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General-relativistic celestial mechanics. IV. Theory of satellite motion
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The basic equations needed for developing a complete relativistic theory of artificial Earth satellites
are explicitly written down. These equations are given both in a local, geocentric frame and in the glo-

bal, barycentric one. They are derived within our recently introduced general-relativistic celestial
mechanics framework. Our approach is more satisfactory than previous ones, especially with regard to
its consistency, completeness, and flexibility. In particular, the problem of representing the relativistic
gravitational effects associated with the quadrupole and higher multipole moments of the moving Earth,
which caused difficulties in several other approaches, is easily dealt with in our approach thanks to the
use of previously developed tools: the definition of relativistic multipole moments and transformation
theory between reference frames. With this last paper in a series we hope to indicate the way of using

our formalism in specific problems in applied celestial mechanics and astrometry.

PACS number{s): 95.10.Ce, 04.25.Nx

I. INTRODUCTION

High-precision experimental studies of the orbital
motion of artificial Earth satellites have become one of
the major tools of modern geodesy and geophysics by
providing a wealth of information for the determination
of the Earth's gravity field including time variabilities,
plate motion, or the problem of Earth's rotation. The
main type of technique which is currently used is satellite
laser ranging (SLR) to dedicated satellites such as the
Laser Geodynamics Satellite (LAGEOS). In the near fu-

ture, several other techniques should also provide high-
accuracy gravitational data: tracking by means of the
global positioning system (GPS), gravitational measure-
ments from orbiting gradiometers, use of drag-free satel-
lites, etc. Thanks to the use of high pulse rates, sharp
temporal, spatial and spectral filtering techniques com-
bined with a highly advanced and reliable control of
emitting and receiving telescopes on the basis of precise
orbital prediction codes, rms residuals in SLR data now
fall into the cm level. This is comparable to the
Schwarzschild radius of the Earth,

rs,h„—=26M~/c -0.88 cm,

representing the length scale for relativistic effects
present in a local reference frame attached to the Earth.
Because of this fact, it is now widely recognized that any
modern SLR theory should be based upon Einstein's
theory of gravity. Relativistic effects in SLR affect both
the motion of the satellite ("relativistic forces") and the
propagation of laser pulses through a curved spacetime
("gravitational time delay" ). Moreover, relativity plays a
crucial role for the relation between observed clock read-

ings and theoretically convenient time scales, and, more
generally, for the relations between several reference
frames having different states of motion. The aim of the
present paper is to explicitly write down the basic equa-
tions needed for developing a complete consistent relativ-
istic theory of artificial Earth satellites.

From a heuristic point of view, one expects that there
should exist, within a relativistic framework, the ana-

logue of a Newtonian geocentric reference frame, follow-

ing the Earth in its motion around the Sun. In such a
frame, the infiuence of the external bodies (Sun, Moon,
planets) should be relatively small and representable as
some kind of tidal forces, while the dominant relativistic
effects would result from the curved geometry generated

by the Earth. The latter curved geometry should in turn
be representable in terms of a sequence of multipole mo-
ments: mass monopole (total mass of the Earth M~),
spin dipole (angular momentum S~ ), mass quadrupole,

spin quadrupole, etc. Similarly to the well-known anom-
alous perihehon precession of the inner planets (notably
the famous 43 arc sec/century advance of Mercury's per-
ihelion) the leading relativistic effect on the orbit of an
Earth satellite is expected to be a secular drift in the ar-
gument of the perigee,

5co=6m[GM~ /c a {1—e )] rad/orbit,

associated with the mass monopole (or the corresponding
"Schwarzschild field" ) of the Earth. For LAGEOS the
latter perigee advance amounts to about 3 arc sec/yr [1,2]
and might become measurable in the near future despite
the small eccentricity of the LAGEOS orbit. Of next im-

portance might be the effects associated with the spin di-

pole S~ of the rotating Earth {"gravitomagnetic" or
"Lense-Thirring" effects [3,4]). For satellite orbits this
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leads to an additional perigee precession of satellite orbits
and a secular drift of the nodes of order

50-(GS~/c 8 )P„b;, rad/orbit,

where 5 is the angular momentum of the Earth. For
LAGEOS this nodal drift is of the order of 3 arc
sec/century, roughly comparable with the classical effect
from the I =12 mass multipole moments. Two assess-
ment studies (one from the Istituto di Fisica dello Spazio
Interplanetario at Frascati, Italy and the other from the
University of Texas in Austin) and an evaluation by some
NASA advisory panel carne to the conclusion that Qz~
might be measurable with 10% accuracy in three years if
(following a suggestion of Ciufolini [5] and Bertotti,
Ciufolini, and Bender [6]) a further LAGEOS satellite is
placed in orbit with about the same orbital parameters as
that of LAGEOS but with an inclination 180'—I~~z.
Relativistic effects from the higher mass moments of the
Earth might become significant in the near future espe-
cially in relation with drag-free satellites flying on low or-
bits. Some consequences of post-Newtonian forces relat-
ed with the mass quadrupole (oblateness) of the Earth are
discussed in Soffel et al. [7] and Heimberger, Soffel, and
Ruder [8]. Finally, a consistent definition of the concept
of "tidal forces" within a relativistic setting clearly neces-
sitates the use of at least two different reference systems:
a "geocentric" system where such forces appear as the re-
sidual effects of some external forces that largely cancel,
and a "barycentric" system needed to describe the global
motion of all the bodies constituting the solar system, and
thereby to determine the time dependence of the local ti-
dal effects.

This preliminary, heuristic discussion of the motion of
a satellite in a geocentric frame clearly shows that a
prerequisite for a consistent SLR theory is to dispose of a
well-defined relativistic theory of spatiotemporal refer-
ence frames, able to describe, in a fully explicit manner,
the relativistic effects generated by bodies of arbitrary
shapes in several different reference frames. Such a
theory has been provided by our previous series of publi-
cations ([9—ll], referred to in the following as papers
I—III). The aim of the present paper is to show in detail
how to apply the formalism of papers I-III to the prob-
lem of the motion of an artificial Earth satellite.

In our opinion, the previous attempts made in the
literature to tackle the relativistic satellite problem have
all been unsatisfactory. A first type of approach [12,13]
tried to work only in a global (barycentric) coordinate
system. This introduces many apparent, large contribu-
tions in the equations of motion and in the laser propaga-
tion efFects which cancel when computing local observ-
ables (such as the proper time elapsed at the station dur-
ing the bounce of a laser beam onto a satellite). Worse,
as, until paper II, the only known relativistic equations of
motion assumed spherically symmetric bodies (Lorentz-
Droste, Einstein-Infeld-Hoffmann), this approach missed
a numerically important term in the barycentric repre-
sentation of the gravitational field of the Earth associated
with the oblateness of the Earth. This created problems
for many years in the University of Texas Orbit Program
and Interpolation Algorithm (UTOPIA) in the form of a

spurious signal of 100 m amplitude in the along-track
component of a satellite orbit with a period of 280 days.
The missing term in the barycentric equations of motion
has been recently put back by brute force [14] by using
some transformation rules for the (coordinate) accelera-
tion vector between the barycentric and some geocentric
frame (see also Huang et al. [15]). In our approach all
the terms associated with arbitrary multipole moments
are automatically taken into account (for completeness,
we shall exhibit in Appendix A the compatibility of the
acceleration transformation rules derived in Huang et al.
[15]with our general formalism).

A second type of approach [16,17] defined geocentric
coordinates as generalized Fermi normal coordinates
[18—20] and took into account the nonlinear interaction
between the gravitational field of the Earth and that of
the Sun. This approach, however, has serious drawbacks
which stem from the fact that it is not the first step of a
clearly defined algorithm: the background spacetime of
this scheme is not well defined; the coupling of the quad-
rupole moment of the Earth with the external gravita-
tional field is neglected from the start; there is no flexibili-
ty in the definition of the rotational state of the geocen-
tric coordinates so that the relation between the barycen-
tric and the geocentric frames necessarily involves a
time-dependent rotation. Furthermore, calculations of
higher-order tidal terms require higher-order derivatives
of the Riemann curvature tensor in the background
spacetime [21] and, as we have demonstrated in paper I,
the use of curvature components are ill-adapted tools for
the description of tidal effects in the X-body problem.

