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We use the large-N approximation to investigate the nonminimal gravitational coupling (RP of the
scalar bound state in the O(N)-symmetric vector model with a y interaction. If the elementary scalar
field is minimally coupled to gravity, g is found to assume values in the interval [—1,0] only. For the
conformally invariant coupling of the elementary boson, the bound state is always minimally coupled
((=0). The induced g term is also calculated for spontaneous and explicit symmetry breaking from

O(N) to O(N —1) when the resulting Goldstone bosons can form bound states. The nonminimal gravita-
tional coupling of scalars has important applications in inflationary cosmology.

PACS number(s): 98.80.Cq, 04.50.+h

I. INTRODUCTION

It is well known that a scalar field in a curved space-
time, beyond its minimal coupling to gravity, also allows
for a nonminimal coupling via an operator of dimension
41.

S=—,
' x g —D +p+ 8 x +5,.„, .

Here, D„ is the covariant derivative containing the
Christoffel symbols of the background metric g„„(x),and
R(x) is the corresponding Ricci scalar. Usually, the
coefficient of the nonminimal term g is treated as a free
parameter on the same footing as masses and coupling
constants. The only distinguished values for g are (=0
corresponding to minimal coupling and g= —,

' which leads
to a conformally invariant action if p =0. Recently it
was pointed out [1] that if P is a composite particle, the
value of g should be fixed by the underlying dynamics of
the constituents. Specifically, it was shown that for the
scalar composite boson of the Nambu- Jona-Lasinio
model [2), the parameter g can be calculated unambigu-
ously. Remarkably, in a leading large-N approximation
one finds exactly the conformal value g= —,'. (Because of
the scale-breaking eff'ects due to the masses, this does not
mean that the theory is conformally invariant. ) A closely
related question, the renormalization-group flow of g in
grand unified theories (GUT's), has also been studied
[3-5).

The determination of g in a given model is not only in-
teresting in its own right but it also has interesting appli-
cations to various inflationary cosmologies. For instance,
if g is very large and negative (g= —10 ), the Higgs field
of grand unified theories could be used to drive inflation
[6]. The extended inflation model of Ref. [7], on the oth-
er hand, favors much smaller values (

—0.01 & g & 0).
It is the aim of the present paper to study the induced

g term in two closely related models in which the forma-
tion of bound states can be treated analytically. The first
one is the O(N)-invariant vector model with a ip interac-

%'e use Euclidean notation throughout. Our conventions are
R"„&=8 1I„'&—- and R =g ~R"».

tion. The (bare) action reads
r4, l a D2+ 2+ g a+ +a+a 2

(2)

where q&', a=1, . . . , N, is a vector under O(N). Using
the large-N expansion [8—12], it was shown (in fiat space)
that the inverse propagator of the composite operator
qPqr' develops a zero at a certain (Euclidean) momentum

p = —ma signaling the existence of an O(N)-singlet, sca-
lar bound state of mass m&. Contrary to the
Nambu-Jona-Lasinio model, the constituent particles
are scalars themselves, so that there can be a g R term at
the fundamental level already. In Sec. II we shall calcu-
late the induced g coupling of the composite particle for
all values of g and the other renormalized parameters of
the model. It turns out that g depends on them only via
the ratio m/ma where m and ma are the masses of the
elementary fp' boson and the bound state, respectively.

The renormalized form of the y theory, with the
cuto6' removed, should be considered a kind of toy model
because most probably a nontrivial theory obtains only
for a finite cutoff [11]. However, keeping the cutoff finite,
one is left with a branch of solutions of the gap equation
[10] for which the bound state is a tachyon. Neverthe-
less, the discussion in Sec. II provides a useful warmup
for the slightly more complicated effective-field-theory
model of Sec. III. It is obtained from (2), with po &0, by
adding a term which breaks the O(N) symmetry to
O(N —1) explicitly. Under certain conditions the Gold-
stone bosons related to this symmetry breaking form sca-
lar bound states whose induced g term we shall compute.
Originally this model was inspired by the "surrogate
Higgs boson*' which exists in some technicolor models
[13], and it was analyzed in detail by Chivukula and
Golden [14].

