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Using effective-Lagrangian techniques we perform a systematic survey of the lowest-dimension
effective interactions through which heavy physics might manifest itself in present experiments. We do
not restrict ourselves to special classes of effective interactions (such as "oblique" corrections). We com-
pute the effects of these operators on all currently well-measured electroweak observables, both at low
energies and at the Z resonance, and perform a global fit to their coeScients. Despite the fact that a
great many operators arise in our survey, we find that most are quite strongly bounded by the current
data. We use our&urvey to systematically identify those effective interactions which are not well bound-
ed by the data —these could very well include large new-physics contributions. Our results may also be
used to eSciently confront specific models for new physics with the data, as we illustrate with an exam-

ple.

PACS number(s): 12.60.—i

I. INTRODUCE. ON

Where is all the new physics? This, in a nutshell, has
become the burning question on most theorists' lips as ex-
perimental results from the 100-GeV scale have poured in
from the CERN e+e collider LEP, (SLAC) Linear Col-
lider (SLC), and the Fermilab Tevatron. The higher the
precision of the experiments being performed, the better
seems the agreement with the standard electroweak mod-
el. And yet we know that something new, perhaps only
the standard model Higgs boson, must almost certainly
be found at or below several (tens of?) TeV, since at this
scale our description would otherwise fundamentally
break down.

If, as now seems quite likely, any new particles are
quite massive compared to the electroweak gauge bosons,
then their first observable effects can still be sought
through the virtual contributions they make to physics at
lower, but presently accessible, energies. While we wait
for the construction of accelerators powerful enough to
directly produce these new particles, theorists can useful-

ly spend their time understanding where the compara-
tively rare virtual contributions can be expected to take
place. It is particularly useful to be able to contrast the
detailed predictions of specific models for the physics at
high energies with the more model-independent predic-
tions which can be obtained from an effective-Lagrangian
viewpoint.

An effective Lagrangian parametrizes in as model in-
dependent a way as possible the low-energy implications
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of new physics at a much higher scale M. This is done by
constructing the most general set of effect interactions
that are consistent with the known low-energy particle
content and symmetries, and which can arise to a given
order in 1 jM. The main goal of an effective-Lagrangian
analysis is (i} to determine how large the efFective cou-
plings can be without contradicting existing experimental
information and (ii) to find where to most fruitfully
search for the resulting interactions in future experi-
ments.

This type of search for new physics using eff'ective La-
grangians has been performed in the past, but has tended
to be relatively limited in its scope. Traditionally, either
the implications of a single type of effective interaction
(such as an electric or chromoelectric dipole moment}, or
a fairly small class of such operators (e.g., anomalous
gauge-boson interactions), have been considered. The
disadvantage of limiting the investigation to a very few
operators is that realistic models of the new physics
which underlies the effective Lagrangian typically gen-
erate a host of efFective operators rather than just a few,
and their effects for well-measured observables can be
correlated, or even cancel. Recent analyses [1,2] of the
implications of new physics for the gauge-boson self-
energies, the so-called "oblique" corrections [3), may also
be viewed in this way since they can be described [4] in
an effective-Lagrangian language in terms of a three-
parameter class of effective gauge-boson self-interactions.
Although these latter analyses have the virtue of consid-
ering the most general effective interactions that might be
generated by a given type of TeV-scale physics, they are
nevertheless limited in the scope of underlying models
that they can encompass by the very restriction to only
oblique corrections.

In this paper we wish to extend the confrontation of
potential new physics with the present electroweak data
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in a more comprehensive and more systematic way, by
analyzing the data in terms of a much broader class of
effective interactions than has previously been con-
sidered. More specifically, we consider all possible
effective interactions which satisfy the following three
criteria.

(1) Since we wish to analyze the implications of the
present data we restrict ourselves to effective interactions
which involve only particles which have already been ob-
served. In particular, we do not assume the existence of a
light Higgs boson. For simplicity we do not consider
operators involving gluons, although their inclusion into
our formalism is conceptually straightforward.

(2) We work up to operator dimension five. That is to
say, our effective operators must have dimension (mass)",
with d ~5. We consider both CP-preserving and CP-
violating operators.

(3) We consider only effective interactions which con-
tribute at tree level to presently measured observables.

In practice this means that we include all possible
operators of dimension ~ 5 with the exception of anoma-
lous three- and four-point electr oweak boson self-
interactions, or interactions involving two fermions and
two electroweak bosons. Despite condition (3) above we
do not ignore loop-generated bounds completely, howev-
er. This is because we do consider constraints on our list
of operators which arise from their one-loop contribu-
tions to particularly well-measured observables. (We give
a more precise justification of which observables are con-
sidered in the appropriate sections. )

We present here explicit expressions for a wide class of
observables in terms of the couplings of these operators,
and systematically constrain their coefficients from the
present data. Our results include as special cases some
previous analyses, and our formulas reduce to these in
the appropriate limits.

Although our results agree with previous workers in
the cases of overlap we believe we have streamlined some
of the technical details of the calculations in comparison
with the procedure of some other authors. Our main im-
provement lies in our treatment of the new-physics con-
tributions to measured quantities, particularly as regards
how the standard model (SM) predictions are altered due
to the changes induced in the numerical values that are
inferred for the reference input parameters, such as a,
Mz, or Gz. We perform this adjustment once and for all
directly in the Lagrangian, thereby obviating the need to
separately adjust each observable as it is considered. In
this way we dispose, at the outset, of many terms which
ultimately obscurely cancel in physical predictions in
many treatments.

We find that even with the above assumptions we must
deal with a large number of new-physics operators, of
which many contribute to flavor-changing neutral
currents. Our formalism is sufficiently powerful to deal
with a11 of these. Surprisingly, however, we are still able
to meaningfully constrain the sizes of most of these
operators by performing a global fit to all charged- and
neutral-current data. Our aim in doing such an analysis
is twofold. First, by considering all interactions, one may
discover that certain operators remain poorly constrained

by current data. Their effects might well be large, if only
experiments would look for them. We wi11, in fact,
present several examples of such operators.

Our second purpose is to present a comprehensive set
of constraints that must be satisfied by all physics beyond
the standard model. Any model builder has simply to
compute the coefficients of these effective operators in
terms of the parameters of the model, and the bounds on
these coefficients can be obtained from our analysis. Of
course, we have taken a particularly conservative
approach —any reasonable model will have far fewer pa-
rameters than we have operators, so the true constraints
on that model will in general be stronger than those
presented here.

We illustrate the simplicity and power of our formal-
ism by using it to constrain a class of models which has
been elsewhere directly fit to the data. This example
serves two purposes. In addition to providing an illustra-
tion of the comparative ease of performing the analysis
with our general formalism, we can also see how much
weaker our bounds are than those that are found with a
direct fit to the parameters of the underlying model. We
find that although our approach leads to more conserva-
tive constraints on these parameters, as it must, the limits
we obtain are not much weaker than those of the direct
fit. Thus, for the models we consider, little information is
lost by the much simpler procedure of directly using the
analysis which we provide in this paper.

We organize our presentation in the following way. In
the next section we first illustrate our technique by repro-
ducing the familiar oblique correction analysis. We do so
partly in order to demonstrate the simplicity of our ap-
proach, but also as a vehicle for explaining the logic of
our analysis in this simplest possible case. These same
techniques are then applied to the general effective La-
grangian in the following two sections. In Sec. III we de-
scribe the most general effective interactions which satis-
fy our above criteria. We identify in this section how the
powers of 1/M which can be expected to prernultiply
each operator in our Lagrangian depend on the assump-
tions that are made concerning the nature of the underly-
ing physics. This gives an indication of the cir-
cumstances under which the interactions we have kept
may be expected to dominate. The steps required to
make our Lagrangian into an easily used tool are then
performed in Sec. IV. Section V contains the main re-
sults of our analysis. Here we perform a fit to a11

charged- and neutral-current experimental data to con-
strain the new-physics parameters. We find limits on
most such parameters, although there are certain direc-
tions in parameter space which remain unconstrained.
Section VI then applies these results to an illustrative ex-
ample, namely, the mixing of ordinary and exotic fer-
mions. Our conclusions are summarized in Sec. VII.