A more recent approach, due to Brumberg and Kopej-
kin [22—24,27,28] and Voinov [25,26] comes closer to
achieving a satisfactory theory of relativistic reference
frames. However, as already remarked in paper I, we be-
lieve that the Brumberg-Kopejkin approach has several
drawbacks when compared to the formalism of papers
I—III: ad hoc assumptions about the structure of various
expansions are made, which are only partially justified by
some later consistency checks; the scheme is confined to a
particular model for the matter (isentropic perfect fiuid)
and restricts itself to the harmonic gauge; their formalism
involves physically and mathematically ill-defined "mul-
tipole moments, " which lead to a bad definition of the
origin of the geocentric frame and to awkward relations
between the "multipole moments" appearing in different
coordinate systems. Moreover, their cumbersome tech-
nique of matching of individual multipoles leads to the
strange situation that within their framework it might be
more convenient to derive the geocentric satellite equa-
tions of motion not as a geodesic equation in the geocen-
tric metric but rather by transforming the barycentrie
geodesic equation (see, e.g., Refs. [27,28]).

In our new framework of relativistic celestial mechan-
ics (papers I—III) all these problems are circumvented or
solved in a satisfactory manner: the whole scheme is
developed in a constructive way by proving a number of
theorerns; the structure of the stress-energy tensor is left
completely open; the gravitational field locally generated
by each body is skeletonized by well-defined relativistic
multipole moments recently introduced by Blanchet and
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R,'(T)=5;, . (1.2)

This defines a geocentric kinematically nonrotating frame
where, however, relativistic Coriolis forces have to be
taken into account. The relativistic Coriolis efFects are
discussed in Sec. III below and in Appendix C.

The second choice consists of using a particular time
dependence of the matrix R,' leading to an effacement of
relativistic Coriolis effects in the geocentric frame (this is
sometimes called a "dynamically nonrotating frame").
As discussed in detail in paper III, this effacement condi-
tion in our formalism can simply be expressed as the van-
ishing of the central, external "gravitomagnetic held, "
8, ( T) =0, or, equivalently, according to theorem 2 of pa-

per III, by the Fermi-transport condition of the vectorial
basis e"(T) with respect to the external metric g„. For

Damour [29], while the external gravitational field is ex-
panded in terms of a particular new set of relativistic ti-
dal moments. Our treatment of the gauge degree of free-
dorn is new: the spatial coordinate grid is fixed by alge-
braic conditions leading to special harmonic spatial coor-
dinates while a convenient gauge flexibility is left open in
the time coordinate. In this way one can easily deal ei-
ther with harmonic spacetime coordinates or "standard"
post-Newtonian coordinates in all frames. In both the
barycentric and geocentric reference frames we use a par-
ticular exponential parametrization of the metric tensor
which has the effect of linearizing the field equations, as
well as the transformation laws under a change of refer-
ence system. This linearity plays, in fact, a crucial role in
our formalism; e.g. , in each frame there is a canonical
and unique way to split the metric into a locally generat-
ed part (for example, due to the gravitational action of
the Earth itself, when considering the vicinity of the
Earth), and an externally generated part, due to the ac-
tion of the other bodies in the system and of the inertial
forces in the accelerated (geocentric) system. Hence,
when we talk about the "external" metric we deal with a
well-defined concept. In paper I we were able to derive
simple transformation rules for the metric potentials (that
fully determine the metric) between barycentric and geo-
centric frames without referring to multipole expansions.
These simple and compact transformation laws [Eqs.
(4.12), (4.53), and (4.55) of paper I] constitute one of the
central pillars of our scheme; they make the matching of
individual multipoles used in the Brumberg-Kopejkin
scheme completely superfluous.

One further attractive feature of our scheme consists in
that the rotational state of the geocentric spatial coordi-
nate grid, as described by some time-dependent orthogo-
nal matrix R,'(T) is left open provided that R,' is only
slowly changing with time

dR,'( T)

dT
=O(2),

where 0 (2)—:0 (1/c ). As already remarked in paper I,
two choices for R,' are obviously preferred. The first
choice is simply a global fixing, i.e., an alignment of the
geocentric spatial coordinate lines with respect to the
barycentric ones:

details see Sec. IV B of paper III.
In the formulation of satellite equations of motion we

will use the barycentric and geocentric coordinate times t
and T, respectively, as fundamental time scales. These
two time scales now carry the names temps-coordonnee
barycentrique (TCB) = t and temps-coordonnee
geocentrique (TCG) = T. The normalization of the TCB
time scale with respect to the physical second of the In-
ternational System of Units [which is used to measure the
proper times dr=c '( —g„„dz"dz")' ] is defined by the
requirement that the time-time component of the
barycentrie metric, goo, tend to —1 at spatial infinity.
The normalization of the TCG time scale is defined by
what we called the "weak effacement condition"
W(T, O)=0 or, in other words, by the requirement that
the time-time component Goo of the external metric in

the geocentric frame [uniquely defined in our formalism
by Eqs. (5.18) of paper I) equals —1 at the origin of the
geocentric frame.

For completeness, let us note that the terrestrial time
(TT) scale [the old TDT (terrestrial dynamical time)] is
defined as TT —=kz T, where the constant kz is chosen so
that TT directly measures the proper time on the rotating
geoid: k& =1—6.97X10 ' . The relation to the interna-
tional atomic time (TAI) is then simply given by
TT=TAI+32. 184 s. Note also that the Jet Propulsion
Laboratory (JPL) ephemerides of the solar system such as
DE200 use a time scale [called barycentric dynamical
time (TDB)], which is ideally supposed to be just a re-
scaled version of TCB. However, there are by now well-
known problems in the definition of TDB in relation with
TT. Moreover, the scale factor between TDB and TCB
generates useless inconveniences by affecting the mea-
surement of the masses of the bodies of the solar system
[12,13,30—32].

Finally, let us mention that the present paper is pri-
marily directed toward treating the motion of artificial
Earth satellites, causing negligible gravitational forces on
the other bodies. The motion of the Moon poses a
different problem. Within our formalism, the simplest
way to study the motion of the Moon is to treat it on a
par with all the other bodies of the solar system and to in-

tegrate its global-frame (barycentric) translational (paper
II) and rotational (paper III) equations of motion. It
would, however, be interesting to develop also a local-
frame approach to the motion of the Moon (note that our
formalism is flexible enough to use either a local frame
with origin at the geocenter or one with origin at the
Blanchet-Damour center of mass of the Earth-Moon sub-
system).

This paper is organized as follows. We start with a dis-
cussion of satellite equations of motion in the local geo-
centric frame. In Sec. II we recall the form of the metric
in the geocentric system. The external part of the metric,
which describes the tidal forces and is given by our po-
tentials W, is characterized in two different ways: (i) by
means of a closed form expression and (ii) by means of an
expansion in terms of our gravitoelectric and gravitomag-
netie tidal moments GL and HL. In Sec. III the satellite
equations of motion in the geocentric frame are dis-
cussed. The relativistic forces acting on a satellite are
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split into a local, an external, and a mixed part: the local
part describes the action of the Earth's gravity field, the
external part is the action of other bodies as well as iner-
tial forces, and the mixed part is bilinear in the local and
the external gravitational fields. The local part of the ac-
celeration contains the Schwarzschild and Lense-Thirring
accelerations, as well as their higher-rnultipole analogues
("relativistic forces" associated with higher Earth's mass
multipoles). The external force is determined by W and

(E„B,) and characterized in the ways indicated above.
Especially for high-Hying Earth-orbiting satellites it
might be advantageous to dispose of equations of motion
in the global barycentric frame. In Sec. IV we discuss the
explicit form of the metric and satelhte acceleration in
the global barycentric coordinate system. Section V con-
tains some brief concluding remarks. Finally, in Appen-
dix A we discuss the transformation properties of "rela-
tive position vectors" of satellites and corresponding ex-
pressions for the relative satellite accelerations. These
transformation rules relate the satellite equations of
motion from Secs. III and V. In Appendix B some tech-
nical details concerning the form of the barycentric
metric are given. Some guidance on how to treat the geo-
detic precession in the framework of satellite dynamics is
given in Appendix C.

