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We analyze the presuppositions leading to instabilities in theories of order higher than second. The

type of fourth-order gravity which leads to an inflationary (quasi —de Sitter) period of cosmic evolution

by inclusion of one curvature-squared term (i.e., the Starobinsky model) is used as an example. The cor-
responding Hamiltonian formulation (which is necessary for deducing the Wheeler-DeWitt equation) is
found both in the Ostrogradski approach and in another form. As an example, a closed form solution of
the Wheeler-DeWitt equation for a spatially flat Friedmann model and L =R is found. The method
proposed by Simon to bring fourth order gravity to second order can be {ifsuitably generalized) applied
to bring sixth-order gravity to second order.

PACS number(s): 98.80.Cq, 04.50.+h

I. INTRODUn'ION

It is a quite general belief that curvature-squared
terms, if added to the Einstein-Hilbert action, describe
semiclassically quantum corrections to general relativity.
Further, there is no doubt that the existence of an
inflationary period (exponential expansion of the cosmic
scale factor) solves a lot of problems connected with the
standard big bang model of the Universe. So it is no
wonder that the Starobinsky model (curvature-squared
terms lead automatically to the desired inflationary
period) enjoyed so much interest in recent years. Now
Simon and others have formulated some reasons against
the Starobinsky model; the main reason is the fact that
the field equation underlying the Starobinsky model is of
fourth order.

It is the aim of the present paper to analyze those argu-
ments which are connected with higher (higher than
second) derivative theories.

Reference [1] discusses in its Sec. 2 the "fundamental
problems of nonlocality through the higher derivative
limiting procedure. " The principal result of its Sec. 2.1 is
that at least V —1 of the solutions of a nondegenerate
theory of order 2X carry negative energy. Eliezer and
Woodard write "The energy is therefore unbounded
below for all nondegenerate, higher derivative theories. "
This leads to the instability observed in almost all fourth-
and higher-order theories. The Starobinsky cosmological
model follows from fourth-order gravity, and so it seems
to be a candidate for such an unstable theory (see, e.g.,
Ref. [2]).

We analyze that part of the arguments which is con-
nected with the higher order. To this end we specialize
in the Ostrogradski approach [3] (which is a method to
bring a higher-order Lagrangian into Hamiltonian
form —more recent work on this topic can be found in
Ref. [4]) to fourth-order theories in Sec. II and give some
intuitive examples. In Sec. III we discuss the question of
whether fourth-order theories lead to a minimum or only
to a saddle point of the action. In Sec. IV a method

L=R+ gcR 'R .
i=0

We look for the Newtonian limit of that theory and gen-
eralize Simon's approach [2] to this Lagrangian (1.1)
truncated at k =1.

Section VII discusses the results.

II. OSTROGRADSKI'S METHOD
FOR A FOURTH-ORDER SYSTEM

We follow Ostrogradski [3], but use the notation pub-
lished in Ref. [1], which is more familiar to the present
reader, and we specialize always in fourth-order theories
which follow from a nondegenerate Lagrangian of second
order. So we consider a one-dimensional point particle
with position q (t) at time t Adot den. otes d Idt, and the
Lagrangian is of the type

L =L(q, q, q), {2.1)

where q HI, IXB being a connected open subset of the
space R of a11 reals, and q, q are allowed to cover a11 the
reals. The momentum I'z is defined by

different from Ostrogradski's is proposed to bring
fourth-order equations in a Hamiltonian form.

Then we are prepared to consider the Starobinsky
model [5] in Sec. V. The main problem comes from the
R term, and so we simplify in Sec. V A by discussing the
high-curvature limit and derive the corresponding
Wheeler-DeWitt equation by the method described in
Sec. IV.

Section V B discusses the question of the superfluous
degrees of freedom of fourth-order gravity, and Sec. V C
gives the Starobinsky model in form of a power series not
yet found in the literature.

Section VI is on sixth- and higher-order gravity. It is
included to show which kinds of problems additionally
appear, if L =R+coR gravity is intended to be the
k =0 truncation of a power series:
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P2=

In [1] the Lagrangian L is defined to be nondegenerate if
this Eq. (2.2) can be solved for q, which takes place,
loosely speaking, of ()P2/Bq&0. To avoid discussions for
the case that (2.2) can be solved, but not uniquely, we ad-
ditionally require that

With these definitions the canonical equations

~ „BH P =—
OP aQ"

(2.11)

take place, and their validity implies the validity of the
Euler-l. agrange equation (2.6). Now the arguments of
F, G, K are (Q', Q ) and we get

P2
=F(q, q) .

Bq

Q'=Q' Q'=(P2 —G)/F

and, after some calculus,

(2.12)

Under this circumstance the Lagrangian is nondegen-
erate if and only if F does not have any zeros; i.e., it is a
map F:IXR ~R g [0]. This we shall assume in the fol-
lowing. Then the Lagrangian (2.1) can be written as

L =
—,(q} F(q, q)+qG(q, q)+K(q, q) . (2.3)

To avoid discussions of differentiability, we simply re-
quire the three functions FAO, G, K to be real analytic
ones. Then Eq. (2.2) becomes

P2 =qF(q, q)+G(q, q)

and it can be uniquely inverted to

P, —G(q, q)

F(q, q)

(2.4)

(2.5)

The Euler-Lagrange equation following from Eq. (2.1)
reads

5L "dL d dL+ d (3L

5q Bq df ()q df

Subsequently, we write q' '=q and q'"+"=q''"'. In-
serting Eq. (2.3} into Eq. (2.6), we get an equation of the
structure,

() (4)F( (0) (1))+g( (0) (1) (2) (3)) (2.7)

Q'=q, Q'=q .

The two conjugate momenta are

(2.8)

where J is a real analytic function composed of F, G, and
K. From Eq. (2.7) the notion of nondegeneracy becomes
apparent: The second-order Lagrangian (2.1) is nonde-
generate iff the Euler-Lagrange equation is a regular
fourth-order equation. The fact that we restricted the
domain of q to the subset I of R is no real restriction be-
cause by a real analytic redefinition q(q) we could get
I=R.

To get a Hamiltonian for this system, one needs a
first-order formulation with two coordinates. We define
them as

H=P Q + (P —G) —K1
1 2F 2 (2.13)

where dH/dt =0 follows from Eq. (2.6). So H can be
called the energy of the system. The essential point is
that the energy is unbounded both below and above.
This is directly seen from Eq. (2.13) because H is a linear
function in P, .

Remark: In Ref. [1] it was argued that the problem
lies in the fact that energy is unbounded below. More ex-
actly, one should say unbounded below and above; sup-
pose the energy is unbounded below and bounded above;
then, we simply change the signs of both L and H and get
the energy bounded below. This is possible because no
sign of H is preferred a priori, in contrast with classical
mechanics where the sign of H is defined by the condition
that kinetic energy be non-negative.