II. "OBLIQUE" CORRECTIONS REVISITED

In this section we work through the familiar case of
oblique radiative corrections [1,2]. We do so in order to
clearly demonstrate the logic of our method in a simple
context that is relatively unencumbered by algebra. The
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reader interested in diving straight into the full calcula-
tion can safely skip directly to Sec. III.

A. The initial Lagrangian

Following Refs. I1,2] we imagine that the hitherto un-

discovered new physics that lurks at the high scale M
couples more significantly to the electroweak gauge bo-
sons than to the other known light particles. The dom-
inant effects of virtual loops of these heavy particles may
therefore be expected to arise among the self-couplings of
these gauge bosons. With the intuition, justified, with
some qualifications, in more detail in later sections, that
the lowest-dimension interactions should be least
suppressed by inverse powers of the heavy mass 1/M we
imagine supplementing the standard model by the follow-
ing lowest-dimension effective interactions:

&.~=&sM(e;)+&-.

with

+ P„—2"" wm —~k„k" —m—,'2„2" .

Here XsM represents the familiar SM Lagrangian, after
the top quark and Higgs boson have been integrated out,
including loop effects to the extent that experiments are
sensitive enough to probe these. Pz„and 2„, represent
the usual Abelian field strengths, while the @'„„is re-

~

~

uired to be electromagnetically auge covariant:
„„=D„@'„D,k„with—D„@',=8„,+ieA„A „
The new-physics coefficients A through z could be

computed within any given underlying theory and should
be thought of as (presently unknown) functions of the pa-
rameters of this underlying theory. The success of the
standard model is equivalent to the statement that all
current experiments are consistent with
A =8 =C =6 =m =z =0.

Not all six of these parameters are physically
significant however, since only three independent com-
binations of them actually ever appear in expressions for
physical observables. Only three independent combina-
tions can have physical content because there is a three-
parameter family of changes to the original six parame-
ters in X„,„ that can be made by redefining the fields,
without altering the form of the SM Lagrangian XsM.
The required redefinitions consist of rescalings of the SM
electroweak gauge potentials and Higgs doublet: W„',
8„,and P. A conventional parametrization of the three
physical combinations of the quantities A through z is
given by the Peskin-Takeuchi variables S, T, and U. The
connection is given explicitly by (we use the notation
ski, =sinOii, cia =cos&ii, etc.):

There are two aspects of our notation that are particu-
larly significant.

(1) The carets that appear on top of the initial Lagrang-
ian and fields in Eq. (1) refer to the fact that these fields
are not canonically normalized, since L„,„cont ains

kinetic (and mixing} terms for the gauge bosons, in addi-
tion to those that are already in XsM.

(2} The e; represent all of the parameters appearing in
the SM part of the total effective Lagrangian, such as the
Higgs Yukawa couplings pj, the electromagnetic fine-
structure constant a, etc. The tilde is meant to indicate
that these parameters do not take their "standard" nu-
merical values, such as a '=137.035 989, when they are
inferred from experiment, since the expressions for ob-
servables as a function of these parameters are altered by
the presence of the new physics.

Our method now consists of diagonalizing and canoni-
cally normalizing the gauge-boson kinetic terms, and
then eliminating the parameters e; in favor of parameters

e; which take on the "standard" values. Once we have
done so we have used up the freedom to redefine fields,
and so we find that the resulting couplings then depend
only on the three physical quantities S, T, and U. The re-
sulting Lagrangian, as we sha11 show, can be readily used
to calculate observables in terms of a SM result plus some
linear combination of S, T, and U.

B. Diagonalization and canonical normalization

It is a simple matter to canonica11y normalize and diag-
onalize the gauge boson kinetic terms, the required field
redefinitions being

r

A = 1 ——A +GZ (3)

B
1 ——W

2
(4)

1 ——ZC
P 2 P

Here and elsewhere we work only to linear order in the
small coefficients A, B, . . . , z. It is straightforward to
keep higher-order terms, if desired. After this transfor-
mation, the total kinetic and mass terms are of the
desired form

——'F F" ——' W W"'——'Z Z""
4 JM& 2 p& 4 p&

—(1+w 8)m ~8'„W"———,'(1+z C)mzZ„Z—" .

aU=4s~ A— 2B+ 2C —2 G
Sw' sw

2 2
2 2 swaS=4s c A —C- G

c sfV 8'
aT=w —z, (2)

These field transformations also alter the form of the SM
electromagnetic, charged-current, and neutral-current
couplings, which now become

A, = —e 1 ——gfy"Qf A„,
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&cc=— 1 ——g V, f,y"yL f W„+c.c. ,
sw 2 2 ji

(8)

l. Electric charge (e)

The fine-structure constant as determined in electron-
electron scattering' at very low energies is given at tree
level, using the interaction equation (7), by

NC
~wcw

gf;1'"[T3;)'L, Q;sw'
l

+QpwcwG jfiZq .

(9)

4n.a=e (1—A) .

On the other hand, the SM tree-level relation is simply

4mn=e

Comparing Eqs. (10) and (11)gives the relation
In these expressions, Q; is the electric charge of fermion

f, , normalized with Q, = —1. T3, similarly represents
the fermion's third component of weak isospin. V,,
represents the usual Cabibbo-Kobayashi-Maskawa
(CKM) matrix for quarks, and is the unit matrix 5,, for
leptons.

e=e 1+—
2

2. Z mass (Mzj

(12}

C. Reexpressing the Lagrangian
in terms of "standard" parameters

The Lagrangian, as we have written it, depends on the
three parameters e, mz, and sw (as well as the fermion
and Higgs boson masses m, and the CKM matrix ele-

ments V;, ). In SM electroweak physics, these three pa-
rameters (plus the particle masses and CKM matrix ele-
ments) suffice to describe all electroweak observables. We
can eliminate e, mz, and sw in terms of three reference
observables, and it is standard to choose the best-
measured observables for this purpose: the electromag-
netic fine-structure constant a, the physical Z mass Mz,
and the Fermi constant GF, as measured in muon decay.
Using the resulting expressions in the formulas for any
other observables then leads to numerical predictions
that can be made to any desired accuracy.

Once the standard model is supplemented by L„,„,
however, the relation between these three parameters and
the reference observables changes. As a result the value
that is inferred from experiment for a parameter such as
2, will differ from what would be found for the corre-
sponding parameter, call it simply e, purely within the
standard model. Our goal in this section is to compute
this difference, for each of the basic three electroweak pa-
rameters. It is sufhcient for the present purposes to do so
at tree level in all interactions, since any loop effects are
negligible once multiplied by the already small new-

physics parameters.
The program therefore consists of calculating the input

observables o., Mz, and GF at tree level in the new model
as computed using Eqs. (6), (7), (8), and (9). These expres-
sions are then equated to the tree-level SM predictions
for the same quantities. The result is a system of three
equations that can be inverted to obtain e, in terms of
their "standard" counterparts e, . These then may be
used for predicting any other observable.

Note that, for this choice of new physics (i.e., oblique
corrections only), the relations m, =m, and

V; = V; are unchanged. However this is not true in the
general case, as we shall see in subsequent sections.