II. THE O(N)-SYMMETRIC VECTOR MODEL

We analyze the model (2) generalizing the standard
techniques developed for flat space [8—10]. Introducing
an auxiliary field g in order to linearize the quartic in-
teraction term, the generating functional reads
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exp[ W[J']] —= fDy exp[ —S[y]+f d x&g J'qF j

D D '
~
— d —,

' 'E '—J' '—
0

(3)

where

IC =——D +gR +y .

The classical field equation for the auxiliary field is

Ao
X po+ 6~& f

so that y is related to the bound state we are looking for.
Performing the trivial integration over p', we obtain

av„( ') =
—,'x(4') .

The renormalized version of the gap equation (8) and the
effective potential V,z have been extensively studied in

Ref. [10]. In particular, it has been shown that there is
no spontaneous symmetry breaking in the leading order
of 1/N; i.e., the minimum of the effective potential al-

ways occurs at P =0. In view of Eq. (6) this means that

exp[ W[J']] = fDg exp[ W[J',g]], g(P =0)=m (10)

W[J',y]= f d xv'g, —,'J'K 'J'+ (y —p2o)2 .
0

,'N Tr1—n[—K]. (5)

r[4' x]=fd'x&g ,'0'[ D'—+kR—+x]4'

3N

+ ,'N Tr ln[ —D+gR+y—], (6)

with g to be determined from (5I /5y)[g, g]=0, or, ex-
plicitly,

All terms on the right-hand side (RHS) of Eq. (5) are of
order N. Therefore, for N very large, the y integration
can be evaluated by the saddle-point method. In leading
order one has W[J ]= W[J,g]+, where g is the sta-
tionary point (5W/5y)[ J,g]=0. The corresponding
effective action is

is the mass square of the P' excitation.
In the following we assume that the gravitational field

is suSciently weak so that it has no significant in6uence
on the internal structure of the composite particle and on
the masses of P' and of the bound state, respectively [15].
Then we can use the same gap equation (8) as in flat space
and work with a constant g:—m . If we put P'=0 and
y= m +5g, Eq. (6) gives rise to a quadratic action of the
general form

I' '=
—,
' x g y II —D + y, 11

where II( D) is the —covariantized inverse y propagator
of fat space. Because the gravitational field is weak, the
condition for 5y describing a propagating bound state of
mass ms is given by II(p = —ms ) =0, as in flat space. If
the parameters X and p are chosen appropriately, one
finds that indeed II(p ) can have a zero at negative Eu-
clidean p . In the neighborhood of p = —mz we may
expand II(p ):

I' '=
—,
' f d x&g 5y[Zs( D+m )+s—( ]5y+

Ap
g(x)=po+ P (x)+ (x ~( D2+gR+—g) '~x ) .

with

(12)

(7)

Similarly, the equation of motion (51 /5$) [P,g]=0
determines the vacuum expectation value P—= (P). Be-
cause we are interested in the propagator of the y'y'
bound state, we shall expand the effective action I
around the vacuum configuration (P,g) allowing for small
ffuctuations of y: g=y+5g. Isolating the piece quadra-
tic in 5g, we can read off the inverse propagator of y, in-
cluding the induced g term. Before we come to that, let
us briefly recall the situation in flat space [5]. There, with
the further assumption that P is constant, Eq. (7) be-
comes the gap equation

anZs=— (p = —ms) .
Bp

(13)

so that finally

r"'[a]=,' fdpi/ga[ D+m +JR—]II+

(15)

In order to obtain a conventionally normalized kinetic
term, we introduce the renormalized field 8 =Zz 5y and
the renormalized g parameter