H =const represents a first integral of Eq. (2.6). It is,
as must be the case, a third-order equation for q (t), and it
has the structure

H= —q'"q' 'F+lower order terms . (2.14)

There is a singular point at q=0. The definition Eq.
(2.13) of H is essentially (i.e., up to invertible linear trans-
formations of L and H which do not change the dynam-
ics) unique, because time-independent canonical transfor-
mations do not change it. That H is unbounded both
below and above can be seen from Eq. (2.14): Fixing the
initial values q, qAO, q, one can freely choose q' ' [cf. Eq.
(2.7)] and get H as unbounded.

The instability following from H being unbounded
below and above can be described as follows. (A) In the
particle picture one gets particles with positive energy
and particles with negative energy. Then the unlimited
production of pairs of such particles is not prevented by
energy conservation. (B) In the four-parameter set of
solutions of the Euler-Lagrange equation, one gets a sub-
set of dimension 1 of solutions with negative energy.
Let us make this last point more explicit.

To this end we first consider what happens if we add
such a total derivative to the Lagrangian that the func-
tional dependence does not change. This is done by

Bl d Bl.
Bq d Bq

(2.9) L =L +—[M Et], —d
dt

(2.15)

and P2 is defined by Eqs. (2.2) and (2.4). The Hamiltoni-
an H =H(Q', Q, P),P2) is obtained via

where E is a constant and M depends on q and q. One
gets

2
H= L+ g P„Q". — (2.10)

Bq
(2.16)
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so that the condition of invertibility of P2 does not
change, and

F=F, H=H+E . (2.17)

L= —
q +—

q
——

q
1..p A . p B
2 2 2

The corresponding Hamiltonian becomes

(2.18)

So this transformation, too, does not change the proper-
ties discussed.

Let us continue with the discussion of negative energy
solutions. We assume that q =0 is a solution, and we fix
E such that q =0 is a zero-energy solution.

Remark: In the first-order Lagrangian
L =

—,'q —(A/2)q, one has p =q and
H= —,'p +(A/2)q . For A =1, one has the solutions

q
= sint and q = cost, which both have energy H =

—,'.
For A = —1, however, one has the solutions q

= sinht
and q = cosht, which have energy H =

—,
' and —

—,', respec-
tively. They sum up to the zero-energy solution q =e'.
This is the instability meant.

For the second-order Lagrangian, we consider only the
terms up to second degree in the arguments. The terms
q, q, qq, qq, and qq+q represent total derivatives, and
we use them to bring the general form to

stability can occur in the second-order Lagrangian dis-
cussed. More on this topic, especially applied to fourth-
order gravity, can be found in Ref. [6]; however, the
point here is only to convince the reader that requiring
minimality of the action does not trivially rule out
fourth-order theories. To do so, we develop the action
S [q +eh] defined by

S[q]=f L dt (3.1)

into powers of e, where L is the same as in Eq. (2.1) and
T )0. Without loss of generality, the initial point of time
was put t =0. Let h be any differentiable function satisfy-
ing h(0)=h(0)=h(T)=h(T)=0. After partial integra-
tion and use of the notation Eq. (2.6), we get

where

V[q, h]= f h +h +h +2hh
Bq Bq dq BqBq

"r)L B L
+2hh +2hh dt .

BqBq BqBq

S[q+sh]=S[q]+ef h dt+ —V[q, h]+O(e ),5L e
o 5q 2

(3.2)

2+ q2+
2 2 2

The Euler-Lagrange equation reads

O=q'4' —Aq —Bq .

The momenta are

(2.19)

(2.20)

In dealing with V, partial integration does not help. So
one should discuss it directly.

Remark: Before discussing the fourth-order case, let
us repeat the behavior for the harmonic oscillator
L =—„'q —

—,'q . One gets

V= f (h' —h')dt .
0

For A =B =0, one gets the positive energy solution

q
= t and the negative energy solution q = t + t.
For B =0, A =+1, the solution

q =at +/3s(t)+yc (t),
where s(t)= sinht for A =1, s(t)= sint for A = —1,
analogously c (t), has the energy

H —+ 1 (a2 P2)+ j y2

For A =0, 8 =1, the general solution of Eq. (2.20)
reads

q =a sint +13cost +y sinht +6 cosh t .

One gets

H=a +P —y +5
The general case shows similarly that both signs of the
energy appear. For nonlinear equations, of course, the
solutions do not simply add, but the behavior of the signs
of the energy is similar.

One only needs the boundary conditions h (0)=h ( T) =0.
From the first glance, V seems to possess only a saddle
point, but a Fourier analysis with

gives

7T n —1 a„.
T2

V=f (h +Ah Bh )dt. — (3.3)

For T (~, this is positive definite, for T =m, it is positive
semidefinite, and only for T)~ does it become a saddle
point. The harmonic oscillator is the standard example
of a stable model, and so one should require the action to
be locally minimal, i.e., minimal if considered over
sufficiently short but finite time intervals.

Let us now come to the Lagrangian Eq. (2.18). Insert-
ing it into Eqs. (3.1) and (3.2), we get

III. MINIMAL, NOT ONLY STATIONARY ACTION

Instability may occur if the action is not minimal, but
only stationary. We sha11 check whether this type of in-

%'e perform the same Fourier analysis as in the previous
example and get the following. The maximally allowed
value T depends on A and 8, but it is always positive, so
that one has the same kind of stability here: If the time
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interval considered is suSciently short, then each station-
ary point of the action represents a minimum.

~(pi S~}= —4 exp(3q '} .
B(q', q )

(4.10)

IV. ANOTHER HAMILTONIAN FORMALISM

In addition to Ostrogradski's approach discussed in
Sec. II, there exists another possibility to get a Hamil-
tonian from a higher-order Lagrangian. It has the advan-
tage that the relation from classical mechanics,

p]= I.
q

(4.1)

remains valid, whereas Ostrogradski changed it to Eq.
(2.9).

Further possibilities to get a Hamiltonian are discussed
in Ref. [7] (see also the references cited there}; the
difference is that in [7] there is always a constraint,
whereas we look for a method where no additional con-
straint must be introduced.

Again, we start from Eq. (2.1) and concentrate on La-
grangians of the type (2.3}. The difference is now that the
new coordinates are chosen to be

This differs from zero, and so we can invert Eq. (4.9) to

q
' = —

—,'p ~ exp( —3q ' ),
q = [3p q

—
—,'p, ] exp( —3q ') .

(4.11)

We get from Eqs. (4.8) and (2.10) with the help of Eqs.
(4.11) the Hamiltonian

H = —
—,
'
(p &p &

—3p zq }exp( —3q
' }+(q ) exp( 3q

'
} .