At lowest order, the physical Z-boson mass Mz is sim-

ply the square root of the parameter mz that appears as
the coefticient of —,'Z„Z" in the SM Lagrangian. At the
same order, the Z mass in the new model is similarly
given by

Mz=mz(1+z —C) .

Comparing these predictions we deduce

mz=mz(1 —z+C) . (14)

3. Fermi's constant (Gr)

Muon decay is mediated by the low-energy exchange of
a W boson. Thus, to calculate the Fermi constant at tree
level in the new model, we use the propagator suggested
by Eq. (6), and the charged-current interaction expressed
in Eq. (8). This results in

GF e (1—8)
8$ wm w(1 +to 8 )

~2e
-2 -2 —2

(1—to) .
Sswcwmz

(15)

Note that we are free to use SM relations, such as
m w

=mzcw, among the "tilded, " or standard-model, pa-
rameters. For comparison, the SM tree-level prediction
for Gz is simply

e'
&2 8swcwrnz

We take this last expression as our definition of s w.
Combining Eqs. (12), (14), (15), and (16) we obtain

(16}

'Actually, the fine-structure constant is determined in nonrela-

tivistic condensed-rnatter systems, such as the quantum Hall

effect. However the quantity that is found in this way in the

very-low-energy, nonrelativistic effective theory, is ultimately

matched onto u as is used at high energies by using electron-
electron scattering at energies near the electron mass [5j.
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2
cw

sw=swz 1+ ( A —C —w+z)
2 —2
w w

(17)

as well as the following useful formulas, which we record
in passing:

ian itself in terms of these standard parameters .To do so
we simply substitute Eqs. (12), (14), (17), and (18) into the
various Lagrangian terms.

By construction the Z mass term and electromagnetic
interaction take simple forms:

-2= 2cw=cw
2

(A —C —w+z)
Cw Sw

(18)
Xz = —

—,'mzZ„Z"

e e

CwSw CWSW

C+w —z

2

The above expressions achieve our goal of relating e,
sw, and mz to the standard parameters e, sw, and mz.
The next step in the process is to reexpress the Lagrang-

and (19)

= —e g f, yi'Q, f, 2„.
l

By contrast, the 8'mass term gives a more complicated
expression

mzcw 1 —8+C+w —z —
2

(A —C —w+z) W„W"
cw sw

CwAT

2(cw sw) cw sw 4sw

and the charged-current interaction takes the form

e

vz

&2sw

11+—A —8—
2

2

(2 —C —w+z) g V,,f y"yLf W„+c c
Cw Sw lJ

2+, , + gV fy"yLf W„+cc.
4(cw2 sw2) 2(cw2 sw2) 8sw2, .

i
i ' i P (21)

Note here that all corrections due to S, T, U are universal. The strength of the charged-current interaction is therefore
given by h,j=h,

&
+5h;, with II; = V; and

CwAT
(22)

4(cw sw) 2(cw —sw) 8sw

Finally, the neutral-current interaction becomes

+NC
SwCw

2 2
N z —

2 SWCW+ gf, y T„y,—Q, sw+, l~ —C —w+zl —swcwG f,z„

swcw
1+ g f y" T3yL —

Q, sw+
4(cw —sw)

C WSwAT
2 2

2 —2
w w

f;ZA . (23)

—AT sM AS
giL(i() 2 giL(R) Qi, 2 2

(CW SW

CwSwAT2 2

C2 S2
W W

Equations (20)—(24) may now be used to predict the
implications for any desired observables.

Here there are both universal and nonuniversal correc-
tions due to S, T, U. (We remark that, in the language of
Ref. [2], the factor multiplying Q; in the weak couplings
is simply s, .) The neutral-current couplings g,.L and g;i(
are therefore given by their SM counterparts
g,.L = T3, —Q,.sw and g,.iI = —Q,.sw, plus the deviations

D. The calculation of observables

The calculation of observables is now straightforward.
As has been pointed out before, since the constants which
parametrize the new physics are small, we may work to
any desired loop order in the SM interactions, and to tree
level in the interactions which deviate from the standard
model.

Consider, first, the mass of the 8'boson. In the stan-
dard model this mass may be predicted as a function of
the three input parameters: Mw=Mw (Mz, a, Gz). ~ith
the new interactions this expression now gets a new con-
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tribution which may be read from Eq. (20):

2 ( c ii s iv )

cwaT aU
2

+2 2+
cw sw 4$w

(25)

Note that because we have eliminated e, sw, and mz in
terms of their untilded counterparts, the SM contribution
in this formula takes precisely its usual numerical value.
The resulting expression is in agreement with Ref. [2].

The p parameter, defined as the ratio of low-energy
neutral- and charged-current amplitudes, can be read off
from the universal S, T, U corrections to Eqs. (21) and

(g,L )'—(g,R )'
LR 2 2«.L )'+(g,R

)' (27)

Linearizing this expression about the SM value gives
5ALR. Finally, adding this to the SM rate gives

(23). Taking also into account the corrections to the W
mass [Eq. (2S)] one finds

p=1+aT,
as in Ref. [2].

Finally, consider the left-right (LR) asymmetry at the
Z pole. ALR is the sum of the (radiatively corrected) SM
expression, pius the direct tree-level contribution from
the new interactions. This is

4 SM SM
SM ~eL geR SM SM

'4LR '4LR SM 2 SM 2 2 (geR geL geL geR
((g,L ) +(g,R ) )

4 SM SM( SM SM)
SM geL geR geR geL

( (g SM )2+ (g SM )2)2

aS
4(cw sw)

w~waT2 2

2 2cw ~w

which again agrees with Ref. [2].
Contrast the ease of application of our Lagrangian

with the procedure that is often followed in much of the
literature. There, authors instead directly use the La-
grangian expressed with the tilded parameters e, . The
direct contribution 58 of new physics to a given observ-
able 8 is then added to the shift in the SM value for that
observable (due to the shift from 5e, =e, —e;) to get the
total new-physics effect:

detected to date and (ii) the maximum dimension of the
effective interactions which we consider, which we take
to be five. Although the first of these assumptions may
not provoke much argument, a justification of the second
of these turns out to require some thought. We therefore
first present the terms that are permitted in our effective
Lagrangian by the assumed low-energy particle content,
before returning to the question of the validity of the
neglect of dimension-six and higher terms in Sec. III B.

8=8SM+58+ g a

Be;
6e, . (29) A. The eft'ective interactions

The savings in labor in our approach is more striking in
the more general Lagrangian we consider in the
remainder of the paper.

III. THE GENERAL EFFECTIVE LAGRANGIAN

We now wish to repeat these steps without assuming
the particular Lagrangian of Eq. (1). Since our con-
clusions can only be as general as is the Lagrangian with
which we choose to work, the aim of the present section
is to justify our Lagrangian's generality. We save its
reexpression in terms of the "standard" parameters, and
its comparison with observables for subsequent sections.

The only simplifying choice we make is to concentrate
on the electroweak sector only. The inclusion of non-
standard gluon couplings presents no particular prob-
lems, and can be dealt with in our formalism in a
straightforward manner.