K=Zs 'ko

2+ o 2 o dp4 (8)(2~)'I'+y '

and Eq. (6) gives rise to the efFective potential V,z(p~) re
lated to g by

Note that 5y, B, and Zz have mass dimensions +2, +1, and
—2, respectively. As a consequence, the bare parameter go has
dimension —2, but the renormalized g is dimeusionless, as it
should be.
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Our aim is the determination of the renormalized param-
eter (14}. Apart from go, we have to know the residue

Zii, which can be extracted froin the calculation in flat

space, however.
For a detailed discussion of the gap equation, which

yields g as a function of p and A,, and of the conditions
for the occurrence of a stable bound state, we refer the
reader to the work of Abbott, Kang, and Schnitzer [10].
Their results directly carry over to the present case, but
we shall not repeat them here. Suffice it to say that the
renormalized gap equation has two branches of solutions.
On "branch I" the resulting bound states are tachyons,
but on "branch II" stable (Zii & 0) composite particles are
possible. Their mass ranges from m~ =0 to 2m depend-
ing on p and A, . (For finite cutoff and positive bare cou-
pling, only the tachyonic branch exists. )

Next we turn to the actual derivation of Eq. (11)which
requires a partial evaluation of the functional trace on the
RHS of Eq. (6). Using the proper time representation

with

f(p, m )=
48m

1/2
p +4m

p'

(p +4m )' ++pXln
27Pl

Equation (19) shows that the logarithmic divergence in
(21}can be absorbed by a renormalization of A,o. Combin-
ing Eqs. (13), (19), and (21), one obtains the finite result

is easy to show that (20} coincides with the usual loop in-
tegral (we use the notation of [10]):

B(m2 p2 A2) i
'qA 1

2 ' p+q '+m' q'+m'

A1+in +f(p, m ), (21)
96m m

Trln[ —D +m +gR+5y] Z~=3N (p = —mii, m ) . (23)

m fTre&p t ~2+ g
0 t

(16)

The analytic continuation of {22) to negative values of p
yields the desired answer (valid for mii (2m):

the relevant terms of the heat kernel Tr exp( ) can be
found in the literature. Using the results of Barvinsky
and Vilkovisky [16],the II term can also be found in this
way:

Tr exp [ t ( D+—gR +—5y ) ]

=(4trt) 2J d4xVg i 1+—,'t25y I dae " " 5y

+ ' t i5y2R (
' g—)+——

2 6

192~'

6g—1 N
192m m

and, similarly,

(18)

(17}

Only terms of the form 5yD "5y and R 5y were retained
in this expansion. Inserting (17} into (6) with (16) and
comparing to (11),one finds immediately,

Zg [(1—v )
'~ arcsin(v) —v],

128m m u

mg
v = . (24)

2@2

Together with the expression (18) for go, this leads to the
renormalized g parameter

g(v)= —,'(6g —1)v [(1—u } ' arcsin(u) —v] ' . (25)

Equation (25) is our final result. The value of g depends
only on the ratio u =mii/2m 6[0,1], where m~ and m
are the masses of the bound state and the elementary P'
particle, respectively, as well as on f', the g parameter of
P itself. If P is minimally coupled, )=0, g(v) can assume
values in the interval [—1,0] only. In particular, the
"conformal" value g= —,

' cannot be realized. If, on the
other hand, the P field is coupled with g= —,', then g(v) =0
for all u so that the bound state is minimally coupled. In
the strong binding limit, when m& is (almost) zero, Eq.
(25} reduces to g(0)=6/ —1, i.e., for (=0 the lower
bound g= —1 is assumed. From the analysis in Ref. [10]
we know that the mass of a stable bound state cannot
exceed 2m. In the limit mii ~2m, the g parameter van-
ishes as

with

II( D)= —3NA,—'+ 3NB ( D), —(19)
g(mii ~2m ) =—', {6(—1) [4m —ms ]'~ (26)