(4.12)

It is essential to observe that the equation q'=q follows
from the canonical equations of H [Eq. (4.12)] without
imposing it as an additional constraint. So Eqs. (4.2) be-
come automatically compatible.

To give some feeling for Hamiltonians with negative
kinetic energy, we give six typical examples, hoping that
this gives better insight than general formulations do.

Examp/e 1. Let k be a parameter satisfying 0&k &1.
We consider the Lagrangian

q'=q, q'=q. (4.2)
L =(q) —2(q) +kq (4.13)

So the dependence of L (q', q', q, q ) is unique, whereas
by use of Eq. (2.8), there is an ambiguity between Q

' and
Q2

To show up the procedure, we find it more appropriate
to concentrate on one single Lagrangian; the general pro-
cedure might become clear from it. Moreover, it is just
that Lagrangian which will appear in Sec. V. So we take

O=q'4'+2q+I q .

We insert the ansatz

q =e~', O=X4+2X'+k

(4.14)

(4.15)

for a one-dimensional point particle q(t). The Euler-
Lagrange equation reads

L=(q) e q. (4.3) into Eq. (4.14), which leads to

L=L+——[(q) e ~],4 d
3 t

(4.4)

To prevent an identical vanishing of p2 according to Eqs.
(4.1)—(4.3), we add a suitable total derivative to the La-
grangian (4.3). Let us first take

a=*i(1+&1—k )'", (4.16)

representing four difFerent purely imaginary numbers.
Therefore the general solution of Eq. (4.14) can be written
as

i.e., an equation to be used in Sec. V A:

L=[(q) +4q(q} +4(q) ]e ~.

In a second step we take

L =L —2—(qqe ~),

i.e.,

L= —[(q) +2qq' '+6(q) q]e ~.

We insert Eq. (4.2) into Eq. (4.7) and get

L= —[(q ) +2q q +6(q ) q ]exp(3q'),

where we use q"=(d/dt)(q")—
Applying (4.1), we get

p &

= —[2q + 12q 'q2] exp(3q '),
p2= —2q'exp(3q'} .

The Jacobian is

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

2

q ( t)= g c„sin [t„+t [1+( —1)"V1 —k ]'
n=1

(4.17)

where c&,c2, t &, t2 are the four integration constants.
Each solution is bounded in time. In the limiting case
k =0, the unbounded function q(t)=t is a solution. In
the other limiting case k = 1, q (t}=t sint is also an un-
bounded solution.

Example 2. Let e be a parameter satisfying 0(e &1.
Let

H = ,'p + ,'q + ,'—P + ,'—Q +e—qQ— (4.18)

be a Hamiltonian for two one-dimensional point particles
q, Q [or, equivalently, one two-dimensional particle with
coordinates (q, Q)]; p is the momentum corresponding to
q, P to Q. Because of the restriction put on e, H is posi-
tive definite in all its arguments. For a=0, this is nothing
but two independent harmonic oscillators of frequency 1.
Only the term -e introduces some interaction.

The canonical equations following from Eq. (4.18) are
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BH

Bp
=p~

aH
ap

=Q=P,

aH
Bq

= —P =q+eQ = —q,
aH ~ ~

BQ
P—=Q+eq= —Q .

(4.19)

(4.20)

i.e., as it should be, just Eq. (4.14) of example 1.
We insert the values for P„,Q" into H and get

H = (q )
—2qq"' —2(q )' —kq (4.28)

To integrate the system, it proves useful to eliminate Q by
use of Eq. (4.19) as follows:

1
Q = ——(q+q) .

E

This leads with Eq. (4.20) to

O=q' '+2q+(1 —e )q .

(4.21)

(4.22)

+(q )'+(q )'(1+a') .

A direct calculation leads to

e =Q[q' '+2q+(I e)q];—2 dH ~
(4)

dt

(4.23)

(4.24)

hence, H =const follows from the q equation (4.22), but
H =const implies a solution for QAO only.

Let us mention that the fourth-order equation of exam-
ple 1 is equivalent to the positive-definite Hamiltonian of
example 2.

Example 3. Let us start again from the system of ex-
ample 1, but now we apply the Ostrogradski approach to
make a Hamiltonian from it. New coordinates are
Q'=q, Q =q [see Eq. (2.8}];new momenta are

= —4q —2q ', P, = =2q (4.25)
BL d BL , , BL

aq dt aq
' '

aq

[see Eqs. (2.9) and (2.2)]. The Hamiltonian is

H= L+ g P„Q"=P—, Q + —,'P2+2(Q ) —k(Q')
n=1

(4.26)

Now let us forget about the origin of H and calculate the
canonical equations. Inserting Q'=q, we get after some
calculus Q =q, P, = 4q —2q' ', P2 =2q, a—nd finally

0=q'4'+ 2q+ kq, (4.27)

With k =1—E, we meet exactly the system (4.14) from
example 1. The result of example 1 is in agreement with
the Kolmogorov-Arno witt-Moser (KAM) theorem,
which applies to the system considered here and states
that there exists an interval of positive e values such that
the corresponding system is solved by toruslike (i.e.,
periodic) solutions. Each arbitrarily small value e gives
rise to a bifurcation of the frequency according to

~
A,

~
in

example 1. Each solution is periodic and, hence, bound-
ed. In the limiting case e~O corresponding to k ~1, the
equivalence of example 2 to example 1 breaks, because
for e=O all solutions remain bounded here. That this
equivalence breaks as e=O becomes also plausible from
the relation (4.21) between Q and q.

H can be considered to be the energy of the system.
Let us express it as function of q and its derivatives alone
(calculations have been done by REDUcE 3.41):

2He =q [q+2q](1 —e )+[q' '] +2qq' '

This is also a conserved quantity:

dt
= —2q [q"'+2q+kq], (4.29)

but H is not evidently bounded. Clearly, each solution
remains bounded, but the set of solutions for a fixed value
H need not to be bounded: Let us insert the solution
(4.17) of example 1 with t, =t, =0; then, one gets

H= 2e[cz(l +e) —ci(1—e)] . (4.30)

H can take each real value, and with arbitrarily fixed
value H, we can find an unbounded set of functions solv-

ing for just this H.
Let us compare this result with the analogous calcula-

tions in example 2: There one gets, from the same initial
conditions,

H=cz(1 +e) +c, (1 F. ) . — (4.31)

H =2P kp qP+ ,'Q— —— (4.32)

Here the kinetic energy is indefinite, but the solutions are,
of course, also only the periodic ones of example 1. Here
we see that two different Hamiltonians may describe the
same system: One has indefinite kinetic energy, and the
other has definite kinetic energy. On the other hand, a
regular Hamiltonian must have a nonvanishing Jacobian

2

a(q, Q} a'H a'H

&(p, P) Bp' BP'
BH

upas
(4.33}

Here J (0. [This J is the inverse of the Jacobian used in

Eq. (4.10); this does not matter since only the sign of J is
essential here. ]

A one-parameter family of regular canonical transfor-
mations connected with the identity transformation can-
not change the sign of J. Therefore the Hamiltonians H
(example 2) and 8 (example 4) cannot be continuously de-
formed into each other by such a transformation, be-
cause, in example 2, H is positive definite and J & 0. Nev-
ertheless, they describe the same system.