We start making real physical choices with our remain-
ing two assumptions: (i) the particle content of our low-
energy theory —we take only particles which have been

We wish to write down the most general effective in-
teractions in X„,„ that are consistent with the particle
and symmetry content relevant to the energies to which
the Lagrangian is to be applied. Our first task is then to
decide on precisely what this low-energy particle content
is. Since our intended application here is to current ex-
periments whose accessible energy is of order 100 GeV or
less, we take our particle content to include only those
which already have been detected, namely, most of the
SM particles, including precisely three left-handed neutri-
nos. We do not include the Higgs boson and the top
quark, which we take to have been integrated out, if they
exist. Because of these missing particles, the field content
of our effective theory does not fill out 1inear representa-
tions of the electroweak gauge group, and so this symme-
try cannot be linearly realized, and the resulting Lagrang-
ian must eventually violate unitarity [6] at energies at
most of order 4~v —a few TeV. In this case it is simply a
matter of convenience whether this gauge symmetry is
chosen to be present but non1inearly realized, or simply
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ignored completely [7,8). Clarity of presentation leads
us to choose the second of these options here.

With these comments in mind we may construct the
most general Lagrangian that can arise to any order in
1/M for the known particles. Our starting point is again
the split:

&,tr=&sM(«)+&-

with

Jz= tv—m~4„k" —m—zP„2", (31)

a particular combination of which also appears in XsM.
Only the combination w —z of these two masses may
therefore be detected through the deviation it produces
from the standard-model relation between gauge boson
masses [cf. Eqs. (20) and (25), for example].

Dimension Three: The fermion mass terms arise at di-
mension three:

new g d
d=2

(30) f(5m—iyi+5mR y R )f (32)

Here Xd contains all possible terms that have operator
dimension (mass) . We wish to list explicitly all terms up
to X5. We may freely integrate by parts and use the
standard-model equations of motion in order to simplify
our Lagrangian, since no operators that can be eliminat-
ed in this way can have any physical effects [9].

A word should be said about new-physics operators in-

volving neutrinos. Our low-energy particle content does
not include right-handed neutrinos. We can nevertheless
continue working with four-component spinors provided
that we take the neutrino spinors to be Majorana: v=v,
where v =Cv, with C the charge conjugation matrix.
This means that the parameters describing the interac-
tions of neutrinos are subject to more constraints than are
those of the other, electrically charged, fermions. We
identify these additional conditions, case by case, for the
various anomalous interaction terms presented below.

Dimension Two: At dimension two we have the boson
mass terms

where f denotes a generic column vector in fermion gen-
eration space, and 5mL and 5m„are matrices in this
space. Hermiticity of the action requires that
5mL =5mR, and for neutrinos we have the additional
condition 5mR =(5IL")'. We choose our conventions so
that X3 is CP invariant if the matrices 5mL and 5mR are
real.

Apart from the neutrino masses, which are zero in the
standard model, these fermion mass terms are indistin-
guishable from the SM ones. They could nevertheless be-
come detectable in the event that a light Higgs particle
should be discovered. In this case such interactions
could cause deviations from SM relations, such as

yf =mf/v, between the fermion-Higgs Yukawa coupling
and the fermion masses.

Dimension Four: Dimension four contains two types of
terms, (i) gauge-boson and fermion kinetic terms and (ii)
gauge-boson-fermion coupling terms.

We therefore have

A A A A ~(4)+4 +bkin++fkin++bff ++other

with

(33)

Xfg;n fy"(Il yr +IR—yR )D f, (34)

bff
S$VC W

fy"(5giyi+5gR YR )f&„—fy"(5&—iyi+5&R1 R )~+f+„'+c c.
&zs~

(35)

We use a compact notation in these expressions, in which

IL, Iz, etc., are matrices which act on the indices which
label fermion type (or flavor), and where r+ is the SUI (2)
raising operator. The matrices II, I~, 5gL, and 5gz must
always be Hermitian, with IL =I„' and 5gL = —5gR hold-
ing in addition for neutrinos. CP invariance follows if all
of these coupling matrices should be real. The derivative

2This equivalence is an old, in some quarters recently forgot-
ten, result which dates right back to Ref. [6] and beyond.

D„used in the fermion kinetic terms is covariant with
respect to the electromagnetic interactions. [If we also
considered nonstandard gluon coupling s we would
demand covariance with respect to the full unbroken
gauge group SU, (3)XU, (1).] Finally, as in Sec. II, the
ubiquitous carets indicate that the fields are not yet
canonically normalized.

X«h„contains all of the other dimension-four opera-(4)

tors which we do not consider here. There are two types
of such terms, although both involve only the elec-
troweak gauge bosons. The first type consists of a poten-
tial electroweak "e-term" —i.e., a term proportional to
8„8'". We ignore this here since it produces com-
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pletely negligible effects at zero temperature. Also
lumped into X„„„arethe dimension-four three- and(4)

four-point gauge-boson self-interactions. As explained
earlier we have chosen not to include these here since
they cannot yet be well bounded at tree level [11]. This

makes them interesting in their own right, since it means
that, so far as we know, they could very well contain new
physics.

Dimension Five: At dimension five the following com-
binations can arise:

s= ef—o"'(d. Lyr+d. zyz )fF
S~Cg

fo""(&Lyi.+&gyR )fz„

f0 "'(CL y L +cg y „)r+f W„,, + X'„}„,+C. C.
&2s~

Again, all coefficients here, di ~, &I ~, and cL ~, are ma-
trices in flavor space, as is the SUL(2) raising operator
r+. It is required that dL =da and 6'L =h for Hermiti-
city of the action, together with restriction d~ = —ds and
8'L = —Rz for neutrinos. CP conservation requires all of
these coupling matrices to be real. X,',h„here includes
a11 four-point fermion —gauge-boson couplings, such as
ffW W, which are also not yet probed in existing experi-
ments.

Dimension Six: Finally, there are a great many opera-
tors that can arise at dimension six including a very long
list of four-fermion contact interactions. Their inclusion
would enormously complicate the present analysis, and
so we neglect them throughout what follows. We discuss
in the next section the circumstances under which the
neglect of these dimension-six interactions can be justified
by their suppression by additional powers of O(1/M2).

B. Po~er counting

What ultimately makes an effective-Lagrangian
analysis useful is the property that only a limited number
of effective interactions can arise to any given order in
the expansion in the inverse of the heavy mass M of the
new physics. Usually, powers of 1/M are simply counted
by dimensional analysis, with the coefficient c„of an

eff'ective operator of dimension (mass) " being propor-
4 —d„tional to M ". (Some exceptions to this common rule

of thumb are discussed in Ref. [12].) As has been stated
earlier, we choose here to work only up to and including
effective interactions of dimension five.

If this were the whole story, then the neglect of
dimension-six operators could be simply justified as being
due to their suppression by additional powers of 1/M rel-
ative to those at dimensions four and five. There are two
issues which complicate this simple picture, however.

First, it can happen that effective operators are more
suppressed than would be indicated by simple dimension

counting. This can occur because of the possibility of
suppression by small dimensionless quantities, such as
small coupling constants in the underlying theory (such
as Yukawa couplings: y&

=ml /v), or by small mass ratios
(such as v /M, which is present if M is much larger than
the electroweak-breaking scale v). If this type of addi-
tional suppression should arise for the lower-dimension
terms which we keep, then their neglect relative to un-
suppressed dimension-six terms may no longer be
justified.

Second, one might also worry that dimension-six
operators may be suppressed by fewer than two powers of
M, such as if they were proportional to 1/v or 1/vM.
As we shall see shortly, such coefficients are indeed possi-
ble depending on the nature of the underlying physics
that has been integrated out. In such a case the neglect
of dimension-six new-physics operators in comparison to
those of lower dimension need not be justified.

The bottom line is that the power of v/M which ap-
pears in the coefficient of a given effective interaction
generically depends on the nature of physics that is asso-
ciated with the large scale M. As a result, a complete
cataloging of effective interactions according to their
suppression by 1/M cannot be made in an entirely
model-independent way. At some point this model
dependence may become a good thing: a comparison of
the sizes of various effective operators, should they ever
be discovered, may ultimately permit the diagnosis of the
nature of the underlying new physics. We therefore
neglect dimension-six effective interactions, in the
knowledge that an element of model dependence enters in
this way into our conclusions. One must simply check,
when applying the bounds we obtain below to a particu-
lar model, that this neglect is justified in the case of in-
terest.