B(p }—:— J da
96H

At the same time the wave-function renormalization Zz
of Eq. (24) diverges, indicating that mv cannot be pushed

exp t ~2+ ot 1 ~ p
2

0 t

(20}

The t integration on the RHS of Eq. (20) is logarithmical-
ly divergent for t —+0. Keeping a finite cuto8' to-A, it

Inspired by recent work on matrix models a double scaling
limit leading to a critical theory with m& =0 has been suggested
[17]. In four dimensions its existence has been questioned [18],
however, because precisely at the critical point the effective po-
tential becomes everywhere complex.
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beyond 2m. As v is increased from v =0 to 1, ( starts at
6(—1 and monotonically approaches zero.

degenerate in mass. The inclusion of the term (27) leads
to the e6'ective action

1.[0' X]=I'[O' Xl —Jd' v'g 4 (28)

III. ADDING EXPLICIT SYMMETRY BREAKING

It has been pointed out [13] that if both spontaneous
and explicit chiral symmetry breaking occur in rnode1s
with a large number of Goldstone bosons, then a stable
scalar resonance might form which can be regarded as a
bound state of "pions. " Chivukula and Golden [14] (CG)
have investigated this possibility in the context of the
O(N) linear cr model. They find that for weak coupling
there are indeed stable bound states which become broad
resonances when the coupling becomes strong. In this
section we study their nonminimal coupling to gravity.

CG add for p0 & 0 an explicit symmetry-breaking term

Ssii= Q Jd xi gp~ (27)

where I'[P',y] is the previous expression (6).
Differentiating (28} with respect to g leads to the gap
equation (7) again. The condition (51 /5$')[&$&, g]=0
gives rise to

[ Di—+JR+/]&P&=0, j=1, . . . , N 1—
[-D +gR+g]&y" &

= (29)

Again we assume that R is constant so that &P'& and g
become x independent too. Then (29) implies

&W&=0, &O"&= [X+rR]-' (30)

Next we expand I [P,y] about its minimum. Writing

to the action (2). This forces the vacuum expectation
value &qr'& to lie along the tpz direction. The fields

, correspond to the pions. Because of the
explicit symmetry breaking, they become massive, but the
unbroken O(N —1) symmetry guarantees that they are

I

yiv —
& yE& +o(x)

g+r(x—) =m „+r(x)
we obtain

(31}

I'[n~, cr, r]=f d xv'g —,
'n. [ D+jR+—m +~]m;+ —,'o[ D+gR+—m +r]o+&) &m—

0

3NP0
+~

0
m + —,

' &P~&2 +—Trln[ D+gR+—m +r] .
0

(32)

We see that p=—m is indeed the mass square of the
pions. Their nonminimal coupling to gravity is given by
the classical value g. Let us now analyze the propagator
of the coupled 0-~ system. From our previous calcula-
tion we know already that

—Trln[ D+gR+m —+7]

d x gvx 3NB m„, —D, A + zx

+O(~ ), (33)

where $0 is given in (18). Hence the quadratic action for
o and ~is

I,'= ,' Jd xv'g (—o,r)K( D, R )(o.,r)—
with the inverse propagator

K = D+gR+m-
K.,=K,.= &y"&,

K„=—3NA, O
'+3NB(m, D,A )+goR—

(34)

(35)

Let Us define a renormalized, scale-dependent coupling
A.(M) by absorbing the divergent part of B into Ao '. We
set [10]

' —B(m p A )=A(M) ' B(m p M )—

where

B(m„,p, M ):B(m,p, A—
) B(M,O, A—)

2

ln +f(p, m „) f(0,M )—
96~2 M2

(37)

is finite for A~Do. The coupling A(M} shows the usual

(one-loop) running: it increases monotonically (logarith-
mically, in fact} with M and finally becomes infinite at a
certain scale ("Landau pole" ). We use the convention of
CG and set the scale M equal to the Landau scale so that
1/A, (M)=0. Instead of the renormalized coupling, we
use the magnitude of M (relative to m or & P &, say) to
characterize the strength of the quartic interaction. Let
us assume we specify the bare parameters of the theory at
a UV cuto8'scale A which is slightly below M. Then we

may start from a large, positive k0 and obtain a smaller
renormalized k by following the renormalization-group
flow from high to low scales. Clearly when M, and hence
A, are large (small), we have to evolve }i, for a long (short)
"renormalization-group time" and therefore the renor-
malized coupling is small (large). Hence in this parame-
trization the weak-coupling regime obtains, for
M»&P"&, m .