II. THE METRIC IN THE GEOCENTRIC FRAME

In the Introduction we recalled the heuristic expecta-
tion that there should exist some Einsteinian analogue of
the Newtonian, geocentric (nonrotating) frames following
the Earth in its motion around the Sun. The formalism
of papers I-III has led to a precise definition of such rel-

2
G00 = —exp — W

c
(2.1a)

(2.1b)

G b=5 b exp + W +0(4),2

c
(2.1c)

and the metric potentials W, —= ( W, W, ) are split into lo-
cal and external parts (see Sec. IV of paper I):

W =W++8' (2.2)

Here, the locally generated part 8'+ results from the
gravitational action of the Earth and the~externally gen-
erated part W from all the other massive bodies in the
solar system as well as from inertial effects. According to
Eq. (6.9) of paper I, the local parts, in the skeletonized
harmonic gauge, can be written as

ativistic geocentric frames, as being what we called the
"local" coordinate systems X =(cT,X') associated with
the moving Earth [we follow the notation of our previous
papers to which we refer the reader in case a notation
used below is not explicitly redefined]. In the present,
more specialized paper, it is convenient to use a time-
honored terminology and to use the words "geocentric"
to refer to the local frame X, and "barycentric" to refer
to the "global" coordinate system x" used to describe the
overall motion of the solar system. Let us recall that, in
the local geocentric system with coordinates
X =(cT,X'}, the metric is written in our usual exponen-
tial form

I

W+(T, X)=G g, BL[R 'Mt"(T+R/c)]+0(4),
1&0

(2.3a)

W, (T X)=—G g l, BL, ) R
d M,L, ) +

l
e,b, BbL )(R S, , ) +0(2'),

I dT 1+1 (2.3b)

where

f ( T+R /c )—:[f ( T +R /c) +f ( T —R /c ) ]l2
W""(t,x') = GM~ 2 2 11+ (v~ —v„)2— tv~(z~ }

TB c c

with R =—(5,bX'X )'~ and where (as in our previous pa-
pers) L is a shorthand notation for a multispatial index
a, az . ai. In Eqs. (2.3) ML" and St" are the relativistic
[Blanchet-Damour (BD)) mass and spin moments of the
Earth [see Eqs. (6.11) of paper I], A being a label which
refers to the Earth. The external potentials W according
to Eq. (5.5) of paper II can be written as

1 2 1
z (ng 'vs )

~ aji 'rg
c~ 2c2

+0 (4),
GMB +0(2) .WB/A(t i) R A( i i

PB

(2.5a)

(2.5b)

W (X~)= g W "(X~)+W" (X~)+0(4,2),
BWA

(2.4)

where the "8 over A" term S' ~ denotes the contribu-
tion from body 8 and 8"' results from inertial effects. In
the approximation where the external bodies are de-
scribed as mass monopoles, we find, from Eqs. (A7) and
(A8) of paper II,

If needed (e.g., for a more accurate treatment of the grav-
itational effect of the Moon) the contributions of the
higher-multipole moments of the external bodies can be
straightforwardly obtained from the results of paper II
(see also Appendix B below). Note that we have ex-
pressed W not in terms of the local coordinates X~,
but instead in terms of the corresponding global ones
[x"=(ct,x')]. In Eqs. (2.5) ra =(&j rBrk n8 rB/rB
with re(t, xj)—=x' zt'i(t), vz —=dzt'ildt, and ati =dvt] ldt,
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W"( T,X') =6"+6,"X'+—6,'bX'

dX2ga 6
1Oc2

+ A" +0 (4),
C

(2.6a)

A"+0 (2),a
4 BX'

with [see also Eqs. (6.30) of paper I]

6"( T)=c ln +0 (4),dT
d Tf

6,"(T) = —A,"+0 (4),

G,'b {T) = A &", A b") +0 {4),=3
c

(2.6b)

(2.7a)

(2.7b)

(2.7c)

(2.7d)

In these equations ~f is the global Minkowski proper
time along the geocenter:

dr~=c '( f„dz"„dz„'—)' ', (2.8)

and

ZA
Ag f„,ea"——

d7 f
(2.9)

denotes a certain local-frame projection of the global
Minkowski acceleration of the central point of body A.
It is explicitly given by

ZA
A,"=R;," —

2
w a ( z a )a x +

2
( v w a „)U a

dt c 2c

where zii(t) denotes the barycentric spatial coordinates of
the central point (origin) of body B as a function of the
barycentric time coordinate (usually chosen to be the
center of mass of B). According to Eqs. (4.15) and (5.10)
of paper II the inertial part W" has the form

satisfy the four weak effacement conditions of the full (ti-
dal + inertial) external gravitational potentials:

W (T,O):—0. (2. 1 1)

The value of the higher terms D ( T, X)=0 (X ) in A"
can also be arbitrarily changed by an appropriate choice
of the free datum 5 Sec. V A of paper I, i e.,

g(T, X)—:c P. However, this freedom corresponds to a
transformation of the local time coordinate oT=gic
which is of no physical importance at the first post-
Newtonian level.

Our formalism gives us the flexibility of giving two
types of expansions for the external potentials 8', or
equivalently for the external gravitoelectric and graUi-
tomagnetic fields E, and B„which play an important
role in the equations of motion of a satellite [see Eqs. (3.4)
and (3.16) below]. These quantities are defined by

E.=a. W+ 4, a, W. ,
c

B,= —4e,b, Bb W,

(2.12a)

(2. 12b)

E, and 8, can be given as closed-form expressions in
terms of the masses and global coordinates of the external
bodies, or as tidal series in powers of the local coordi-
nates X'. The latter tidal expansion will be recalled in
the next section. Let us show here how to compute a
closed-form representation of E, and B, (when approxi-
mating the external bodies as mass monopoles). Inserting
the linear split (2.4) into the definitions (2.12), we get a
corresponding linear decomposition of E, and B,:

E= gE "+E,",
BAA

B, = g B, ~"+B,",
B&A

with

(2.13a)

(2.13b)

EB/A D ~B/A+ D ~B/A4
a a T a

c

BB/A 4~ D PrB/A
a ~abc b e

(2.14a)

(2.14b)

From Eq. (4.16) of paper II we get [see also Eq. (6.31) of
paper I]

+ v„a„' +0(4) .
c

(2. 10)

d2 1 d

c dT 6c

In Eqs. (2.6) the function A"(T,X) must vanish at the
origin [because of the definition of
6"( T) —= W"( T,O)+ 0 (4) ]. Therefore, we can write
A"(T,X)=C,(T)X'+D(T,X) with D(T, X)=0(X ) as
X'~0. The value of C, (T) [and thereby the value of
W,"(T, O) ] can be changed at will by appropriately choos-
ing the free datum 3 of Sec. VA of paper I, i.e., e, (T).
Similarly, the value of G"(T) can be changed at will by
an appropriate rescaling of the local (or geocentric) time
coordinate T—=TCG along the world line of the geo-
center. %'e assume that these choices are made so as to

+
c dT

+O(4), (2.15a}

B,"=H,"—2e,b, X 6," +0(2) . (2.15b)

As in paper II, we will express the differentiations with
respect to the local-3-frame coordinates, D =8/BLA,
in terms of global-frame differentiations, 0„—:0/Bx". We
get
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where

ax~ a af~(X }

aX ax" ax
(2.16) D = =a, +v„'a, +o(2),

1

c

(2.19a)

x"=f~(X )=z"(T)+el'(T)Y'(T, X)+O(3,4), (2.17) + eb"'[A "X'—X A "—
Q,b( A".X)]a.

with +O(4) . (2.19b}

Y'( T, Q) =X'+ —A,"X —X'( A".X)~ 2 a

c

This leads us to [see also Eq. (4.16) of paper I]

(2.18}
Inserting the expressions for W ~" into (2.14) and per-
forming the derivatives as indicated we finally get the
8/A parts of the external gravitoelectric and gravi-
tomagnetic fields:

R,"' — 1+ (v~ —v„) —,w (z„)— zto (z~) — z(ntt vg)—. GMBnB 2 2 & g & —B

PB

—R,"' [(ns vs)(5vz —3v„' ) ', r—za—&+4rza„' ]— 2 R,"uA 4U$
C2rB c

6MB nBR»'b[A ~X~—XbA —$ b( A .x}] +O(4},
c P'B

GMBnBps~"=4e, b, R "'R "J (o$ —UJ ) +O(2} .
TB

1
2aB rB

2C

6MB nB
2

TB

(2.20a)

(2.20b)

To conclude this section, let us recall that our formalism
leaves open some flexibility in the definition of a local,
geocentric frame. First, the choice of the origin of the lo-
cal frame is free. However, we repeatedly made it clear
that there is a preferred choice, namely, that for which
the post-Newtonian mass dipole M,"(T) vanishes (this
defines a relativistically mass-centered local frame).
Second, the rotational state of the spatial local coordinate
grid is free, as long as it evolves with post-Newtonian
slowness, Eq. (1.1). We shall return below to the effects
associated with this rotational flexibility.