See, however, the recent controversy concerning the existence
of potential weak-scale baryon-number violation in TeV ac-
celerators [10].

4It must be kept in mind here that since our low-energy parti-
cle content does not fi11 out linear representations of
SUL (2}XU&(1), U /M cannot be smaller than roughly 1/4~.

~For a related, and more detailed, discussion of heavy-mass
dependence see Ref. [8].
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W

1

M 3/2

In this expression the relation M &4~U must always be
kept in mind. (If the fermions were strongly interacting,
as would be the case for technifermions or for nucleons in

QCD, then the factor is 1/v+M for each fermion. This

In order to more concretely illustrate what can be ex-
pected for the strength of various effective interactions
from differing types of underlying physics at scale M, we
next consider explicitly the implications of two types of
scenarios —strongly and weakly coupled electro weak
symmetry-breaking physics. We do so partly to demon-
strate the existence of models for which four-Fermi terms
may be neglected, and partly to contrast the sizes of the
various terms in the effective Lagrangian for these two
cases.

Strongly Coupled New Physics: It is possible that the
symmetry-breaking sector of the electroweak theory is
strongly coupled, with only the three would-be Goldstone
bosons (WBGB's), that is to say, the longitudinal W and
Z polarizations, appearing at experimentally accessible
energies. In this case the couplings of these WBGB's are
completely dictated, at low energies, to be those given by
chiral perturbation theory [13]. In the resulting effective
Lagrangian successive powers of the WBGB fields are
suppressed by inverse powers of the symmetry-breaking
scale v. If the Lagrangian were to be applied to energies
E «v, then the powers of v that would be obtained in
this way by dimensional analysis would suffice for count-
ing which interactions arise to a given order in E/v.

In practice, however, applications are meant to be for
higher energies, E =U «M. In this case a consistent ex-
pansion in powers of E/M is only possible if successive
terms in the effective Lagrangian are suppressed by
powers of M rather than v. That is to say, an expansion
in powers of 1/M requires that some couplings in the
effective theory must be systematically suppressed by
powers of v/M, compared to the powers of v that arise
using straight dimensional analysis. This suppression has
been formulated in a precise way, based on experience
with chiral perturbation theory as applied to low-energy
QCD, and is called called "naive dimensional analysis"
(NDA) [14]. It states that a term having b WBGB fields,

f (weakly interacting) fermion fields, d derivatives, and w

gauge fields has a coefficient whose size is
. b . .f . d .

c„(M)-v M2 1 1
(37)

U M M

would lead to a coefficient of order 1/v for dimension-
six four-fermion interactions. ) The implications of the
above estimate for the various effective interactions are
listed in column 2 of Table I.

Weakly Coupled New Physics: A completely opposite
point of view is to suppose that the electro weak
symmetry-breaking physics is sufficiently weakly coupled
to permit a perturbative analysis. In this case one or
more physical particles, other than the WBGB's, would
be expected to have masses of order A, v, where A, is a
small dimensionless coupling. Being light, these particles
appear in the low-energy theory and, together with the
WBGB's, fill out linear realizations of the electroweak
gauge group. The standard model itself is an example
along these lines, where the physical Higgs scalar plays
the role of this new light particle.

In addition to the effects of their direct propagation,
these new degrees of freedom can appear within the
efFective Lagrangian through the powers of v/M that
they contribute when their fields are replaced by their
vacuum expectation values (VEV's). The precise power
which appears in any particular effective interaction
therefore depends on the representations in which the
Higgs-like fields transform. The most plausible choice is
one or more doublets, with the standard hypercharge as-
signment, since this is what is required to generate masses
for the known fermions.

In this scenario the size of any non-Higgs interactions
may be found by finding the lowest-dimension interac-
tions which contain the desired term, replacing all Higgs
fields by their VEV's, and making up the rest of the di-
mensions with powers of the heavy mass M. We call the
estimate that is obtained in this way "linearly realized di-
mensional analysis" (LRDA). This estimate is given for
the effective operators of interest here in column 3 of
Table I.

A Comparison Between NDA and LRDA: As is seen
from Table I there are a number of differences between
the implications of NDA and LRDA for the lowest-
dimension operators we are considering.

Typically the linearly realized gauge symmetry en-
forces relations among the various coefficients of opera-
tors which involve a particular number of fields or deriva-
tives, depending on how these operators can be assembled
into linearly realized multiplets. This is best illustrated
with a few examples.

Consider the contributions to the W and Z masses:

TABLE I. We tabulate here the estimated sizes that would be expected for the deviations from the
standard model among effective operators of the lowest dimension, as is explained in the text. The two
columns contrast the implications of two types of assumptions concerning the nature of the underlying

physics, either naive dimensional analysis (NDA), or linearly realized dimensional analysis (LRDA).
We use the NDA rules for weakly-coupled fermions in obtaining our estimate for four-fermion terms.

Operator

Gauge boson masses
Neutrino masses

Gauge boson kinetic terms
Dim 4 gauge-boson-fermion vertex
Dim 5 gauge-boson-fermion vertex

Dim 6 four fermion terms

NDA

g2V2

v /M
g 2u 2/M2

gu /M
gv /M
u /M

LRDA

g v

v /M
gu/M
gu /M
gv /M
1/M
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Ow= W„W" and Oz =
—,'Z„Z". The lowest-dimension

operator which contains these terms is simply the
dimension-four Higgs kinetic term (D„P) (D P). Here,
because the gauge symmetry is linearly realized, the co-
variant derivatives are SUr (2) XUr(1) invariant. Thus,
as in the standard model, replacing P by u generates the
particular combination cw&w+Gz with a coefficient
that is of order g v . There are also dimension-six contri-
butions to the masses, such as (P D„re) (P D"P)/M .
This and similar operators contribute to b,p (that is, they
spoil the mass relation Mw=Mzcw) by amounts that are
of order g v /M . Therefore Ap is automatically small
in these theories provided only that vi/M2 (& 1. By con-
trast, if the symmetry-breaking sector is strongly in-
teracting (NDA) generic contributions to both the W and
Z boson masses are the same size, O(gu), and so one re-
quires an additional custodial SU(2) symmetry to explain
the smallness of hp.

For the other operators in Table I, however, the NDA
estimates are typically smaller than or equal to those of
LRDA. This need not always be the case, as we have
seen for the predictions for hp above.

A glance at Table I also shows that, in LRDA, the
effective operators we are considering are all suppressed
by at most two powers of 1 /M. It is therefore consistent
to neglect all operators which are suppressed by more
than 1/M . While this rules out any operator of dimen-
sion seven or higher, the necessity to include dimension-
six operators in general depends on the nature of the un-

derlying theory. As is witnessed by the power counting
of NDA, the suppression of four-fermion terms relative
to those of lower dimension is possible, even if these
lower-dimension terms should be O(1/M ).

IV. TRANSFORMING TO STANDARD FORM

To determine the physical combinations we follow the
logic set out in Sec. II: (i) first rescale all fields to put their
kinetic and mass terms into standard form and (ii) elimi-
nate the "tilded" parameters in the Lagrangian in favor
of the physical quantities that are extracted from experi-
ment. Only the algebra changes between this more gen-
eral case and the simpler one studied in Sec. II.

