1. However, it
may just be acceptable for P 1, and so, making the big
assumption that the derivation of Eq. (4.30) is still valid
for P ) 1, we get the infiationary potential
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perpotential satisfies certain conditions. We have not,
however, demonstrated that such a superpotential exists,
nor have we discussed the instability mechanism which
ends inflation (see Secs. II and III). We therefore end by
showing how things work out with a specific choice for
the perturbative part of the superpotential. The form we
choose is

(~) (~) + -(2) -(2) + -(3) -(3)

+, , +, , 3+ ~, 440

where. . . and ( ) correspond to the generic label
I

used previously. We also assume that P( ) and 4), for
i = 1, 2 and o. = 2, 3 acquire the expectation values

- (~) —b(-'s'
j( ) A( ) (g T)

[n (T')1'
(4.41)

and similarly for ((). The form of these expectation val-

ues is motivated by gaugino condensation scenarios (see
for example Eq. (36) of [50]). These expectation values

might be induced by the D-term part of the scalar poten-
tial or, more directly, by a nonperturbative part of the
superpotential. We will assume» is D flat because it
will become (part of) the inflaton.

Substituting into Eq. (4.26) we get

i,")~.+~("» + A("» + A(')i. + &(')» +( )

1+ (subscript 1 m subscript 2) +
X1X2 Y+ 4', c)3Gs

fi)1)fi) 1) fi)2)fi)2) fi(3)A)3)
( )

4(l)fi)4) fi)4)fi)1) (fi p) (4.42)

For»l ) 0 this potential is minimized for» —ct)3

j( ) j( ) j( ) j( ) ()

y( ) + y( )

flaton a potential, also as discussed above. However, at
()) = ());„,t ——v(2 max(A, A) an instability sets in, ending
inflation in a manner similar to that described in Secs. II
and III.

X,X, {Y+,', SGsj

+ (subscript 1 ~ subscript 2)

](1)](1) A(2)A(2) + A(3)A(3) + (- -)

X,X, {Y+,', SGs)
(4.43)

Defining the canonically normalized fields 4 oc ())3, F11 oc

, 42 oc ())z, A2 oc A1 A2 + A1 A2, and similarly
for the checked (i.e., ) symbols, then working to lowest
order in b and the matter fields, we obtain

f
@1@2+ A' +

l
@1 + @2S+S r

+( w ) (4.44)

Proceeding as in Sec. IV A then gives

2 4 A 2 + 2 2

(4.45)

For ct) ) 1r2 max(A, A), this is minimized for g = g = 0,
giving the false vacuum energy density

IAI'+ IAI'

S+5 (4.46)

as discussed above. The higher order terms give the in-

V. A FIRST-ORDER MODEL

V(ct), @) = —'A {M + g ) + 'M Q —-'pMQ-
+ 1 2y2 + 1 ply2y2 (5.1)

The cubic term spoils the degeneracy, and choosing o.

greater or less than zero determines whether g = 0, (t) = 0

The one context in which the dynamical effect of more
than one scalar field during inflation has been considered
in some detail in the literature is in models of inflation
ended by a first-order phase transition, where a field must
tunnel from the metastable false vacuum, through a clas-
sically forbidden region, to the true vacuum. In the case
of a single scalar field (Guth's old inflation model [60])
the metric rapidly reaches the static de Sitter metric with
a fixed nucleation rate to the true vacuum and the tran-
sition must either complete at once (without sufficient
inflation) or not at all. The critical parameter here is the
percolation parameter p, the average number of bubbles
nucleated per Hubble volume per Hubble time. To com-

plete the transition p must exceed some critical value,p„1 [61]. By introducing a second scalar field which

can evolve with time, p can grow, allowing sufFicient in-

Ration before the transition completes.
To incorporate such a first-order transition into our

model we must extend our basic potential Eq. (2.1), to
include asymmetric terms which can break the degener-
acy of the two vacuum states at low energies. Thus we

will consider the more general potential
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is a local minimum or saddle point, respectively. Thus
in addition to the two mass scales M and m we now
have four dimensionless coupling constants A, A', o., and

Requiring the energy density of the true vacuum to
be zero [V(0, Qt,„,) = 0] can be used to specify p, say, in
terms of o. and A. Thus we have one more free parameter,
n, than in our second-order model (which corresponds to
the particular case n = —A, p = 0).