Neglecting the satellite's own gravity field [and
nongravitational forces (atmospheric drag, radiation
pressure, etc.), which must be added separately] the
satellite's center of mass (Zs }= (cT,Zs ) will follow a geo-
desic. In our metric (2.1) a geodesic can be derived from
the Lagrangian

c[ G t3(—Z$)dZs/—dT de/dT]'~ +c

which reads

z =—v'+ w — w'+
2 2c2 2c2

III. SATELLITE EQUATIONS OF MOTION
IN THE LOCAL GEOCENTRIC FRAME

The relativistic equations of motion of a satellite in a
geocentric frame can be expanded in powers of three in-
dependent parameters: (i) the parameter e-eR ~ /R
(where R ~ is the radius of the Earth and e is some mea-
sure of the lack of sphericity of the Earth's mass distribu-
tion) which corresponds to a multipole expansion; (ii) the
parameter g-R/D (where D is a characteristic distance
between the Earth and the external bodies) which corre-
sponds to a tidal expansion; and (iii) the relativistic pa-
rameter g-v /c -GM/e R, which corresponds to a
post-Newtonian expansion. In the present section we first
write the full multipole and tidal expansion of the satel-
lite equations of motion at post-Newtonian accuracy [i.e.,
neglecting only terms of order g =O(c ")]. Then we
write in more detail some approximations of the equa-
tions of motion, obtained by retaining only the leading
combined corrections of order ge" or gg

(3.1}

dzZs( T) =[W.+c-'( —4WW. —4W V'V'+ W.+'

—3$'TV +48, T

+O(4),

+ SW( bl V )]&

(3 2)

where W(, ~)
=——,'( W, b

—Wb, ). In terms of the full Bocal
+ external) gravitoelectric and gravitomagnetic fields E,
and B„defined by

+ v' — w, v'+o(4),
8c2 c2

where V is the geocentric coordinate velocity of the satel-
lite, V'= dZs/dT (as—it leads to no ambiguities in the
geocentric frame we simplify the notation by suppressing
the label S on the velocity of the satellite}. The geocen-
tric coordinate acceleration of the satellite is then given
by
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Z. =a.W+, O, W. ,
4

C

B = 4 b BbW

(3.3a)

(3.3b)

where F1'„results entirely from the gravitational action
of the Earth, F,'„, results from the other massive bodies in
the solar system together with inertial effects and where

Zs
dT

V 4W
c2 c2 c

this acceleration can also be written in the form F';„=—
( WW+, + W+ W, )

4

c

(WE,++ W+E, )
4

C
(3.6)

(4V"8 W+38 W) V'
C X, = ~(

+O(4) .

(3.4)

Note the appearance in Eq. (3.4) of the "Lorentz force"
E+V XB/c, which also played an important role in our
study in papers I—III of the consequences of the relativis-
tic "Euler equations" for the continuous matter distribu-
tion constituting the Earth and the other bodies in the so-
lar system.

The linear split of the metric potentials in (2.2) induces
a corresponding split of the acceleration terms on the
right-hand side of (3.2) according to

Fa Fa [Oj +Fa [2]
1oc loc loc (3.7)

where

)l
Fa(0] —

G ~ ( MA/)A
loc ~ l ~

L aL
1~0

(3.8)

is bilinear in the local and external gravitational fields
[for simplicity we henceforth drop all the O(4) error
terms in the equations of motion], and Fi„ is simply ob-
tained by inserting W+ from Eqs. (2.3) instead of W on
the right-hand side of (3.2) (M'"'= d "M—/dT", etc.). We
write

S

dT 2
=F1„+F,'„,+Fm;„) (3.5)

kF' =G ~ —M"' '~3 8 —4M "4" G ~ M "4" —4M "O' V V'+M "4"V —3M""'4"V'
loc ~ ii i 2 t. aL I aL ~ k i K K i. bL L aL L L

1&o c k~0

4MaL —1 +L —1+ ~abc SbL —1 +cL —1
8M (L —1)[a +b]L —1

~A(2) A 4l A(2) A A(1) A b

l+1
8l

dc [a +b]dL —1ScL —1
~ (3.9)

Here we have introduced the useful notation

(yA —q) A
L

1

Qg l RA

a) '''a(

(3.10)

(
—)'

UI,) ( T,X)= G g Mi ( T)i3i (3.11)

while F1„will be referred to as the "relativistic" part of
the local acceleration.

We want to stress that although Eq. (3.8) looks perfect-
ly "Newtonian" the mass moments of the Earth, ML {or
the equivalent spherical multipole coe%cients Cl and
S& ) are the full post-Newtonian (BD) moments defined

with NA =—XA/RA and the caret denoting as usual a
symmetric trace-free projection. F1„might be called
the "quasi-Newtonian" local acceleration of the satellite
being just the gradient of a "quasi-Newtonian" local sca-
lar potential

in Eq. (6.11) of paper I. As only these moments (together
with their spin analogues Sz" ) enter the satellite equations
of motion, it is clear that they are directly measurable
from high-precision satellite orbital data. In particular,
there would be no observable meaning to split ML into
Newtonian and post-Newtonian contributions [in spite of
the fact that the theoretical definition of ML", Eq. (6.11) of
paper I, does contain explicit post-Newtonian contribu-
tions].

To discuss in more detail the post-Newtonian accelera-
tion of an Earth-orbiting satellite we make several ap-
proximations in the total acceleration (3.5): we neglect all
higher spin moments S,L for l ~ 1; we neglect all time
derivatives of MI and S„' among the explicit c terms
we only keep the mass monopole and quadrupole terms;
the c terms quadratic in M,"b or bilinear in M, b and S,
are neglected. At this point it is also convenient to en-
force that the origin of the local system be taken so as to
make the BD mass dipole vanish:

M,"(T) =0
("relativistic mass-centered local frame"). The "relativis-
tic" part of the local acceleration might be split accord-
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ing to

F)oc =Fschw +Fgg +Fg + ' (3.12)

4G bAF~ —
2

V Sd Ccdfac'b)c
c

(3.15)

GMA
Schw 2 3c R

GMA
4 —V I'+4(X V)V' . (3.13)

R

Here, Fs,h„denotes the Schwarzschild acceleration, re-
sulting from the mass monopole of the Earth:

[The (satellite spin) X orbit and spin-spin contributions
to the equations of motion have been discussed in paper
II, and are negligible in practical applications. ]

Next we come to the external (or "tidal" ) accelerations
which can be written as

Fz& denotes those relativistic accelerations which are
linear in the mass-quadrupole moments:

V2

c C C

GMb,
F„'&= —2GM „(@q,@,"+4"0&,"(„)

—(4V Bs W+3Bz W)V' . (3.16)

—2 V'V"C'bed+ —,
' V 4'abc (3.14)

Finally, Fs is the spin-orbit ("Lense-Thirring") accelera-
tion, resulting from the spin vector (= angular momen-
tum) of the Earth:

For some high-Hying satellites it might be advantageous
to evaluate the right-hand side of (3.16) by using the
closed-form expressions for IV and (E„B,) given in the
last section. In most cases, however, an expansion in
terms of the relativistic tidal moments Gl and HL intro-
duced in paper I will be more appropriate. Using the ex-
pansions [see Eq. (6.23) of paper I]

E = y XLG + X2XLG(2) g'« —(G(&) + g'&L —(H(1) +O(4)
2(21 +3)c (2l + 1 )c (& +1)c

(3.17a)

(3.17b)

and

W'= g —,X' GL+O(2),Il L (3.18)

we can decompose the external acceleration in "quasi-Newtonian" and "relativistic" parts:
—Fa[0]+Fa f2]

ext ext ext

with

(3.19)

(3.20)

and

(3.21)

Note that although expression (3.20) for F;„, looks
Newtonian, the quantities G,L are the full post-
Newtonian electriclike tidal moments, which contain c
terms when written in terms of the multipole moments of
the other bodies. Equation (3.20) contains for l =0 a spa-
tially uniform contribution given by the tidal-dipole mo-
ment G, [see, e.g., Eq. (6.6b) of paper II],

M
G, = —g —, G,L+O(2)

A

T

Mb,
G + 0 ~ ~

2 M abc
A

(3.22)

which is present even in the Newtonian limit as Mb, &0
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(only if the geocenter were to follow a geodesic would G,
vanish).