A. Rescaling the Selds

The diagonalization of the electroweak boson kinetic
and mass terms is identical to that found in Eqs. (3)—(5).
The fermion kinetic and mass terms are similarly diago-
nalized by the transformation:

IL J
1 — Ur yr + 1 —

UriyR f
2 2

(38)

=
Urr [mL+5mr. —,'(Iri mL+—mr Ir )]UL

= UL [m„+5m„—, (Ir m „+—m„IR) ]UR . (39)

The matrices mL & which appear in these expressions
denote the left- and right-handed fermion mass matrices
in the original fermion basis.

After performing this redefinition, the standard-model
and new-physics contributions to the fermion electromag-
netic coupling become

= —e 1 ——[fy"QfA„

where the unitary matrices, UL and U~, are chosen to en-
sure that the mass matrix is diagonal with non-negative
entries along the diagonal:

diag(. . . , m;, . . . )

Having now determined which operators to keep at
O(1 /M ), we must recognize that not all of the parame-
ters of our effective Lagrangian need be physically
significant. As was the case for the oblique corrections in
the previous section, not all of the above interactions can
represent a physical deviation from the standard model,
since some can be removed without changing the form of
XsM simply by rescaling and rotating the fields. Only
those that cannot be removed in this way without violat-
ing the symmetries of the standard model can have physi-
cal consequences, since these lead to deviations from the
predictions that relate SM parameters, such as appears in
Eq. (25) in Sec. II.

+fo""(dLyr. +d„yrr )fF„,),
where

dL ——Urrdr Ur ) drr
——Urdrr Uri (4O)

Note that for these interactions the unbroken gauge in-
variance only permits the appearance of dipole-moment
couplings, parametrized by the matrices dL z.

The neutral-current interactions similarly become

NC
SWCS

where

1 ——[fy"(gryi. +gRy~ )fZ, +f&"'(nr. yi. +&r~y R )fZ„.]
2

(41)

a11d

gz gr. +5gr UL [gi. +5gr. ~(II gr. +gL IL ) ]UL +SWCWQG

gR gR +5gR —UR—[gri +5gR ,'(IRgR +gri I„)]—Uz+swcWQG
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nL —= U~ &t UL, ntt —= UL &s UR

which in general may involve flavor-changing neutral currents. As discussed in Sec. III A, the left-handed and right-
handed neutral-current couplings of neutrinos are not independent, being related by g~ = —(gL" ) .

Finally, the charged-current couplings become

CC 1 ——[fy"(ht yL +h„ys )f'W„+fo"'(cL yL +cz y„)f'W„„]+c.c. ,
2

where

hL,
=

hL—+5hL =Ut [hL +5AL, 2(It—h—L +hL It )]Ut, h„=htt +5htt =Utt5h„U„, (42)

and

I
cL, —UgcL, UL, cz —Ul. cz U

coefficients cL „.The quantity which does arise to linear
order in the new physics is

In these expressions, f represents a tt-type quark or a
neutrino, in which case f is, respectively, either a d-type
quark or a charged lepton. Primes on the matrices UL s
and IL are meant to distinguish the matrices that are as-

sociated with f' from those associated with f. There are
two qualitatively new features that arise here: (i) the in-
troduction of a right-handed current and (ii)
modifications to the left-handed CKM matrix. We
elaborate on these in more detail in later sections.

The final remaining step is to determine the shift that is
induced by the new physics into the reference parameters
in the Lagrangian.

B. Shifting to physical parameters

Because of the present accuracy of the electroweak
data, it suffices to work only to linear order in the new-

physics parameters of our efFective Lagrangian. Keeping
higher order terms is conceptually straightforward,
though algebraically more complicated.

None of the additional terms in this more general
efFective Lagrangian alter the connection between F and e,
or between mz and mz, so these remain as given in Eqs.
(12) and (14):

Ae=e 1+—,mz=mz(1 —z+C) .

The really new features arise for the definition of GF,
and so for the expression for sz in terms of s~, as well as
for the charged-current CKM matrices. This is because
each of these quantities is defined with reference to a
charged-current fermion decay, and so their determina-
tion is affected by the deviations of AL z from their SM
values. We consider these observables here in turn.

Fermi's Constant (Gz): We must compare the tree-level
expression for muon decay as computed with the new
charged-current interactions, and read off the combina-
tion of parameters in the decay rate that is to be
identified as the Fermi constant. The result is indepen-
dent of the induced right-handed currents, since these do
not interfere with the left-handed currents to within the
accuracy we are interested. The same is true for the

GF
(1—w+5, +6„),

8$p @mz

where

(43)

v,.f=g Re(5hL' )+(higher order terms) . (44)

v,.f
Note that only the real part of 5hL' appears here. This
is because we are working to only linear order in the
new-physics parameters, and therefore the only operators
which can enter into the above expression are those
which have SM counterparts with which they can inter-
fere. Since in our conventions the SM leptonic charged-

v,.f
current couplings are purely real, Itn (5hL' ) can never
appear at linear order. Note also that, since we do not in-
sist upon lepton-number conservation, the sum is over all
light neutrinos. In terms of these variables, the analogue
of Eq. (17) for s~ is

2cw
s~=ss, 1+ (A —C —w+z+b, , +b,„)

cw sw

(45)

where s~ is defined as in Sec. II: GF /V'2 =e 2/

(8ss,cwmz).
The CEM Matrix Elements (V, ):As discussed above,

the question of whether or not a new-physics operator
contributes to linear order in the expression for an ob-
servable depends upon whether or not there is a corre-
sponding SM operator with which it can interfere. For
CP-violating new-physics contributions to CKM matrix
elements, this appears to be problematic, since, according
to this argument, Im (5hg) will appear only if the corre-
sponding SM CKM matrix element V, . is complex. How-
ever, the phase of a single CKM matrix element is not
physically meaningful —any particular matrix element
can be made real by phase redefinitions of the quark
fields. It is only the phase of the product of four CKM
matrix elements V~ V;k Vlk V&~ which has a physical mean-
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ing. In other words, it is a phase-convention-dependent
question whether Re (5hLJ) or Im (5hg) (or both) appears
in the expression for a particular observable. It is possi-
ble to express all observables in terms of the new-physics
parameters in a completely general way, with no assump-

tions as to the reality of the CKM matrix elements, but
this has the unfortunate effect of rendering the formulas
unduly cumbersome. It is therefore useful, for simplicity,
to choose a particular form for the SM CKM matrix. We
use the approximate parametrization [15]

VcxM — A, (1+A pA, e ) 1 2A, A pA, e

—AA, (1+pA, e' )

Apk. e

(46)

-2'
I V„„I=, ', , I(h,"'+hR"')

I
(I ~+a, ) .

8$~V ~mz
(47)

Using this result together with expression (43) for GF as
determined in muon decay gives

in which A, =0.22 is the sine of the Cabibbo angle, the
values of A and p are —1, and 5 is constrained to lie be-
tween 0 and n (due to the nonzero value of ex, 5 very
close to 0 or m is excluded). Note that, in this parame-
trization, all CKM matrix elements save V„b and V,d are
essentially real. Therefore we know in advance that the
Im (5hij), which can contribute to CP-violating processes,
will remain virtually unconstrained.

The relation between the V; and the V; depends cru-
cially on the manner in which the CKM matrix elements
are measured experimentally. For example, V„d is deter-
mined from the P-decay rate for superallowed transitions
in spinless nuclei. As such, these experiments measure
the nuclear matrix element of the vector part of the
quark-level transition d ~u+e +v. If we read off the
part of the amplitude which appears in this matrix ele-
ment we find

Iv I—= I(h'M)
I

=
I V„I[1+~„]—Re(5h,"+5h,") (49)

On the other hand, the matrix element V,d is measured in
the process v„d~cX, which, to linear order in the new

physics, is sensitive only to the left-handed coupling. In
this case,

I V, =
I V,„I[1+6,, ]—Re(5h' ) . (50)

aS cwaT2

~w ~zcw 1
2 2

+
2 2

+
2(cw —slv) cw sw 4slv

sa, (b,, +b,„)
2 2

cw sw

In other words, there is no general expression for the re-
lation between V; and V,, —it must be calculated on a
case-by-case basis.