Example 5. Let us take the Hamiltonian

Up to the inessential prefactor 2e, it is just the other sign
in front of c, which makes the difference. Here H~0
and the set of solutions for a fixed value H forms a com-
pact set of bounded functions; moreover, it is a uniformly
bounded set of functions. So the conserved quantity H
should not be considered as the energy of the system, be-
cause H better meets the point. This is another argument
against using the Ostrogradski approach. Let us further
mention that the Poisson brackets of these two conserved
quantities H, H identically vanish, and so it does not give
rise to a further conserved quantity.

Example 4. We take now the same H as in example 3,
but we interchange coordinates and momenta (P, ~q,
Q' —p, P~ Q, Q'
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H=Pp+ (—q +Q )+qQ, 0&a&1.
2

(4.34)

Both the kinetic and potential parts are indefinite. The
canonical equations give

altered by a suitable positive factor in front of p, then
for small e, the general solution remains periodic, but the
periods are mixed.

V. STAROBINSKY MODEL

P=q, p=Q P q eQ P Q (4.35)
In Ref. [5], Starobinsky proposed to use

After some calculus we get

O=q' '+2ij+(1 —e )q, (4.36}
L= —— R v' —g

R 12

2 12
(5.1)

which is again the previously discussed system.
Example 6. Now we start from a Lagrangian which

differs from example 2 only in two changes of a sign:

as gravitational Lagrangian. Here R is the curvature sca-
lar, g the determinant of the metric of space-time, and l is
a length being somehow in the region l =10 s cm.

H' = 'p + —'q —'P ——'Q —+—eqQ 0 & e & 1 (4.37)
A. High-curvature limit

Let us first consider the high-curvature limit

L= —'R 3/ —g36
(5.2)

For the metric of a spatially flat Friedmann model,

ds =dt e~ '~—(dx +dy +dz ) (5.3)

we get

R = —6ij —12(q), g= —e «, (5.4)

and the Lagrangian becomes

L = [ij +2(q )3]ze 3«, (5.5)

which coincides with Eq. (4.5).
Now we could apply both the Ostrogradski approach

Sec. II as well as the approach of Sec. IV. We prefer to
use the latter one because of the validity of Eq. (4.1), but
for comparison we write down both of them.

Let us first apply the Ostrogradski approach to Eq.
(5.5). Looking at Eqs. (4.3)—(4.5), one can see that (up to
a divergence) we have to consider

—
(q )2e 3« (5.6)

O=q' '+2q+kqy k 1+6' (4.38)
Applying the formalism of Sec. II, we get

So both kinetic and potential energies are indefinite. But
as was seen in example 5, this does not exclude the
equivalence.

Let us first consider the limiting case @=0. Here,
again, it is fully equivalent to the second example: There
is no interaction between the two oscillators, and there is
no a priori sign preferred for the energy. H and H' are
two conserved quantities, whose Poisson brackets vanish.

The situation drastically changes if we come back to
e & 0. One of the assumptions of the KAM theorem is no
longer valid, and so we expect qualitatively different solu-
tions for arbitrarily small values e. In the particle picture
one can imagine the following: The spontaneous creation
of pairs of particles, one with positive energy, the other
with negative energy, is energetically allowed, and it
should take place with a typical doubling time —I/e.

For fixed energy, arbitrarily large momenta are possi-
ble. We perform the calculations analogous to the previ-
ous ones. We can prevent any calculations if we look at
H and H'. Multiplying P and Q by i and multiplying e
by ( —i), one is changed into the other. So, clearly, the
other formulas are valid if e is replaced by ( —e ). Then
the dynamics follows from

and it is example 1 with k&1. The corresponding
fourth-order polynomial for A, is then solved by Q'=q, Q =q, P~ = —2 (ije ), Pz=2qe

2

A, =ki&lkie=k —ki 1+—+O(e3) .
E'

2 8
(4 39) and then

H=P, Q + ,'(P2) exp( —3—Q'),

s.e.,

H=e «[(ij) —2q(q' '+3qij)] .

The four solutions correspond to the four combinations
of the signs +. Therefore the general solution can be
written as

(5.7)

(5.8)

nq(t)= g c„exp t( —1)" —+O(e'3)
2

2
X sin t +t 1+—+O(e )n 8

(4.40)

where c„cz,t„t2 are the four integration constants. (By
the way, the O(e )=[~9+0(e )]e for this formula. )
q(t)—:0 is the only bounded solution, and for c2+0, one
gets an exponential increase as expected. This is, of
course, a resonance effect. If, on the other hand, H' is

As is expected, the canonical equations to the Hamiltoni-
an H [Eq. (5.7)] give again the original system, where H
[Eq. (5.8}] represents a conserved quantity. Moreover,
one knows that the gravitational field equation (here espe-
cially its zero-zero component) forces H to vanish. This
can easiest be shown by making the ansatz
dt =N (r)dd and putting N = 1 only after the variation
(and not before as we did).

Let us now come to the Wheeler-DeWitt equation (i.e.,
the zero-energy Schrodinger equation of a cosmological
model) for this system. In units where %=1, it is ob-
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L =
—,'g; q'q' —V(q'), (5.9)

tained via substituting P„by id„=—iBIBQ . Applying
this to Eq. (5.7), one can see that the fact that P, is con-
tained linearly and not quadratically gives as a conse-
quence that one of the coeScients of the %heeler-DeWitt
equation fails to be real. A third reason against this ap-
proach is the fact that Q =q [which is just the Hubble
parameter of the cosmological model Eq. (5.3)] is not in-
variantly de6ned; it changes its sign by a change of the
time direction.

Now we try the same with the formulas of Sec. IV. In
fact, we can work directly with Eqs. (4.3) and
(4.6)—(4.12). If we reinsert Eqs. (4.2) and (4.9) into Eq.
(4.12), we get exactly Eq. (5.8). So no second conserved
quantity appears here, and the %heeler-De%itt equation
is derived as follows.

The material from Eq (5..9) to (5.13) is taken from Ref.
[8], and from Eq. (5.14) to (5.15) is taken from Ref. [9].

The Lagrangian L, [Eq. (4.8)] has the structure

0=[38 q 8 —B,B —2(q ) exp(6q')]g .