For practical applications it might be sufficient to re-
tain the full post-Newtonian accuracy only in the terms
which are linear in the local space coordinate X'. This

I

implies that in F,'„~, ~ the full post-Newtonian tidal-
quadrupole matrix G,b should be used. According to
Eqs. (4.27) and (4.29) of paper III, i.e., in the approxima-
tion where the external bodies can be described as mass
monopoles, G,b is given by

3GMB
G,b= g R,'Rf

1'AB

1
nAg + InA)t, [2v„B 2—tvA(z A)

—tvB(zB) ——,'(n„B vB) —
—,'aB r„B](i & (i & 2 — — g 2

+aAB AB+vABuAB 2(nAB vAB)nABvAB
&i j& (i j& . &i j&

—(nAB v„)n„B(u„2u—it )] +O(4), (3.23)

where the angular brackets denote the symmetric trace-
free part of a tensor, e.g.,

a('b~ =——,'(a'bj+b'a~) ,'a'b—'5—".

t

terms are also neglected. The first expression on the
right-hand side of (3.26) is nothing but a relativistic
Coriolis force in the local geocentric frame:

L =dL NA(zA )+O(2), (3.24)

[If needed the contribution of the higher-multipole mo-
ments ML can be straightforwardly computed from the
result of paper II.] For the higher tidal moments, GI
with I ) 2 the Newtonian limit

a[2j =
c

where

1
d'or =

2C

(3.27)

with

and

d"—=R ' R '8
L a1

''
al i1. /I

F;„{,) =G, +G, X + g Xd," tu—(z„) .
I~2

(3.25)

As for the "relativistic" part of the tidal acceleration, as-
suming the weak efFacement condition G ( T)=0, it reads

C

(3.26)

in the approximation where only those c terms which
are at most linear in X' are retained, and where c 6,

I

tuA(t, x')= g GM /Br +BO(2),
BWA

might be sufficient. Hence, we have, for the "quasi-
Newtonian" tidal acceleration,

We discussed in detail in paper III how Qc„arises as a
universal Larmor-type term in the precession of gyro-
scopes. This post-Newtonian Coriolis force vanishes for

H, =0, a condition which defines a dynamically nonrotat-

ing geocentric frame, i.e., a frame in which both Coriolis
effects and the universal gravitational Larmor effects are
absent. For such a Coriolis-effaced geocentric system the
local spatial coordinate grid must precess with respect to
the barycentric one, i.e., the rotation matrix R,' will be a
function of time obtained by integrating Eqs. (4.19) of pa-

per III (an approximate treatment of this time-dependent
orthogonal matrix is given in Appendix C).

Inserting the Newtonian expressions of the electriclike
tidal-quadrupole matrix, G,b [Eq. (3.23)] and of the mag-

neticlike tidal quadrupole

36MB
H,b= g R"'R"' [ 2e;„,(vt v,")6—'„"~—

PAB

—2e,k, (v, —
v,")h

A]B

we find the following explicit expression for F,'„~, :

F,'„(t2) =2(Qc„X.V)'+[(dQc„ldT) XX]'
'3GM, '

[R A~R AJ/'X 4R 'R "JV'V"X'—
a b b c

B~A rAB C

2Vb(uB —u„" )X"e,—b, (e„,IR,"'+e„gR„"')R,'RI" ] . (3.28)

In Eq. (3.28), V' denotes, as above, the velocity of the
satellite in a geocentric frame, while UB

—u A denotes the
relative barycentric velocity of body 8 with respect to the
Earth.

Finally, we come to the mixed acceleration terms from
Eq. (3.6). Using relation (4.1Sa) of paper II and

IV, = g GL,X +O(2) (3.29)
jl)o I I
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we can write F';„as
k

C k)0 1)0

(G,„X ,'G—,N—'X'),
c R

(3.30)

For completeness, and also to allow one to compare
and contrast our approach with previous ones, we discuss
also the form taken by the satellite equations of motion
written by using only global, barycentric coordinates
(x")=(ct,z'). This form might be useful for high-Hying
satellites.

A. The global (barycentrie) metric

where X '=—X"X' with X:—X /R. Inserting the
Newtonian expression for G,b we can also write more ex-

plicitly

GMA GMB [X'—6nwa(nba X)
c R a~A r„

+3(n„a N) X'] . (3.31)

To end this section, note that the explicit results given
here for the coordinate equations of motion in a geocen-
tric frame have to be completed in practical applications
by taking into account the relativistic gravitational time
delay effects in the time of Bight of a laser pulse bounced
back on the satellite (as well, evidently, as the time dila-
tion factors between coordinate time and proper time for
the clocks used in the timing}. At the post-Newtonian
accuracy the time delay and time dilation effects in a geo-
centric frame are entirely described by the scalar poten-
tial 8', taken at the Newtonian approximation, i.e., by
the sum of the local potential Uj,,) of Eq. (3.11) and w„of
Eq. (3.24). However, for the time delay we expect in
most cases the effects of higher-multipole moments and
of tidal moments to be negligible so that it will be enough
to take into account only the usual (Shapiro) logarithmic
time delay associated with the mass of the Earth (which
corresponds to an equivalent range effect of order
GM~ /c -0.88 cm). On the other hand, a higher accu-
racy might be needed in the computation of time dilation
effects necessary to retain the effects of higher multipole
moments and tidal potentials.

IV. SATELLITE EQUATIONS OF MOTION
IN THE GLOBAL BARYCENTRIC FRAME

For the problem of Earth-orbiting satellites we write

l8 —N +N (4.2)

—X X
G MBMc

BWA C~B C rBrBC

1 a2+
2 g GMa 2

ra(t)+O(4),
2c a~g Bt

GMB
w,

"= g va+O(2),
BwA rB

with [na(t)=(x' —za)/Ix —zaI]

(4.3a)

(4.3b)

2

ra(t) =
Qt2 rB

(na va)
nB'aB . (4 4)

For the Earth we shall retain its multipole structure.
However, among the relativistic terms only those arising
from the mass, the mass quadrupole, and the spin dipole
will be kept. Since we neglect the multipole moments for
all bodies other than the Earth we will drop the index A
for the Earth on all multipole terms other than the mass.
In the following we will also assume the local geocentric
A system to be relativistically mass centered, i.e.,

M,"(T„)=0. (4.5)

Accordingly, the barycentric metric potentials for the
Earth will be approximated by

w„" =w„" ILD+ w„" Is+ w„" I&+w„" Ih;sb„. (4.6)

Here, w„" ILD denotes the mass-monopole Lorentz-Droste
(Einstein-Infeld-Hoffmann) part given by (see Appendix B
for derivations and more details)

GMA
1+ vA

2c

wA(ZA)

c2

where m„" results from the gravitational action of the
Earth ("body A") and w„" results from all other massive
bodies in the solar system. To derive the post-Newtonian
acceleration of a satellite we will consider all bodies
BA A in the mass-monopole approximation. Therefore,
from Eqs. (7.14) and (7.19) of paper I (or from Appendix
B), we get

GMa 3 GMa "aw"= g +—g2 B~A rB C

As in the geocentric system the metric in the global
barycentric frame with coordinates x"=(ct,x') is written
in exponential form:

+ GM„a„r„(t),1

2c

GMA

(4.7a}

(4.7b)

2
g00= CXP 2

W
C

(4.1a) The spin and quadrupole parts w„" Is and w„" I & read (see
Appendix B)

C

g;J =5;J.exp + w +O(4} .2

c

(4.1b}

(4.1c)

W [5 2 Cgkl A lgj
C

A AG
W; IS 2 Eijksk+J

(4.8a)

(4.8b)
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and

3 3w„(zA)
w ~g= —Gm k 1+ v'„—

2 ' 2c' c'

k a 1 I A+
2 m~kazcp~

—
2 Gv~ v(km~)tkqI

2c

G+
2 m&kr)„&krA(t),

4c
i A

w; ~Q
—

—, -m~&vzg

(4.9a)