We may now use these parameters in the Lagrangian.
The terms of most practical interest are the W mass term,
and the gauge-fermion couplings of Eqs. (40)—(42). The
coeScient of W„W" becomes

=
I V„d I [1+6„) Re(5hL +5hR—) . (48)

Analogous results hold for those elements of the CKM
matrix that are determined by measuring the hadronic
matrix element of the vector part of the quark-level tran-
sition q, ~qj+e+v. This is true for I V„, I

as determined
in K,3 decays, or IV„I as measured in D, 3 decays. For
these cases we have

where S, T, and U are still defined as in Eq. (2). The elec-
tromagnetic interactions are straightforward to write
down:

e[fr"QfA„+f—a"'(dLri+dRrR)fF„. ) .

(52)

The 6nal form for the neutral-current interactions is

[fr"[(gi +5gi )ri+(gR" +5gR )r R ]fZ„+fa"'(nor i+ nR r R )fZ„.]
swcw

(53)
c s aT c s (6+6, )

Cw Sw Cw Sw CW SW

In the above expression for 6gL ~„&, the coefficient of gI ~„~ represents a universal overall correction to the strength of the
interaction. The next term, proportional to the fermion charge Q; can be considered as a shift in the effective elec-
troweak mixing angle (sz, ),s; as measured in neutral-current experiments. The final term consists of any direct new
contributions to the current. Of these three types of contributions, this last term, and only this term, can contain
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flavor-changing neutral currents (FCNC's}.
Finally, the charged-current interaction becomes

&cc=— — [fy"[(~'"+&h& }y&+(IR"+&&R }yR ]f'~„+f~""(c~y~+cRyR }f'~„.]+c.c.,
2sw

where, for leptons,

aS cwcT ~U cw(ke +kp) y. J

4(cw sw) 2(cw sw} 8sw 2(cw sw}

while, for quarks,

aS cwIxT aU cw(~ +~@} -&;dJ u;dJ -M;dJ
2 2

4(cw sw) 2(cw sw) 8sw 2(cw sw)

(54)

(55)

As for the neutral currents, in the above equations the
coefficients of the 5; and V; terms are universal correc-
tions, while all other corrections are nonuniversal. Also,
as discussed previously, we have not substituted for V; in
the above equations since there is no general relation be-
tween V; and VJ.

We may now apply these expressions to a number of
relevant observables.

V. APPLICATIONS TO OBSERVABLES

The ultimate goal of this analysis is to use current ex-
perimental data to constrain the new-physics parameters.
In this section we compute expressions for a large num-
ber of observables in terms of our various effective cou-
plings. We also report on the results of detailed fits for
these couplings where this is appropriate.

Our starting point is the effective Lagrangian we have
constructed, which consists only of the standard model
supplemented by those effective interactions which have
the lowest few dimensions. It is important to keep in
mind the existence of a potentially infinite number of
terms which we have not written down, and which we
imagine are suppressed compared to the ones kept by ad-
ditional powers of 1/M. Because of the existence of these
other terms, when computing the implications for observ-
ables, it would be inconsistent to work beyond linear or-
der in our lowest-dimension effective interactions, and to
still neglect the higher-dimension operators which we
have not included. As a result we limit ourselves to
working only to linear order in the couplings of our
effective Lagrangian.

We consider only those observables to which our new-

physics parameters contribute at tree level for a slightly
different reason. In this case any contribution which is
obtained by inserting an effective operator into a loop can
be canceled by a small correction to the coefficient of the
operators which contribute to the same observable at tree
level. Alternatively, loop graphs te11 us how the effective
operators mix as they are renormalized down from the
high scale M where the new physics is integrated out, to
the lower scales where the observable in question is mea-
sured.

Having said this, there is still one situation where

working to higher order in our effective couplings, or go-
ing beyond the tree-level calculations, makes sense. This
is in the case where measurements of an observable are
sufficiently precise to strongly exclude new-physics con-
tributions, even beyond linear order or tree level. Al-
though we cannot ever rule out the possibility that a
nonzero contribution from one of our low-dimension
operators at quadratic order (say) may cancel with a
linear contribution of an operator we have neglected, the
likelihood of this becomes more implausible the stronger
the cancellation that is required. As a result we can use
precision measurements to bound our interactions
beyond linear order in their coefficients, and beyond tree
level in their contributions, provided that we are aware of
this possibility of cancellation.

In practice, sufficiently well-measured observables are
usually associated with processes that do not arise, or are
highly suppressed, in the standard model due to (approxi-
mate) conservation laws or selection rules. For the
present purposes we only work beyond linear order for
observables which involve flavor-changing neutral
currents (FCNC's). These are highly suppressed in the
standard model, and so typically first arise to quadratic
order in our effective interactions. When computing
these bounds we therefore work to this order, but any
limits we find that are not very strong must be considered
suspect, since they could easily be circumvented through
cancellations with higher-dimension operators. For all
other processes it suffices to work to linear order in the
new-physics parameters. At a practical level this implies
that most of the coefficients of operators which are not of
the SM form, such as the magnetic terms in Eqs. (53) and
(54}, or of most CP-violating interactions, will not be
bounded in this analysis since they do not interfere with
the standard model.

Similarly, we only consider the loop-level contributions
of our effective operators to neutral-meson mixing, e&,
anomalous magnetic moments, and to particle electric di-
pole moments (EDM's), all of which are measured (or
bounded) with great precision. Again, weak limits should
not be taken too seriously, due to possible effects of can-
cellations among the contributions of various operators.

For FCNC's, and well-measured quantities like (g —2),
and (g —2)„, as well as electric dipole moments (EDM's),
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only one (or, sometimes, two) observable is required to
bound each effective operator. In this case we simply
quote the upper bound that is required for the appropri-
ate effective coupling. Most of the other interactions can
contribute to a great many quantities. In this instance we
perform a full fit to all of the observables using the entire
effective Lagrangian. For comparison purposes we report
here on two types of fits. In the first, called the "indi-
vidual fit," only one parameter at a time is allowed to be
nonzero. This fit will obviously yield the most stringent
constraints on the parameter in question, since no possi-
bility exists for cancellations. The second procedure (the
"simultaneous fit") allows all parameters to vary simul-
taneously. Because of cancellations most parameters are
less constrained in this fit, and certain combinations
remain unconstrained entirely in this case. As we de-
scribe the various observables we also indicate which pa-
rameters are not bounded, and hence can be excluded
from the simultaneous fit.

Much of the material in this section is adapted from
Refs. [16,17]. Where numbers are given we use
a= 1/128 and s~=0.23.

A. Flavor-changing neutral currents

As mentioned above, our only excursion past linear or-
der in new physics comes about in this section. In the
standard model there are no FCNC's at tree level, and
most loop-induced FCNC's are calculated to be extreme-
ly small. Thus, FCNC's are a smoking gun for new phys-
ics, and it is useful to investigate the prospects for their
detection.

The terms in our effective Lagrangian [see Eqs. (52)
and (53)] which can lead to FCNC's are

+FCNC fr"(&gLrL+&gR YR )fz„
SACS

+ f&""(&L7'i+&Re R )fz„,M

(57)

g 5

[(gsM )2+(gsM )2][ lt g2lLI +2lgg iL 2] (58)

where the masses of the Anal-state particles have been ig-
nored. Using the experimental bounds on p —+3e and
v~31 [18],the limits shown in Table II are obtained.