At large values of ~P~ [where A'(P/M) ) (p /4A) —n]
the potential has only one turning point with respect to
g, a minimum at g = 0, while for smaller values of ~P~ a
second minimum appears, initially as a point of inflection
at g = p/2A. Although it is this second minimum that
develops into the true vacuum with V = 0 when P = 0,
for p g 0 it initially has an energy density greater than
that of the false vacuum so that if the fields follow the
"path of least resistance" they will remain in the false
vacuum for n+ A'(P/M) ) 0.

ing the nucleation rate for Q from the false to the true
vacuum. The correct two-Geld result is not known so,
in common with all other models of Grst-order inflation,
we will calculate instead the tunneling rate for the quasi-
static potential V(g). We would only expect this to be
valid if m H, which is indeed guaranteed if we are in
the vacuum-dominated regime.

The percolation parameter is then given by

AM4
p = H, exp(-~~)4H4

where the term in the exponential is the Euclidean ac-
tion of the tunneling configuration [62], recently given
for first-order quartic potentials V(Q) by Adams [63] as
S@ = 27r B4/A, with B4 a numerically calculated mono-

tonically increasing Gtting function of the parameter

(5 6)

A. Inflationary dynamics

While g is restricted to the false vacuum (Q = 0) the
potential for P remains that given in Eq. (2.3), and the
dynamics are the same as considered in Sec. II, except
that the effective mass of the g field is now

M~ ——nM + A'gP —= n(g)M (5.2)

and a second-order transition is not possible for o. ) 0.
Instead the transition must proceed by nucleating bub-
bles of the true vacuum and the end point P;„,t is replaced
by the critical value P„where the percolation parameter
reaches p„.

Notice then that inflation ends at

0'end maX(4'61 Wcl') 'I (5.3)

where the slow-roll condition may break down at P, (de-
fined as in Sec. II) before the true vacuum percolates.
If this is the case then we are again in the inflaton-
dominated limit, the false vacuum energy density is neg-
ligible (AM « mzggo), and the constraints are exactly
the same as when the eventual transition to true vacuum
is second order. The precise mechanism of the phase
transition becomes irrelevant as this now occurs after
infiation has ended. After passing P, the field reaches
P = 0 within one Hubble time. Unlike in the second-
order model this does not immediately cause an insta-
bility, and oscillations about P = 0 could be sufficiently
damped to restart infiation if P„ lies very close to zero.
However, even in this case we can show that the number
of e-foldings, given by Eq. (2.14), during any subsequent
stage of inflation,

1 1 ( A' mph

8 4 167rA M )
(5 4)

must be very small.
Thus we will consider only the vacuum-dominated

branch in what follows, where we may take AM ))
m P„. Another reason for doing this is that we will
have to ignore the evolution of the P field while calculat-

In our model b(P) decreases as P rolls down its po-
tential during inflation, until SE is suKciently small for
the percolation parameter to reach unity, allowing the
erst-order transition to complete. This corresponds to

S„=ln 41n
AM4 mp)

4p„H4

Figure 3 shows the corresponding value of b„required
for the transition to complete at diKerent values of the
false vacuum energy density. Clearly for a given o, there
is a lower bound, b ) hp = 9An/p2, and a corresponding
bound on the nucleation rate, so the Grst-order transition
cannot complete when the energy density of the false
vacuum is above a given value. For instance, if A = 1
and o. & 1 then the transition will never complete for
M & 10~4 GeV.

Assuming then that n is sufficiently small [i.e. , bo &

h„(M)], bubbles of the true vacuum will percolate at
P„= gA/A'& M, where, to utilize the results of Sec.

—10 —5
Ogio ( v / mpi )

FIG. 3. 6, and b plotted as functions of V ~ /mp~ for
first-order inBation. 55 e-foldings from the end of inBation b55

must lie above the dotted line b, but then reach the solid line

b„, to bring inBation to an end. The two trajectories, plot-
ted as dashed lines, represent the typical evolution of b and
M/mpi, for (a) extended iuilation where h =const, and (b)
false vacuum inflation in Einstein gravity where V ~ /mp~
const.
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II, we write

9A'
efF (5.8)

To complicate the matter somewhat, A,'& is now a func-
tion of M through the dependence of b„on the energy
density, but this dependence is very weak for the energy
scales significantly below the Planck scale which we are
interested in. With this proviso then the results for the
vacuum-dominated branch of Sec. II in the second-order
model may be carried through to the first-order model
by replacing A' by A,'&.

minimized for small a, as bo ~ 0, but can become large
if b„ is too close to bo.