(4.9b)

B. The barycentric satellite acceleration

Since the metric (4.1) in the global barycentric system
is one of the same form as the one in the geocentric sys-
tem [Eqs. (2.1)], the satellite equations of motion in the
barycentric frame are obtained from Eq. (3.2) simply by
replacing geocentric quantities (X,O', Zs( T) ) by corre-
sponding barycentric ones (x",w„,zs(t)):

d zs(t) = [w, +c {—4ww; —4w,.u)us+ w; vs

while the gravitational potentials associated with the
higher-multipole moments of the Earth are approximated
as

S+4

+8w(, )u$)]; (4. 1 1)

Wi ~ higher

i

1~3
(4.9c)

(4.9d)

where zs(t) is the barycentric coordinate position of the
satellite, us= dzs(t—)ldt is its barycentric velocity, and

w(;, )
—= —,'(w;, —

w, , ). We write

Here, s, =R, 'S„m,I, —=R, 'R„" M,„,etc. and
dz S

dt2
=a OLD ( zs, vs ) +as +a &

+a „'; „„. (4.12)

(4.10)

Here, a LD(zs, vs) is the Lorentz-Droste (Einstein-Infeld-
Hoffmann) acceleration of the satellite for a system of
mass monopoles [see Eq. (7.20) of paper I with
A = satellite]. For the convenience of further discussions
below, we write aLD in the general form

GMB l 2 2 3 2
GMC

aLD(zK, VK ) = —g I nKB 1+ I VK+ 2VB 4VK 'VB (IlKB 'VB ) 4
B~K rKB c' 2 C~K c'rKC

GMC 1 rKB
1 + IlKB

' ll cB
c~B c'rBc 2 rcB

7 G2MBMC GMB
rf nBC l l + X {VK vB) l l { KB K KB B)

BWK CAB c rKB rBC B&K c rKB
(4. 1 3)

where

rKB —= lzK(t) —zB{t

nKB [zK{t) zB{t)]~rKB

The first term on the right-hand side of Eq. (4.12) is sim-

ply obtained by taking K =S(=satellite) in Eq. (4.13)
and by neglecting Ms in the sums where it could appear
(on the other hand, the sums over B and C must evidently
include the label A =Earth).

as and a& in Eq. (4.12) are the barycentric accelera-
tions caused by the Earth's spin and mass-quadrupole
moments, respectively. These accelerations originate in
the w„" ~5 and w„" ~& terms of Eqs. (4.8) and (4.9). All the
acceleration effects resulting from inserting w" ~„o, Eq.
(4.7), into the satellite equations of motion (4.11) are con-
tained in a LD. The spin acceleration as results from the
w„"~5 terms in w", , 4c w;"„and 8c w("; )u$. Neglect-
ing time derivatives of the spin vector, these contribu-
tions together yield (vs„=—vs —v „)

46
as — u/A SIEkl [i Pj)k (4.14)

c2

in agreement with Eq. (6.32) of paper II. Note, that as
depends only upon the relative velocity of the satellite
with respect to the geocenter vs„. This results from the
fact that si are the components (projected onto the global
system) of the spin vector of the Earth as measured in the
local mass-centered geocentric ( A) system. Additional
spin-orbit terms as they appear in other frameworks (see,
e.g. , Eq. (5.1.12) of Brumberg [27]) do not occur in our
framework.

Let us now consider the quadrupole acceleration terms
in the global barycentric system. We first split aQ in the
following way:

i i [0]+ i I2]
Q Q Q

(4. 1 5)

where aQ is the quasi-Newtonian acceleration of the
satellite due to the quadrupole mass moments (Cl and

Sz in the usual spherical representation) of the Earth:

i[0] I ~ A
aQ =

—, -mph';, .k- {4.16)

Let us stress again that although the expression (4.16) for

aQ looks perfectly "Newtonian" the mass-quadrupole
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moments m k are the (projected) full post-Newtonian

quadrupole moments of the Earth. It should be stressed
also that the decomposition into "quasi-Newtonian" plus
"relativistic" parts is frame dependent. The barycentric
quasi-Newtonian accelerations diff'er by O(c ) from
their geocentric counterparts (when such natural coun-
terparts exist). The "relativistic" part, a&~ ) will be split
into three parts according to

with

26m.k

RQ, mix 2 (~A, i Pjk+ ~A Vijk )
c

(4.18)

6MB
mA = g +O(2) .

BWA

The two remaining quadrupole-acceleration terms read

i [2] i i
~g aug, mIx+&gg, ] +&gg, 2 (4.17) allg i

=
z [ 2GMA(tjljkljl; +p p,jk)c

Here, aug;„denotes that part of —4c mm, that con-
tains products of the Earth's quadrupole moment and
external masses; terms of order c m; m k will be
neglected. aug;„ is given by and

i 1 A ] 2 A
2VSA VSA tjk!+ 2 VSA'Pijk ] (4.19)

Gmk
alt+2= z [2ipjaA" +2q3jkaA+ r3rjkrA(t—) ij3jk[—vA vs —

—,'v„+ —,'wA(*A)] 2ipjk! svA]
c

1 A A

2c
&kmj)1g k&

~ (4.20)

Here, all& i is the barycentric counterpart of the geocentric relativistic quadrupole acceleration Eq. (3.14). Let us re-
mark that d«, kr„(t) (wh"ere the first two indices denote global-time derivatives) is given by [see Eq. (A18) of paper II]

with

ijkrA(t) VA "A~ijkl rA(t) aA~ijklr (4.21a)

( —) '(2m —3)!!
l); . . . ; (r„)=

A

m(m —1) (lil2 i3 ~ )

(2m —1)(2m —3)
(4.21b)

Finally the acceleration arising from the higher-multipole moments of the Earth is treated at the Newtonian approxi-
mation:

(
—)'

higher g I i j i j i'Pij j
1~3

C. The relative barycentric satellite acceleration

For practical applications (especially if numerical in-
tegrations are required) one usually will employ an ex-
pression for the barycentric satellite acceleration relative
to the barycentric position of the Earth taken at the same
barycentric coordinate time t. Let us denote

—MAG.A=@.A+O(4) . (4.24)

[—G,"—=g„"„(zA)e,""V„uA'%0]

is measured by the "force term" 4," defined by Eqs.
(6.12) and (6.14) of paper II:

rsA (t)—:zs(t) —z„'(t) . (4.22)
If we retain in 4, only the Newtonian contributions, and
the lowest-order relativistic one, we can write

%hen computing the relative acceleration

d rs„d zs(t) d z„'(t)
dt2 dt2 dt2

(4.23)

we need to insert the equations of motion of the Earth.
Contrary to the satellite, the extended structure of the
Earth causes its center of mass not to follow a geodesic of
the Earth-external metric g„" (x ). The full structure (at
the first post-Newtonian approximation) of the transla-
tional equations of motion of an extended body has been
discussed in detail in Sec. VI of paper II. The deviation
from a geodesic motion

1~2 2c
(4.25)

with

d 2z l
A

=aLD(zA vA)+ac»
dt2

(4.26a)

In view of the smallness of 4, we can safely neglect
terms of order 4, X(v /c ) and write the barycentric
coordinate acceleration of the Earth (in the approxima-
tion where the other bodies are treated as mass mono-
poles) as
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q A

a~ =R.A'

MA
(4.26b)

With this notation in hand it is easy to find that ha„D can
be written as (where 3 labels the Earth)

Therefore, the relative acceleration of a satellite can be
written as (note the minus sign in the last term)

G MAMB
~aLD=bs~ ——X'

2 B C'r'AB "SA rSB
nAB

where

SA
=AaLD+as+a&+ah; h„—a+

dt

LD aLD( s s) aLD(ZA A )

(4.27)

(4.28)

+ g'(be —b„B)
B

G2MBMc

2 B c c rBc rsB r AB
IlBC (4.33)

We have given above the explicit expressions of the spin,
quadrupole, and higher-multipole accelerations. From
Eq. (4.25) we see that the lowest-order approximation of
the extra term —a+ reads

A
1 AM&, A 1 mk—a' = ——R 6 = —— 8 w

MA " 2 MA V
(4.29)