The inverse propagator reads now

K( D,R)—
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—D +gR+m

( yN)

(yN)

3NB(m, D—,M )+(DR

(38)

In order to decouple the modes, we have to bring it to the
diagonal form

e+( D—,R )

E( D—,R)=

N 1+0
N

(47}

Finally, we have to determine g( ), in the expansion (40).
It is sufficient to diagonalize E( D—,R) to first order in
the (constant) curvature R. Omitting terms which are of
higher order in 1/N, we find, after some algebra,

If a bound state occurs for some p = —mz &0, only one
of the eigenvalues (e, say) will have a zero. Near the
zero, we expect a behavior of the form

e ( D,R—}=Z( )( D+—ms)+g( )R+

so that the renormalized g parameter of the bound state
is given by

If we divide by Z( ), we arrive at the following result for
the renorrnalized parameter:

f2

(so —m )G'(so)

—2

g=Z( ')g( ) . (41) X . g ', n (1--6-()

e~(s) =
—,
' [m „—s+3NB ]

r

4G (s)
(m —s+3NB )

1/2 '

(42)

where B:—B(m, —s, M ) and

G(s)—:detE( —s, O)

=3N(m —s)B(m„,—s, M ) —(P ) (43)

If there exists a value so=ms &0 for which G(so)=0,
then the eigenvalue e vanishes and the corresponding
eigenmode represents a bound state of the pions with
mass ms. Expanding e (s) near s =so and comparing to
(40), we obtain, for the residue,

so™~dG
2

Z( —) f2 ds s =so
+0 1

N
(44)

Here we used the notation (P ) =f because it ca—n be
shown [14] that the vacuum expectation value of P
equals the pion decay constant in this model. Employing
Eq. (37), we find explicitly

2
dG N, , m m. —s

ds 16m2 m 2s

—3N 1+
2m m~ s

f(s, m ),
s 4m —s

(45)

where f(s, m „)—:f( s, m ) is the —analytic continuation
of (22) to negative values ofp = —s, 0 & s & 4m

1/2

f(s, m„)= 1

48~
arctan

s
4m —s

(46)

For our purposes it is sufficient to determine the location
of the zero, m~, and its residue Z~ ) in the absence of
gravity because we have to keep only terms of lowest or-
der in the curvature. Setting s = —p &0, the eigenvalues
of E( —s, O) are, to leading order in 1/N,

Here, G' =dG /ds is given by Eq. (45) with (46). Our re-
sult is of order N because both G' and f [14] are of or-
der N.