Normalizing the parameters of the model by the ob-
served density perturbations, as described in Sec. II,
gives another relation between m and M which, com-
bined with the big-bubble constraint, provides limits on
either m or M alone:

M 5 7C& (3 x10-')
mpl 55%

2

mp]

B. Big-bubble constraints

The production of large true vacuum voids, nucleated
early on during inflation and swept up to astrophysical
sizes by the subsequent expansion, can severely constrain
some models of first-order inflation [64,65]. The isotropy
of the microwave background can be used to rule out
the possibility that there are any voids with a comoving
size greater than about 206 Mpc on the last scattering
surface [65], which corresponds to a filling fraction of
less than about 10 for bubbles nucleated around 55
e-foldings before the end of inflation. This means that
the percolation parameter at this point; during inflation
must be less than 10, requiring

b, —bp l
x ln ~„—~, )

(5.14)

For reasonable values of the coupling parameters, of order
unity, we would expect the right hand side of Eq. (5.13)
to be 10, placing a lower limit on M of around 10
GeV in a first-order model, unless we have b„very close
to bo. The other way to allow first-order models at lower

energy scales would be to introduce a strong coupling A',

much larger than unity, between the two fields, which
is clearly always possible, as this enables only a small
change in P to effect a large change in the bubble nucle-
ation rate.

Sqq + 4ln + 11.5. (5.9) C. Other Brst-order models

b, —bo M. (5.10)

In the vacuum-dominated regime the value of P can be
given as a function of the number of e-foldings before the
end of inflation from Eq. (2.14)

Nm'm'

I, 2vr~M4
(5.11)

which gives the constraint in Eq. (5.10) as a constraint
on the mass scales

( .— o)
ln IM4 55 Ih„—h, )

(5.12)

In other words, the mass of the P field, m, must be large
enough for the decrease in the effective mass of the g
field during the last 55 e-foldings of inflation to raise the
percolation parameter from 10 to unity. The numerical
factor on the right hand side of this equation is fairly
small, typically about 10 for A 1, so this does not
threaten to force us out of the small m limiit. Clearly it is

This gives the second line in Fig. 3 showing the minimum
permissible value of b (denoted by b, ) at 55 e-foldings be-
fore the end of inflation at different false vacuum energy
densities.

Obeying this extra constraint, biz b„requires o. to
be greater than a minimum value at this point and thus

The ability of a second scalar field to allow a first-
order inflationary phase transition to complete was first
emphasized by La and Steinhardt [8]. This is the basis of
models of extended inflation based on extensions to the
gravitational Lagrangian beyond the Einstein-Hilbert ac-
tion of general relativity [8—10]. In Brans-Dicke gravity,
for instance, the Ricci scalar appears in the action cou-
pled to a scalar field rather than Newton's constant, and
it is this growing Brans-Dicke field, 4 = mp&, which trig-
gers the completion of the phase transition in the Q field.
However, Linde [2] and Adams and Freese [3] pointed out
that this basic scenario can also be realized in general rel-
ativity by coupling the inflaton to a second scalar field.
Linde used the same basic first-order potential V(g) as
we have, although he used a Coleman-Weinberg-type po-
tential for P rolling down from +oo, introducing a mini-

mum at a nonzero value. This would have to be included
in the minimum value of 6 and thus b. Adams and Freese
considered a specific interaction rather different to ours
where, as P rolled down its potential, the energy of the
false vacuum state actually increased relative to the true
vacuum, but their more general discussion was clearly
intended to include models such as the one we have ex-
amined here.

The bubble nucleation constraints in terms of b„and
biz are independent of the type of first-order inflation
being considered. Extended inflation models consider
a first-order potential for the inflaton which does not
change during inflation. Thus b remains a constant,
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as does the false vacuum energy density. The time-
varying quantity here is the Planck mass which grows
during inflation. Thus extended inflation models pro-
ceed horizontally, &om right to left across the parameter
space in Fig. 3, completing the phase transition when
b„(M/mp~) = h. The general relativistic models consid-
ered here, and those considered by Linde and by Adams
and Freese, proceed almost vertically as the false vacuum
energy density remains approximately constant as b de-
creases with P. Because the percolation parameter p is
exponentially dependent on the Euclidean action S@, it
is relatively easy to evade the big-bubble constraints in
the general relativistic models varying b. In models where
only M or mp~ varies, the percolation parameter tends to
grow comparatively slowly, making the big-bubble con-
traint much more severe, especially as V/m4pi and V'/V
are already constrained by density pertubations at 60 e-
foldings [25].