To simplify, let us apply the transformation

o.= exp( —3q '), r= —,'q exp(3q ') .

(5.14)

(5.15)

This linear differential equation can be solved in closed
form by

This transformation explicitly brings g, to the flat form

g, = 1, g =0, g„=0. The Lagrangian becomes

1
L =—o.w

—~ o. .
o

The Hamiltonian is correspondingly

H =cr[m.,m +r ],
and the %'heeler-De%itt equation reads

where g; depends on the q' only and the Einstein sum
convention is applied. One gets

P= f a(A, )exp A,o+ dA, ,
co 3k

(5.16)

BL

aq'
(5.10)

where the amplitude function a, a (0)=0, can be arbi-
trarily chosen both as continuous as well as a sum of 5
functions.

Let g" be the inverse matrix to g; . Then Eq. (5.10) can
be inverted to

(5.11)

In the interesting case (4.8), this gives

g =6q exp( —3q'), g' = —exp( —3q'), g"=0.
The Hamiltonian becomes

H =p;q' L= —,'g'Jp;p + —V(q'), (5.12)

and here V =(q ) exp(3q'). If we quantize now by sub-
stituting p„with iBIBq, then the procedure is no longer
covariant, and the factor-ordering problem appears. In
classical mechanics this problem is absent, because g,-. is a
constant matrix. %'e circumvent the problem by substi-
tuting p„by i V„where 7'„denotes the covariant deriva-
tive into the q" direction with respect to the metric g; .
Then the %heeler-De%itt equation reads

0=(CI —2V)g(q'),

where g is the world function and

D=V;V''= 0;&—gg'JB-1
I Q l J

is the D*Alembertian. For our example we get

(5.13)

To apply the Hamiltonian formalism, it is necessary to
invert Eq. (5.10) such that the velocities are written with
dependence on coordinates and momenta. This is possi-
ble if and only if g, is an invertible matrix. This takes
place for the case considered here: A comparison of (4.8)
with (5.9) gives

g„=—6q exp(3q'), g,2= —exp(3q'), gzz=0 .

B. Super8uous degrees of freedom

g2 g

haik

g g&JkI
ik & ijkl (5.17)

(R is the curvature scalar, R,.„ the Ricci tensor, and R,,l„
the Riemann tensor).

We look at higher (higher than second) order gravity
theories under the point of view that the higher order
yields more degrees of freedom than is to be expected.
Further results on higher-order gravity and inflationary
phase of cosmic evolution can be found in Refs. [10—24]
(a list which is not intended to be representative, but
essentially contains the papers we refer to in the subse-
quent text). Let us start with some historical comments
taken from Ref. [14].

In [25], Weyl proposes a new theory which is intended
to unify gravitation with electromagnetism. He general-
izes both the Riemannian geometry underlying the gen-
eral relativity theory of Einstein to a nonintegrable
theory (introduction of the Weyl vector) as well as the
Einstein-Hilbert Lagrangian (which is linear in curvature)
to a Lagrangian quadratic in curvature. At that point
Weyl already realized [25, p. 477] that "This has the
consequence, though our theory leads to Maxwell's elec-
tromagnetic equations, it fails to lead to Einstein s gravi-
tational ones; instead of them, 4th order differential equa-
tions appear. " We cite this sentence to show that already
in 1918 the possibility of fourth-order gravitational field

equations had been discussed as an alternative to general
relativity. One year later, Pauli [26] calculated the static
spherically symmetric solutions of %'eyl's theory; he got
the result that the Schwarzschild solution is a solution for
all the equations following from one of the three La-
grangian s:
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Pauli assumed the Weyl vector to be zero, so that he
had a Riemannian structure of Lorentz signature as the
underlying geometry. He concluded that measurements
of the Mercury perihelion advance and light deflection in
the field of the Sun which are in agreement with general
relativity are also in agreement with all the variants of
Weyl's theory, but the fourth-order theory has too many
ambiguities (both in finding the correct Lagrangian as
well as choosing the correct solution}; more explicitly,
this is done in [27]. Today one can say, more generally,
each vacuum solution of Einstein s equation is also a vac-
uum solution of each of the variants of fourth-order grav-
ity [where Pauli [26] believed this to be the case for the
first two expressions in Eq. (5.17) only].

Pauli [26] wrote about the superfluous degrees of free-
dom that they are a consequence of the fact that he only
considered the vacuum equations and that it should be
possible to cancel them by finding the correct interior
solution at the source. The latter is only a mathematical
problem; we proceed along this line in Sec. VIA. Fur-
ther, he assumes that the far field of a mass m can be
developed into powers of m lr, where r is the distance
from the center of the source.

The last point we want to repeat from the old papers is
the following: R has dimension ( length ) 2, and, there-
fore, the action

R —g "x (5.18)

L =(—'R+ —'k C ——' l R )v' —g (5.19)

where

C =C Cijkl
ij kl (5.20)

is the square of the Weyl tensor and can be written as
linear combination of the terms in Eq. (5.17). The La-
grangian (5.19) gives rise to a tachyonic-free theory if and
only if both k ~0 and l ~0 hold. (In principle, k and
I may have both signs; we prefer the nontachyonic case. )

It holds (see Ref. [28], and see Ref. [29] for the presen-
tation used here} that if we redefine the original metric g;.
to G, . via

G,"=g;.—2k R,"+—,'(k —l )Rg,", (5.21)

then the linearized Einstein tensor of 6; vanishes if and
only if g,j solves the 1inearized fourth-order equation fol-
lowing from Eq. (5.19). For microscopically small
lengths k and I, both metrics cannot be distinguished by
experiment, and so one is free to use 6; as a physical
metric possessing the required second-order dynamics, at

(where g is the determinant of the metric in the n

dimensional space-time) is scale invariant (i.e., does not
change by a change of the used length unit) if and only if
n =2m holds. For the usual case n =4, this gives m =2,
an argument which was already used by Weyl in 1918.

Now let us come back to Simon's argument [2] that the
superfluous degrees of freedom have to be canceled:
Surely, he has found one possibility, but that one is a
priori not better than the following ones. In units where
8~G =c =1, we use the Lagrangian

least on the linearized level.
The second possibility is the following: For the spatial-

ly flat Friedmann model, the typical solution of fourth-
order gravity is composed of (cf., e.g., Refs. [19]and [20])
damped oscillations around the expansion law of the
Einstein —de Sitter model. This is not only due to the
high symmetry: In Ref. [30] there is considered the gen-

eral anisotropic Bianchi type-I model, and the result was

the same. The general behavior with inhomogeneous
models is not known, but there exist reasons (by the con-
formal transformation of fourth-order gravity to
Einstein's theory with a minimally coupled scalar field;

see, e.g., Ref. [31], where fiat space is related to a local
minimum of the potential) to believe that there are simi-

lar typical solutions. We interpret them as follows. The
superfluous degrees of freedom are just the phases of the
oscillations, and by the damping of the amplitudes they

simply disappear.