1 76M—4wK —wB — rKB(nK —aB )
——

2 rKB
(4.30)

where, as above, wB =pc&BGMC/rBC is the gravitation-
al potential generated by all the other bodies at the center
of mass of 8 and ~here aB is the acceleration of body 8,
given with sufficient accuracy by aB = —QGM&nBC/roc,
and

In order to explicate in detail the structure of the term
AaLD it is convenient to introduce some notation. Let,
for any pair of bodies (K,B),

eKB —=vK+2vB 4vK vB ——
—,(nKB vB )

2 2 . — . 2

where the primes over the summation symbols indicate
that 8 and C are different from S and 3, and different
from each other. The first term on the right-hand side of
Eq. (4.33) represents the barycentric-frame post-
Newtonian acceleration primarily caused by the mass of
the Earth, including O(c ) corrections due to velocity

(vs, v„), potential (wz, w„), and acceleration (rs„a„)
effects. [When using this term to solve for the relative
barycentric position rs„(t) one can advantageously re-

place vs by vsA +v A to reexpress the velocity-dependent
corrections in terms of vs„and v„.] The last two terms
in Eq. (4.33) have the form of differential ("tidal" ) effects:
F (S) F( A ). -

Finally, let us recall that when working in barycentric
coordinates one must be very careful in transforming
coordinate-dependent quantities into observables. In par-
ticular, there are many cancellations between large
"coordinate effects" in the orbital motion and in the cal-
culation of the laser time of (light [2].

V. CONCLUDING REMARKS

GMB
bKB 2

rKB

11+ &KB &KB
c

1+
2 (4nKB K 3nKB vB )(vK vB )

C

(4.31)

With this notation the general Lorentz-Droste accelera-
tion (4.13) reads

G2MBMc
aLD(K) X bKB

2 X 2 2 nBC
BWK B~K C rKB rBC

CWK
BWC

(4.32)

In other words, bKB represents essentially the (barycen-
tric frame) relativistic generalization of the accelerative
force on body K caused by body 8 (two body interaction), -

while we have separated out the explicit three-body effects
in the last term (accelerative force on K caused jointly by
two other bodies, 8 and C). Note that the "two-body"
interaction bKB (which can be usefully thought of as a di-

agram of the form K 8) contains-, however, some implicit
three-body effects (in wK, wB, and aB), and that the sum

over the three-body effects in Eq. (4.32) runs only on dia-
grams K 8 Ccontaining three-d-ifferent points [the term
K 8 Kpresent in Eq. (4-. 1-3) has been incorporated in the
eff'ective K Binteraction as the -last term in Eq. (4.30)].

This paper has shown explicitly how to apply the new

formulation of the relativistic theory of reference systems
proposed in papers I—III to the specific problem of the
motion of artificial satellites. Among the main advan-

tages of our approach with respect to previous attempts
one can note (i) its completeness (no ad hoc unjustiifed
approximations are made, and all multipole and tidal
contributions within post-Newtonian accuracy are in-

cluded), (ii) its consistency (all the concepts and quanti-
ties entering our scheme are clearly defined and their
transformation properties under a change of coordinate
system are known), and (iii) and its linearity (although de-

tails can get messy when keeping all the terms, the re-
markable linear properties of the variables used in our
scheme allow one to keep always a clear conceptual
overall grasp of what the formalism does for you). We
think that these features of the formalism proposed in pa-
pers I—III makes it an ideal tool for dealing with many
practical aspects of relativistic celestial mechanics and as-

trometry in the solar system (such as very long base line
interferometry [33], global positioning system, lunar laser

ranging, high-precision ephemeris programs). We also
feel that the conceptual simplicity of our formalism
should be very useful in clarifying the many conceptual
subtleties that arise when trying to shift from a Newtoni-
an view to a consistent Einsteinian description of the ex-

periments and observations made in our local (noncosmo-
logical) part of the Universe.
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APPENDIX A: TRANSFORMATION RULES
FOR "POSITION VECTOR"

AND SATELLITE ACCELERATION
eq

t =const

This appendix serves several purposes. It provides
transformation rules between the global barycentric and
the local geocentric expressions for the satellite accelera-
tion and, hence, a useful piece of information if one wants
to explicitly relate our barycentric with our geocentric
satellite equations of motion by direct transformations.
Such relations between the various forms of the satellite
equations of motion by means of direct transformations
might be useful as algebraic checks. It is clear from pa-
pers I—III (especially from the various transformation
rules for the metric potentials, etc.} that the overall con-
sistency of our formalism has already been explicitly
proven and needs not be checked in all applications.
However, checks of the complicated algebra that arises in
applications are always useful (note that this situation is
different in the Brumberg-Kopejkin formalism, whose
overall consistency is less clear and where it might be ad-
vantageous to derive the geocentric satellite equations of
motion from the global ones by direct transformations).
Another purpose of this appendix is to make contact be-
tween the general methods of our formalism and some
more ad hoc procedures used recently [14,15] to deal with
the relativistic effects of the Earth quadrupole moment
when seen in the barycentric frame. Let us start by re-
calling that the general relation between global barycen-
tric coordinates (ct,x') and local geocentric ones (cT,X')
is written in the form [Eq. (1.6) of paper I]

x"(X )=z"(T)+e,"(T)X'+P(TX'), (Al)

where P contains these terms which are at least quad-
ratic in the local space coordinate X'. In paper I it was
shown that g =0 (3) and

e,'(T) —A, X —X'( A X) +O(4) .1; 1

c
(A2)

Here,

. d 2'
A, =e,'

2 +O(2)
dT

(A3}

is essentially the barycentric acceleration of the geocenter
projected onto the geocentric coordinate lines. Let us
now consider the three events in Fig. 1 denoted by ez, e„
and eT. ez refers to the satellite at barycentric coordinate
time t and barycentric coordinate x'. In the local geocen-
tric frame es has coordinates (cT,X'}, related to (ct,x')
by Eq. (Al). e, (eT) denotes the intersection of the
t =const (T=const) hypersurface through es with the
central world line of the Earth, labeled A [usually chosen
as the post-Newtonian (BD) geocenter), given by X'=0.
These two events have coordinates:

FIG. 1. Three events of importance for the description of rel-
ativistic satellite motion where Uz&

——v&
—

v& is the barycentric
satellite velocity relative to the Earth.

e, : (r, z„'(t)) (T„,0),
er: (r„,z„'(t„)) (T,0) .

Using relation (A 1) one finds that

1 e.'T„=T+ — X'+0 (4),
C

(A4a)

(A4b)

(ASa)

o ar„=r ——e,'X'+O(4) . (Asb)

1+
z vA +A(*A )+R (+AXS+UA~ Vs }

c 2

+O(4), (A6)

where Vs =dXs IdT is the satellite velocity in the geocen-
tric frame. From Eqs. (A4) one finds for the transforma-
tion rule of the relative position vector (relative coordi-
nates in our charts),

i 0eoe,
&s (r)= e.' —,Xs+P(T»s)

eo

WA(ZA )

c 2c

+ 2R,'[—,'A'„Xs Xs( A„.Xs}] ~ (A7)

where

rsvp(t}=(xs —zz)(t) .

For completeness, let us note in passing that if the rela-
tive barycentric position vector rz~ is referred to time
t„,as was done in the paper by Ries, Huang, and %'at-
kins [14],we get

Furthermore, the differential relation between t and T
along the world line of the satellite Xs is given by

T

=eo(T)+ — e, Xs+ —
eg Vs+0(4)
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1
rsvp(t„) =rs~ (t) — us~R~u~~X'+O (4) .

The transformation of the satellite acceleration can be
achieved by means of

d t 1

2 [VA aA+WA(ZA )
dT x~. c

d rsvp(t) d rsvp dt

dt dT

(drs„/dT)(d t/dT )t

(dt /dT)t

+R,'(a„'Xs+2a„' Vs+v„' As)]+O(4) .

(A11)

2 1

dT

—2

d t—us„, +O(4),
dT2

(A10)
J

The value of d rs„ /dT to be inserted in Eq. (A10) is ob-
tained by differentiating (A7). In terms of
As(T):dx—s/dT one finds in obvious notation (e.g. ,

v~ Vs —R,'u~ Vs, etc. )

d r dR'
=R' A'+2 V'+

a s dT s
d R'

XS
dT

z [w„(z„)As+—,'(a„Xs+2a„vs+v~ As)u„'+(a ~.Xs+v„vs)a„'+ —,'(v„Xs)a'„
c

+2w~(z~ ) Vs+ w~(za )+s+('iw. Xs+»w Vs+ax As)+s+2( ~'Xs+aa'Vs) Vs

+(ag Xs)gs —
( As Xs+Vs)ag 2(Vs'Xs)ag —agx5] (A12}

This result represents a generalization of that found by Huang et at. [15].