This has led other authors [5,39,10] recently to consider
models of extended inflation where nonminimal coupling
can also change the shape of the "efFective potential, "
making M&2 ——(R —AM2 for instance. In such cases
inflation could again end by a first- or second-order tran-
sition. In a de Sitter metric the Ricci scalar R is a con-
stant (R = 12H ) so a false-vacuum-dominated universe
in general relativity does not yield a time-varying mass.
But in Brans-Dicke gravity, for instance, where the dom-
inant coupling to the Ricci scalar is via the Brans-Dicke
field (rather than a constant), the expansion is power
law [66] rather than exponential and R oc t 2, triggering
an instability when R & gA/pm. Similar models have
been proposed in higher order gravity theories, coupling
the Q field to R terms [10]. These models extending the
gravity Lagrangian can be rewritten in terms of a general
relativistic model with two interacting scalar fields (the
defect field and a dilaton field that acts as the inflaton)
using a conformally rescaled metric [67]. But the scalar
field Lagrangian in this case is rather different from our
model as not only My but all the mass scales are changed
by the dilaton field. These first-order models thus cor-
respond to a more complicated path on Fig. 3, and by
making b a function of time can also evade the big-bubble
constraint.

VI. DISCUSSION AND CONCLUSIONS

In conclusion, models of inflation based on Einstein
gravity, but driven by a false vacuum, ofFer a range of
new possibilities for both theory and phenomenology.

On the particle physics side, we have shown how false
vacuum inflation points to new possibiities for model
building. In particular, we have shown that it can oc-
cur in a class of supergravity models implied by orbifold
compactification of superstrings. One outcome of that
discussion was the intriguing possibility of obtaining a
handle on the superstring orbifold, through the fact that
one-loop corrections might be the dominant effect deter-
mining the spectral index. Much remains to be done of
course. For instance, although we have exhibited a toy
model for the scalar field sector of the string-derived su-

pergravity theory, we have made no attempt to put it in
the context of a realistic model involving other fields as
well. In particular, we have not tried to extend to super-
gravity the identification of the false vacuum with that of
Peccei-Quinn symmetry, which we found was both viable
and attractive in the context of global supersymmetry.

In terms of direct cosmological phenomenology, the
most crucial feature of false-vacuum-dominated inflation
is that the energy scale at the end of inflation can be al-
most arbitrarily low, the value 10 GeV which is usual
in the true vacuum case appearing only as an upper limit.
If the upper limit is approached one has the unusual fea-
ture of a spectral index for the density perturbations ex-
ceeding unity, though we have demonstrated that with
the COBE normalization the deviation can only be rather
modest with a plausible maximum of around n = 1.14.

An additional feature of interest is that one expects
topological defects to form as the false vacuum decays;
because essentially all the energy density is available to
go into the defect fields, the energy available is much
greater than in the usual models where reheating is re-
quired first, redistributing the energy into a large number
of fields. Because of this, structure-forming defects are
comfortably compatible with our inflation model when
the masses are towards the top of their allowed ranges.
We have made a preliminary investigation of the details
of the phase transition in different regimes, though much
remains to be done. For a second-order phase transi-
tion, results already exist in the literature describing the
inflaton-dominated regime. We have demonstrated that,
barring very weak couplings, the phase transition pro-
ceeds very rapidly in the vacuum-dominated regime, but
have been unable to develop a solid understanding of the
statistics of the defects produced in such a transition. In
the first-order case, where the transition completes via
bubble nucleation, we have gone on to calculate the bub-
ble distribution and the constraints upon it. We note
that first-order inflation models based on Einstein grav-
ity are generally easier to implement than those of the
extended inflation type.

That one can have both structure-forming topologi-
cal defects and inflation raises a host of possible struc-
ture formation scenarios, as one could choose to utilize
only one of these two or a combination of the two. It
is believed [35] that, for a given size of density pertur-
bation (i.e. , perturbation in the gravitational potential),
defects give a larger microwave background temperature
anisotropy, by a factor of a few. One could therefore ar-
range for defects to be the source of a component of the
COBE signal while having only a modest effect on struc-
ture formation; alternatively one could aim to have in-
flation and defects contributing roughly equally to struc-
ture formation, in which case the defects would be pre-
dominant in the microwave background. It is conceptu-
ally (and calculationally) preferable to take the option of
using only one source, lowering the energy scale of the
other to make its effects negligible, but one should be
aware that the required scales of the two are similar, and
should a realistic model along our suggested lines be de-
vised it would not be a particular surprise should both
contributions have a role to play.
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