The essential features of the result are as follows. Ex-
cluding wave-function effects, the induced g parameter is
given by the expression (47) which has no explicit depen-
dence on so. It consists of a classical piece g and a quan-
tum correction which is proportional to (lnM ) . It van-
ishes in the weak-coupling regime where M is large. Fur-
thermore, it is identically zero if g assumes the "confor-
mal" value g= —,'. Including the wave-function renormal-
ization, Eq. (48), the expression for g contains the (mass}
of the bound state so explicitly. It is a complicated func-
tion of the parameters specifying the model: the scale I,
the pion mass m„, and the pion decay constant f. In Ref.
[14] the dependence of the dimensionless ratio so/f on
M/f and m /f has been determined by solving numeri-
cally the equation G(so)=0 in the complex s plane. It
turns out that if the theory is weakly coupled (M large),
this equation can be satisfied by a real so in the interval
[0,4m ]. This is the bound state we are interested in.
There exists also a tachyonic zero, with a much higher
mass m„however. The theory is meaningful as an
effective theory at scales well belo~ m, . %hen the cou-
pling is increased (M is decreased), the bound-state pole
moves on the positive real axis of the complex s plane to
the left, and 6nally collides with another pole which
comes from smaller values of s and moves to the right.
After the collision, the two poles move off the real axis,
with complex-conjugate residues whose real part is posi-
tive. Thus the stable bound state turns into an increas-
ingly unstable resonance. For any so =so(M, m, f ), Eq.
(48) gives the g parameter of the corresponding scalar-
isoscalar excitation, at 1east as long as so remains real and
there is a stable bound state. If so is complex but has an
imaginary part much smaller than its real part, then the
composite particle is almost stable and g' has its usual in-
terpretation.

In the weak binding limit, when so is not too far below
the threshold 4m, Eq. (48) can be approximated by
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l-2567r f'/N so

m' 4m'

1/2

m
t

—2

(49)

Obviously, ( vanishes if so approaches the threshold 4m
from below. At this point, Z[, diverges and there is no
bound state anymore.

IV. CONCLUSIONS

In this paper we have investigated two models with
fundamental scalar fields for which the existence of
bound states can be established in the large-N limit. We
have shown how in both models the (RP -type non-
minimal coupling of the bound states to gravity can be
calculated unambiguously in terms of the renormalized
parameters characterizing the theory.

In the O(N)-symmetric vector model we found that the
induced g parameter of the bound state depends only on
the mass ratio mz /m and on the nonminimal coupling of
the fundamental field. If the latter is minimally coupled,

g is found to range between —1 and 0. This has to be
compared to the "conformal" value g= —,

' which was

found [1] for the bound state of the Nambu —Jona-Lasinio
model. As mentioned in the Introduction, a negative
value of g would be rather attractive from the point of
view of infiationary cosmology. The two models are
different in that the O(N)-symmetric scalar model allows
for a nonminimal dimension-4 coupling (g) already at the
level of the constituent particles. We have seen that for
any allowed value of mitlm, the g parameter of the4
bound state lies between 6(—1 and zero. It is remarkable
that it is precisely when the fundamental scalars have the

conformally invariant coupling (=—,
' that the bound

states turn out to be minimally coupled. We also studied
a model in which the O(N) symmetry is broken both
spontaneously and explicitly. Because of the symmetry-
breaking term, the Goldstone bosons acquire a mass.
Under certain conditions these "pions" can form stable
bound states [14]. This requires that the theory be weak-

ly coupled. For strong coupling the bound states become
increasingly broad resonances. Contrary to our first
model, the second one is meaningful also as an effective-
field theory with a finite ultraviolet cutoff. For the bound
states of the O(N)-symmetric vector model to exist, it is
important that we work with the renormalized form of
the theory with the cutoff sent to infinity. This means
that the bare coupling becomes large and negative finally

[19]. On the other hand, in the model with symmetry
breaking from O(N) to O(N —1), interesting effects occur
even for small couplings which might be forced upon us

by the triviality bounds. As for the nonminimal gravita-
tional coupling, an essential difference between the two
models is best seen by looking at the induced g parameter
with the wave-function renormalization not yet included.
In Eq. (47) we obtained for the second model a result of
the form g =(+ (quantum corrections). We observe that
in this case the actual g parameter is basically given by
the g parameter of the constituents which is only slightly
renormalized by quantum effects. The situation is
difFerent in the first, strongly coupled model. From Eq.
(18) and its derivation, it is clear that the go which ob-
tains there, though depending on g, is a pure quantum
effect; i.e., it is not of the form g + (small corrections).
The lesson to be learned here is that for weakly coupled
theories it is even more important to know the detailed
properties of the constituents in order to predict the g pa-
rameter of their bound states.
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