C. Starobinsky inflation as a power series

In this section we consider, in more detail than can be
found in the literature, in which sense the Starobinsky
inflationary solution can be developed in a power series.
To this end we make the following consideration [which
makes more explicit what has been done in Ref. [20], Sec.
5, especially Eq. (18)]. It is essential to note that there is

neither a cosmological term nor an additional inflaton or
scalar field —all inflation comes from the R term in the
Lagrangian (5.19). The exact inflationary de Sitter
space-time is defined by Eq. (5.3}with q(t}=ht, h having

a constant positive value. In general, h =j is the Hubble
parameter. The quasi-de Sitter stage is that period
where (dh/dt~ &&h .

Now the field equation following from the Lagrangian
(5.19) is considered. The Friedmann model is conformal-

ly flat, and so the term with the Weyl tensor identically
vanishes. So without loss of generality we put k =0.
Further, we consider the nontachyonic case I &0 only.
Suen [17,18] showed that flat space is unstable and that
the Starobinsky solution is stable. A partial stability of
flat space with respect to initially expanding perturba-
tions can be found; however, in [20] it was shown that all
vacuum solutions representing an expanding spatially flat
Friedmann model of the field equation following from the
Lagrangian (5.19) with l &0 can be integrated up to
infinity; they all have the same asymptotic behavior:
damped oscillations with frequency 1/I about the
Einstein-de Sitter model q =t . The spatially flat
Friedmann model has the metric (5.3). We take the La-
grangian (5.19) and get a fourth-order differential equa-
tion for the metric. However, the 00 component of the
differential equation is a constraint and gives a second-
order equation for h which reads

2

(5.22}
dt dt

Linearization of this equation gives 0=0, so that it is
clear that the linearized equation gives no information
about the full one. It holds that each solution of (5.22) is

also a solution of the other nine components of the field
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equation; however, each function h solves the linearized
equation, but in general not the linearized trace equation,
which reads simply

( —1)"6gk (hl )
k=0

k —1

d h qdh
dt

(5.23)
—g (

—1)"(hl) " g (4i +1)g;g„, , =l .
k=1

(5.28)

dh

dt
1

6l
(5.24)

The larger the value h, the better the approximation
(5.24). This justifies using a Laurent sequence in h as a
general ansatz as follows:

Next, it is clear that Eq. (5.22) has a singular point at
h =0, and so the numerical integration has to be done
with care. The best method to integrate the system nu-
merically is the following. One uses the constraint only
at the initial moment, and then one integrates the trace
equation; the trace is regular even for h =0. Also, the ex-
istence of oscillations with frequency 1/l becomes clear
from (5.23), and the sign of the right-hand side (RHS) of
Eq. (5.22) decides whether or not the oscillations are
damped. But the result of [20], that for 1 )0 and initial
value h )0 Eq. (5.22) can be integrated up to infinite time
t, is strong and does not depend on the numerics, and it
does not change if we include classical matter like dust or
radiation.

In Eq. (5.22) the infiationary period can be found by re-
quiring that the first two items be negligible in compar-
ison with the third one. (Afterwards, it will turn out that
the 6rst two terms remain 6nite, whereas the third one
tends to infinity as h ~ ~; so this approximation is con-
sistent. ) We get the first step of the approximation by re-
moving the first two terms of Eq. (5.22); this leads to the
equation

The absolute value of Eq. (5.28) gives again go= —,', and

for each k & 0 we get
k —1

gk
=—g (4i+1)g,.gk

i=0
(5.29)

This equation can be inverted as

(5.31)

with certain dimensionless constants f, . With Eq. (5.31)
we solve Eq. (5.22) and insert the result into the metric
(5.3). To simplify the expressions, we perform the coordi-
nate transformation t =le. Then the metric describing
the Starobinsky inflation reads

ds =l dr exp( —r /6—)~r~

e.g., g& =1/6 =+, „g2=1/6, and g3=65/6 . The next

natural step seems to be the insertion of (5.29) into the
ansatz (5.25). But it turns out that one gets the result
more quickly by integrating that equation which is ob-
tained from (5.27) after division by h (time translation is

only a coordinate transformation, and so we get no essen-
tial constant of integration):

00

6i~h + g (
—1)'+~ h ~(hl) z'= —r (5 30)' 2i+1

(5.25)

dt I i 0
(5.26)

Now we insert Eqs. (5.25) and (5.26) into (5.22), multiply
by I, and get, step by step,

6h l + g (
—1)'(4i +1)g, (hl) ' = —h . (5.27)

dt

After division by (
—h ) and some rearrangement, we get

We included such powers of the length I as factors that
the coefficients g; become real numbers. Comparing
(5.24) with (5.25), one gets go= —,'. The motivation of the
factor (

—1)' will become clear afterwards: All numbers

g, will turn out to be positive. Just for the same reason
we did not write odd powers of 1/h in (5.25), because all
their coefficients automatically vanish if we insert the se-

quence into Eq. (5.22). This is very satisfactory, because
even powers of 1/h correspond to powers of A', whereas
the odd powers would correspond to &A, which is a less
natural quantity. The coefficients g; can be obtained as
follows. h times the derivative of Eq. (5.25) gives

X g qr '(dx +dy +dz )

i=0
(5.32)

where qo= 1 and the other q, are certain real constants.
The metric (5.32) gives a good presentation in the region
—~ & ~&& —1. One can see that it would not have been
found by a simple guess, e.g. , by a Fourier or Laurent se-
quence in r or so. How to come from (5.29) to the analo-
gous expressions for the f; and q; is straightforward
analysis, and the convergence of the sequences can be
proved; from the line after Eq. (5.29), it becomes at least
quite plausible. In the presentation (5.32) it is not im-

mediately clear that this is inAation; for w « —l, the pa-
rabola —2/6 is an almost linearly increasing function, so
that the cosmic scale factor is almost exponentially in-

creasing, because the other terms do not essentially
change the picture.

Let us now come to the main question here: What
happens for l ~0'? In the metric (5.32), all metric
coefficients can be developed into powers of l; moreover,
they are quadratic polynomials in l. However, for l —+0,
the metric degenerates. This is essentially the argument
of Simon [2], that Starobinsky infiation is not self-
consistent in semiclassical gravity. One should look at
whether this effect depends on the special coordinates
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chosen. To this end we go back to the synchronized
coordinates t =el T. hen the factor exp( t—/6l ) makes
the problem (besides the third root of I in the next factor),
whereas the further sequence is a sequence in I . This is
in agreement with the fact that for I =0 the correspond-
ing field equation has only the flat Minkowski space-time
as a solution.