APPENDIX B: DERIVATION
OF THE BARYCENTRIC METRIC

m, , (Ss)

w„= yw„',
8

(B1)

The metric potentials w„—= (w, w, } yielding the
barycentric metric (4.1) can be written as a sum

B A, P,$ . . . /,
, +O(4),

(83a)

(83b)Bp» . . . , (S~)—= el
~

.'. . t, 'Pt ~. . . s~+O(2),

where w„ is the contribution from body B of our X-body
system of massive bodies in the solar system, i.e.,
B =Earth (body A), Moon, Sun, other planets, etc. w„
was already evaluated in paper II. From Eq. (5.33) of pa-
per II taking as "local X„system" the global x" system
(by putting v „' =0,R;,"=5,, in paper II) we get

and

1+ vs ML+B — ~ 2 B 4 i B (1)B
2 UBRib~bL

C (I + 1 )c

4l i B Be
(t+1)c2

UBR b, Sb(L &
(84a)

+O(4),

m„. . . ,, (S„)

(82a}

3+1 " ' 1+1
Here,

Be — ~B
Sb&L) = ~cb(b, ~r. —»c

(84b)

where

+O(2),

w;(x~)=G y „, a„. ,
k ~0

(SB )

and all remaining notations are explained in paper II.
ML and SL are the relativistic, Blanchet-Darnour mass-

and spin-multipole moments of body 8, defined in the
corresponding rest frame of body B as functions of TB,
the local coordinate time in the 8 frame

(M,'L =dM I /dT~, etc.). —As was shown in paper II, the

result (82) for w„(x) can be written in quasi-Newtonian

form. Using Eqs. (A7) and (A8} of paper II we get

( )k
u (t x')=G g PI +»-[m, . . . , (t)rs(t}] +O(4),

2c Bt
(86a)
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(
—)"

w; (t,x')=G g B. . . . l.
k~O

—B

+0(2),
rB

(86b)

with

(t)= (e') " '1+ ( )'R '. R
Bj Bj

Jl, 2 bk b) bk2c

k+1
c cb& . .

bk ~ 2 c (bI, b&
.

bk &)c2c

1 B d
c dT cb~ bk

+0(4), (87a)

(87b)

and lassuming the weak effacement condition in Eq.
(5.12) of Paper I]

p ~" = ,'R,"JR—b"'(M,'b'+ e,b, Sc )+0 (2),

p;k =R,"tRb "M bvq+0(2) .

(812b)

(812c)

eo =1+ —v~+w(zs) +0(4) .
c

(88)

For the problem of Earth-orbiting satellites we write

wp =wp +wp (89)

where w „A results from the gravitational action of the
Earth ("body A") and w" from all other massive bodies
in the solar system. To derive the post-Newtonian ac-
celeration of a satellite we will consider all bodies 8%3
in the mass-monopole approximation. Therefore, from
Eq. (7.14) of paper I we get

+P"
I

+~"
I

+p" Ihigher &

Here, V, =R;,"vA, etc. For use in the text it is con-
venient to separate the various contributions to m. . .
and p. . . according to the basic multipole moments that
they arise from. Also we neglect a11 relativistic terms
containing time derivatives of the Earth s multipole mo-
ments in the local geocentric system. We write

=m" ILD+m" Is+m" li2™l"~gh-

(813a)

GMs(1+2vz/c )

PB

w;"(x)=
BWA

+0(2) .

w "(x)=
BWA

6MB VB

+0(4), (810a)

(Blob)

(813b)

where the index LD refers to the Lorentz-Droste
(Einstein-Infeld-Hoffmann) mass-monopole part, S to the
spin parts, Q to the mass-quadrupole parts, and "higher"
to the higher-order multipole parts. Neglecting M~" one
has, in obvious notation for the nonvanishing terms,

Inserting the expression from Eq. (7.19) of paper I this
leads to Eqs. (4.3).

Using Eqs. (87) the components of mj". . . and
~k

p;" . . . that we will consider for the problem of satellite

motion read

m "ILD= 1+,v'„—, M„,
2c c

—At i
5i ~LD MA VA

(814a)

(814b)

z w„(z„)m"= 1+ 2v„— M„+0(4),
2c c

(81 la) —At 2 k
j 1S 2 FjkIV AS

c
(815a)

~ A=R Aig Ak &+ v23
~jk a b

2C

3WA(ZA)
M,b

C

(81 lb)

—Al
Pij IS

—
z &ijkSk

—Al 2 km Ig
—— mka

C

3 ~
3ww(zA)

mklg= 1+,v'—
2c c

(815b)

(816a)

and

V,"Vi"bM, ), +0(4),
c

(81 lc) / A
2

v A v &kmj&I

—A t

p,jk tQ
—Wjk VA

(816b)

(816c)

p,.™„v„'+0 (2),
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[neglectin"- the effects associated with the O(2) correc-
tion to m . . and to p,".. . ~h; h,„]. Here,

~r J(

m, k
R——,"Rb" M,b, etc. (as explained in the text, we drop

the label A on all the Earth multipole moments). Equa-
tions (4.7)—(4.9) are then obtained by inserting these ex-
pression for m . and p . . . into Eqs. (B6).

APPENDIX C: SOME DETAILS
ON THE RELATIVISTIC CORIOLIS PRECESSION

celeration of the Earth a ——e. This leads to

3GMg
Qc —

2 + X
2c 2c r

(Cl)

where v can be equivalently considered, within the
present approximate treatment, to be the barycentric or
the heliocentric velocity of the Earth. In the further ap-
proximation where the direction of the ecliptic plane is
fixed (rXv~=const), and taken as the x-y plane of a
barycentric coordinate system we can write the rotational
matrix of Coriolis-effacing frames as

cos4 sin% 0
As discussed in detail in this and our previous papers

there are two preferred choices for the rotational state of
the geocentric spatial coordinate grid leading to either a
globally fixed (kinematically nonrotating), or a Coriolis
effacing (dynamically nonrotating) geocentric reference
frame. The globally fixed geocentric frame is defined by

R;,"(T)= —sin% cos4 0
0 0 jI

with

tlat= fQc,„dt . (C3)

R,,"(T)=5;, .

Then the Coriolis effects in Eqs. (3.27) and (3.28) have to
be taken into account in the equation of satellite motion.
The Coriolis effacing (dynamically nonrotating) local
frame is characterized by the vanishing of relativistic
Coriolis forces, Eq. (3.27). In this case the geocentric
spatial coordinate grid must precess with respect to the
global barycentric one. The exact expression of the need-
ed time-dependent orthogonal matrix R,"'(T) is obtained
by integrating the differential equation (4.19b) of paper
III, which says, in fact, that the vectorial rotational ve-
locity of the Coriolis-effacing frames is identical with
Ac„which enters the satellite equations of motion of the
globally fixed local frames. Let us give here only an ap-
proximate treatment based on considering that the main
contribution to the right-hand side of Eq. (4.19b) of paper
III is the one due to the gravitoelectric field of the Sun
e=V(GMO lr), where r = ~z~

—zo~ is the Earth-Sun dis-
tance, with the approximation that the barycentric ac-

For practical calculations we can express Qc„by the
usual Keplerian elements of the Earth's orbit

(GMS) ~

Qc„-— z 2 &&2
(1+e cosf) k,

2c [a(1—e )]
(C4)

where a, e, and f are the semimajor axis, eccentricity,
and true anomaly of the Earth's orbit around the Sun and
k is a unit vector (in the usual Euclidean sense; krak J= 1)
pointing along the angular momentum of the Earth
motion, i.e., "perpendicular to the ecliptic. " From (C3)
and (C4) one finds

GMO
(f +e sinf) .2a(1 —e )

The secular part of 4, Eq. (C5), amounts to about 2 arc
sec/century ("de Sitter precession" or "geodetic preces-
sion"). Its presence in the orbital motion of the Moon
has been directly confirmed by lunar laser ranging data
[34,35].
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