VI. SIXTH- AND HIGHER-ORDER EQUATIONS

In this section we consider gravitational field equations
of order higher than fourth; this is mainly done to show
how the fourth-order Starobinsky model is situated be-
tween the Einstein theory and the sixth- and higher-order
ones.

A. Newtonian limit

The Newtonian limit is the slow-motion approximation
of the linearized field equation. In this limit the fourth-
order field equation following from (5.19) becomes tract-
able. For a 5 source of mass m, one gets

approach mentioned before and the calculations here:
For L =R [33] and also for the other purely quadratic
Lagrangians [i.e., linear combinations of the terms in Eq.
(5.17); see Refs. [34,35]], one does not get the correct
Newtonian limit unless one adds the Einstein-Hilbert La-
grangian to the action. [In [16] and [36] the same prob-
lem is considered with the same Lagrangian but another
variation (Palatini s one, which gives the same theory for
the Einstein-Hilbert Lagrangian only), i.e., independent
variation with respect to metric and amenity; the result
agrees not only with respect to the fact that the Einstein-
Hilbert Lagrangian must be added, but also with respect
to the general Newtonian plus Yukawa-type potential. ]

Let us end this section with a further point of depar-
ture from Pauli's approach [26]: He (and the authors of
[37] and [38] too) required the outer solution to be devel-
opable in powers of m /r. But then only the
Schwarzschild solution appears, which is definitely not
the outer solution for a point mass. And neither Eq. (6.2)
nor (6.3) can be developed in powers of 1/r

B. Generalization of Simon's approach to higher-order gravity

ds =(1 24)dt —(1+28)(—dr +r~dQ2),

where d 0 denotes the metric of the unit S,
4=—[1——', exp( r/k)+ —

,
' exp( r—/I)]—

(6.1)

(6.2)

In the units chosen here (8mG =c =1), the Planck
length Ip& is related to Planck's constant via R=8n12p, . So
Simon's expansion [2,11] into powers of A is equivalent to
an expansion into powers of 1, where I is a fixed length.
Let us take as an example the Lagrangian (6.4), which
was already considered in [22] and [39] for p =1 and in

[23] for general p. Equation (6.4} can be written as

(see [32]),and

8=—[1——', exp( r/k) ,' ex—p( —r/—I)]— (6.3)

L=—— g cl ' O'R,R R
2 12,.

(6.6)

I,
' O'R,

I=0 P(JO(j)( ''' (j.(P P?f —0
(6.4)

where p ~ 0, 0 & l0 & I, & . & I are characteristic
lengths, and O denotes the D'Alembertian. [For compar-
ison, Eq. (5.19) with k =0 and Eq. (6.4) with p =0 coin-
cide. ] For Eq. (6.4) the Newtonian limit gives (6.1) with

—1
I

1+—g ( —1)'+~ P ——1
i =0 j&1 Ii

exp( r /I;)—
(6.5)

and 4+8=2m/r. For an extended mass distribution,
the result is the same because of the linearity, and for the
full nonlinear equations one can conjecture that at least
in the vicinity of flat space the result remains the same.
There is an essential point of departure from the Pauli

(see [15]). It is essential to observe that the solutions (6.2)
and (6.3) are unique. One should note that in spite of the
higher order of the diff'erential equation one needs the
same restriction (namely, the vanishing of 4 and 8 as r
tends to infinity) to get a unique Newtonian limit. We
have considered the same question for a class of gravita-
tional field equations of arbitrary high order and got the
same result [21] for the tachyonic-free case. We used

with numerical constants c;. We suppose c 40, and (6.4)
leads to a field equation of order 2p +4. [We do not need
it in its entirety here; one can find it in [23],Eq. (8).] For
simplicity, we consider the vacuum equations only. We
show that by the method of Simon the order can be re-
duced to 2p+2 as follows. We suppose (6.4) to be the
truncation of an infinite sequence, and so it is valid only

up to corrections of order 0(l ~+ ). Then we multiply
the field equation following from (6.4) by le+ with the
result that only the term from the Einstein-Hilbert part
of the Lagrangian survives; all other contributions can be
subsumed to another 0 (l ~+ ). So we get

(6.7)

For p =0, this is just Eq. (5.3}of Ref. [11]. We can form
the covariant derivatives of (6.7), multiply it by R, and
form traces. Then it is possible to add such a linear com-
bination of these equations to the field equation that, up
to terms of the order 0 (I r + ), all terms stemming from
c R CPR in Eq. (6.6) are compensated and the field equa-
tion reduces to the order 2p +2. For p =0 this coincides
with Simon's approach.

If the higher-order terms in the Lagrangian do not
contain derivatives of the curvature, then the field equa-
tion is of fourth order in each step; this has been analyzed
in [12]; there, it is also mentioned that Starobinsky
inflation remains a consistent solution if one interprets
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+0(l ), (6.8)

where the semicolon denotes the covariant derivative.
The essential difference between Eqs. (6.8) and (1.1) of
[11] is now the power [here 0 (I ), there 0 (I )] of the
remainder. The trace of (6.8) reads

O=R +I R +0(l )

We apply I 0 to Eq. (6.9) and get

0= I R + I ClCIR +0 ( I ) .

The same done with (6.10) yields

(6.9)

(6.10)

O=l R+0(l ) . (6.11)

The sum of Eqs. (6.9) and (6.11) minus Eq. (6.10) yields

O=R +0(l ) . (6.12)

Similarly, one can handle the trace-free part of Eq. (6.8).
So we have shown that (at least this type of) sixth-order
gravity can be brought to second order by Simon's ap-
proach.

But one should mention that we have, as Simon did,
made such assumptions that the application of I does
not change the power of the general remainder. This is a
consistent assumption because I is a dimensionless
operator.

By inclusion of matter, one gets then covariant deriva-
tives up to the fourth one of the energy-momentum ten-
sor [instead of second derivatives found in [11],Eq. (5.4)].
The corresponding calculation is straightforwardly done,
and so we do not write out the formulas. (Also, they are
not so essential here, because in regions where the
higher-order terms are dominant, one usually believes
that matter is not yet essential for the dynamics. ) Let us
sketch them: the LHS of Eq. (6.7) becomes, in analogy to
Eq. (5.3) of [11], al ~+ (T, —~ Tg, ), where T,"is the""
energy-momentum tensor and T its trace. The LHS of
Eq. (6.8) gets the form a[T&+I (ET+similar terms)],
and then two further covariant derivatives to the LHS
appear similar to those in Eqs. (5.4) and (5.5) of Ref. [11].

fourth-order gravity as a classical theory and not as a
semiclassical one. This point of view (see also [13)) is
compatible with Stelle's result [40] that fourth-order
gravity, if taken as a classical theory, becomes, in con-
trast with Einstein's theory, renormalizable.

But here we have chosen an example where the order
of the difFerential equation is increased step by step. The
next question which is interesting for p )0 is whether the
procedure can be repeated such that the order can be re-
duced from 2p +2 to even lower order; one should expect
that it must be order 2 at the end. The simplest nontrivi-
al example is p =1, where, after the first step described
above, the following fourth-order equation appears:

l'
0 R j gj Rg j R j +RR j g

VII. DISCUSSIQN

The recent review of the Starobinsky model can be
found, e.g. , in Refs. [41,42] and a more geometrically
oriented review in [43].

The Starobinsky model goes back to early ideas of Zel-
dovich and Sakharov (see, e.g., Ref. [44]), where the addi-
tion of higher-curvature terms to the Einstein-Hilbert ac-
tion was intended to mimic quantum gravitational effects;
it was hoped that these terms can prevent the initial
singularity.

Another approach can be found in Ref. [45], where the
stress tensor renormalization of quantized matter fields in
a classical background metric lead to curvature-squared
terms in the effective action with spin-dependent calcul-
able coeKcients in front of them.

A third approach was performed by Stelle [40], who
showed that the Lagrangian (5.19) leads to a renormaliz-
able theory of gravity; the coefBcients in front of the
curvature-squared terms are not calculable, but should be
measured.

We distinguished these three approaches explicitly, be-
cause they are often mixed.

The Starobinsky model follows from the Lagrangian
Eq. (5.1), which coincides with Eq. (5.19) if k =0. This is
not a renormalizable theory of gravity, and it shares this
property with Einstein's general relativity theory (GRT).

One instability of the theory following from Eq. (5.19)
comes from the fact that, for k & 0, tachyons appear and
for k )0 ghosts appear (the latter are particles with neg-
ative kinetic energy). The Starobinsky model, however,
contains neither tachyons nor ghosts.

A further instability can appear if there is no minimum
of the total energy of a given local system. In Einstein's
GRT this is prevented by the well-known positive energy
theorem, whereas Eq. (5.19) with kWO allows an analo-
gous theorem only in a very restricted sense; cf. Ref. [46].
For the theory following from Eq. (5.1), however, a posi-
tive energy theorem, analogous to that one in GRT, is
valid; see [47]. It needs only the additional assumption
that R &3l . This represents no practical restriction
because l is microscopically small and the inflationary
period of cosmic evolution is connected with negative
values of R. Connected with this fact is the point dis-
cussed in Sec. III: Requiring minimality of the action
does not rule out fourth-order gravity.

A third instability could occur if one looks at Eq. (5.1)
as a perturbation of Einstein's GRT, l playing the role of
the smallness parameter. This is, of course, a singular
perturbation, and usually one would expect quickly in-
creasing solutions to appear. In general, this takes place,
but under the special circumstances met here, this does
not happen. This has its origin in the special kind of non-
linearity of the singular differential equation (5.22): It
has the property that for each initial condition with h )0
(i.e., initially, the Universe expands), the system can be
integrated up to infinite time, and there it tends to the
corresponding solution of Einstein's CxRT. (We made
this explicit here in Sec. V C because of statements found
in Refs. [17,18] which seem to contradict this, but in fact
only use another notion of instability. } This regular
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behavior of the solutions can also be seen in the Newtoni-
an limit; see Sec. VI A. If one looks at the solutions Eqs.
(6.2) and (6.3), one can see that they converge to the cor-
responding Newtonian potential as k, I ~0, but they can-
not be developed into powers of k and I. So the problem
of the superfluous degrees of freedom can be solved by
stating that in the weak-field region, the coefticients of
these terms are unobservably small. Another way to deal
with the superfluous degrees of freedom is carried out by
Simon in [2,10].

Also, in [1, p. 408] it is pointed out that the Starobin-
sky model is not more unstable than Einstein's theory it-
self.

These stability statements are all compatible. To see
this, one has to remember that for initially contracting
perturbations, both Einstein's theory and fourth-order
gravity yield a big-bang-type instability after finite time.

The instability appearing from the fact that a fourth-
order equation can be brought to a Hamiltonian with
indefinite kinetic energy (see Refs. [1,4]) was analyzed in
detail in Sec. II. We showed by some typical examples
that this can lead to instabilities, but it need not do so.
We proposed another general approach to bring a
fourth-order theory to Hamiltonian form in Sec. IV.
The advantages of our approach are also listed there.
The Hamiltonian form of the theory is needed to deduce
the Wheeler-DeWitt equation of the system. In Sec. V A
we made it for the high-curvature limit, and there the
Wheeler-DeWitt equation could be solved in closed form
[Eq. (5.16)]. It is planned to make the analogous calcula-
tions for less symmetric space-times and the theory in-

cluding the R term, i.e., for the Lagrangian (5.1). For the
interpretation of them, cf., e.g., Ref. [48]. But for the
problem discussed here one only needs the sign of the
kinetic energy in the Hamiltonian formulation; it is the
same as the signature of the superspace metric, as is clear
from Eq. (5.12). In Ref. [49] the following was shown:
The signature S (= number of negative eigenvalues) of
the superspace metric leading to the Wheeler-DeWitt
equation following from Einstein's GRT equals
S =1+s(n —s), where n is the dimension of the spatial
part (usually = 3) of the space-time metric and s its sig-
nature [s =0 both for the Lorentzian as well as for the

Euclidean signature of the underlying (n+1}-
dimensional manifold]. So S =1 for Einstein's GRT and
usual signature, which has the consequence that the
Wheeler-DeWitt equation is a normal hyperbolic wave
equation. What is essential here is the fact that for
fourth-order gravity the Hamiltonian formulation leads
to an indefinite kinetic energy (superspace metric signa-
ture equals 1) and this is a property which it has in com-
mon with GRT.

A discussion of the R +R theory in connection with
topological defects can be found in Ref. [50].

Let us finally make some remarks about what happens
if one adds some higher-order terms, e.g., those discussed
in Sec. VI, especially the Lagrangian (6.4} with p ~ 1 lead-
ing to the order of the differential equation ~ 6. Then the
problems become more serious. The superspace metric
gets the signature ~ 2, and so the Wheeler-DeWitt equa-
tion is no longer normally hyperbolic. The conformal
transformation to Einstein's theory with several scalar
fields (see [22] for p = 1 and [23] for p & 1) leads always to
ghosts. The hope that sixth-order gravity naturally leads
to models with double inflation is not fulfilled; see Ref.
[39]. It is unclear yet whether eighth-order gravity (par-
tial results can be found in Ref. [51]; further work is in

progress) can solve these problems. So the proposal by
Simon [2] to reduce fourth-order gravity seems practic-
able to be generalized (as we did in Sec. VI) to reduce
sixth- and higher-order models to second order.
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