There are also bounds from Z~IL. The contribution
to this process is

, [l&g "I'+ l~g "I'],
6$p c~

(59)

which, when combined with the experimental limits in

[19]leads to the constraints in Table II.
For the ds FCNC, the strongest constraint comes from

the decay KL —+p+ p . Using the analogue of Eq. (58)
for the quarks in the kaon system, and following the
analysis of Ref. [21] one finds

where 5g'J=5g'J for i', and we introduce a factor of
I/M in the "magnetic" terms for dimensional purposes.
We discuss the three types of FCNC terms (5gl R, nL R,
and dL R) in turn.

5gL z 's: The strongest constraints on leptonic FCNC's
come from the absence of the decays p~3e and r~3l.
For this type of decay we find

I (L —+31)

(K, ) 8[(g„',)'+(g„', )'][l&g ' '+ l&g 'I']
(60)

where r(K) represents the corresponding K-meson lifetime. Reference [18] gives B(Kr ~p+p )=(7.0 0.82) X 10

l

TABLE II. Constraints on the flavor-changing neutral current parameters 5gij R =5gi R, for iWj.

Quantity

Imari, R I

I8gi, R I

Igg~,'R I

IRe(8gi. 8gR ) ].

I8gi, R I

[R&(8gL ~gR )]

I &gL„R I I &gl., R I

Upper bound

2x10-'
1x10 '
6x10-3
2x 10-'
6x10-'
2x10-'
2�x1-'
03X�
8X10

4x 10

1�x1-'
02X�

Source

p.m3e [18]
ZmelL [19]
rm3l [18]

Zme~ [19]
rm3l [18]

Zmpr [19]
&~-l 'l [»)

~m»» I18)

~m»» [18]

D Dmixing [18]-
D Dmixing [18)-

Bml I X [20]
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and the long-distance contribution from the 2y intermediate state is found to be [22] (6.83 0.46) X10 9. In light of
this we assume that the rate for KL ~p+p is explained by the standard model, and require that the new-physics con-
tribution be smaller than the experimentally measured value plus 1.64o (which corresponds to 90% C.L.). This gives
the bound in Table II.

There is also a constraint on the ds FCNC from the EL —Ez mass difference. We find

G~
b Mx = —[ I5g~'I + I5g„"'I'+2(0.77)Re(5g~'5gi*"') ]—', f» mxB»,

2
(61)

where we have used the results of [23] for the left-right matrix element. We require that this contribution be less than
the experimental value (+1.64o), leading to the constraints in Table II. Note that these limits are weaker than those
fromSC~~p+p .

The constraints on uc FCNC's are due to the absence of D -D mixing. Using Eq. (61) adapted to the D system and
taking BD = 1, fD =200 MeV we find the constraints in Table II.

Finally, the FCNC's involving the b quark are constrained by using the process B~@AX. One has [21]

B(B „„x) 4[(g„'", )'+(g„', )'][15g "I'+
15g

"I'+
15g "I'+15gg~l']

lx&pX)
I
I'.b I'+Fps I

I',g,
I'

6 5 2

[(gsM)2+(gsM)2][ ln LI12+
I

/LnI2] (63)

What is noteworthy here, and indeed in all of the follow-

ing processes, is the suppression factor m /M . From
this we can deduce that low-energy limits on FCNC's will

where Fps —0.5 is a phase space factor. The constraints
on the FCNC parameters are given in Table II, where we

have used B(B~@AX)(5X 10 [20].
nL ~'s: The ni ~ FCNC's can be bounded in the same

way as the 5gL 2t's. For leptonic FCNC's we use the de-

cays p~3e and i~31. The contribution of the nL z's to
these decays is found to be

I (L ~3l )

not put terribly strong constraints on the nL z's. The
bounds from p~3e and ~~3l are shown in Table III.
We take M=1 TeV.

The contributions of the nL z terms to Z ~/L are

M M
I'(Z lL)= [nL +Inst I ] . (64)

3s~c~ M

From these one can deduce the limits shown in Table III.
Note that, for FCNC's involving r's, in contrast with the

5gL z's, the constraints from the absence of leptonic
FCNC in Z decays are stronger than those from low ener-

Turning to the ds FCNC's, and adapting the results of
Ref. [21]we have

B(KL ~12+p ) 192 r(KL ) mz [(g„z ) +(g„z) ][In)'I2+ In)'I ]

B(K+ p+v„) I& r(K+) M IV„, I

(65)

TABLE III. Constraints on the dimension-five coupling parameters nrl», i&j using a new-physics

scale of M = 1 TeV.

Quantity

InL;» I,

Inc,'» I

Inc,'» I

Upper bound

0.02
0.08
3
0.09
3
0.1

0.02
0.3
0.1

0.2

pm3e [18]
Zmep [19]
rm31 [18]
Zmer [19]
rm31 [18]

Z+ pr [19]

km» » [18]
Do D~ mixing [18]-

Bml+1 X [20]
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4G 2

, [InL'I'+Inlt I ] fKmKBK
2M

(66)

where we have taken the unknown matrix element to be

giving the bounds in Table III. Extracting constraints
from the KL-K~ mass difference is more problematic.
The difficulty is that, using the nL~ operators, new ha-
dronic matrix elements are obtained. Rather than trying
to evaluate these we will simply estimate the contribution
to AM„as

of the order of the left-left matrix element, and have ig-
nored the left-right mixing term. With this order-of-
magnitude estimate one obtains the limits shown in Table
III. Note that these are much weaker than those due to
LL ~P P

The same difficulty is encountered in using D -D mix-
ing to constrain the uc FCNC's. Estimating the contri-
bution to hMD in the same way as was done for the kaon
system, we find the constraints shown in Table III.

For 8~ppL we have

B(B ppX) 192 ms [(gp, L)'+(g„'",ll )'][lnL' '+ Inly"I'+ lnL I'+ n,'" ']
B(B~pv„x) 30 m'

I y, I'+F
I y, I2

(67)

which yields the constraints in Table III.
It is noteworthy that the constraints on the couplings

nL'~ from low-energy experiments are very weak. Con-
trary to the naive expectation that the bounds on
8 ~ppX would preclude any chance of detecting
Z~sb, sb at LEP, we see here that the two processes
sample completely diferent operators. Should new phys-
ics produce terms like bo""(nLyL+nttytt )sZ„„, then
such FCNC's could be seen at LEP without having been
ruled out in 8 decays —indeed, it would be very foolish
to overlook this possibility.

This example beautifully illustrates the power of the
effective Lagrangian approach. By systematically listing
all operators up to a given order in 1/M, one can discov-
er terms which can give rise to physically observable
effects which might not otherwise have been considered.

dL a's: The analysis leading to bounds on the dL „
FCNC's is similar to that for the nL z's, with the follow-

ing important differences. First, certain dI ~'s can be

P(L l ) [IdlLI2+ ldlLI2] (68)

Using the experimental limits from Ref. [18] gives the
bounds listed in Table IV.

bounded directly from the process f~f'y. Second, be-
cause of the fact that the photon is massless, decays such
as p~3e are not suppressed by powers of m„/mz, as
they are in the case of the Z FCNC's. In fact, as we shall
see, there is a logarithmic enhancement of such decays.
Finally, there are no bounds on the dL lt's from FCNC's
at the Z peak, since the contribution from photon ex-
change is very much suppressed in these processes.

The strongest constraints on leptonic dL& FCNC's
come from the experimental limits on the decays prey,
~~ey, and ~~py. The contribution of the dI ~'s to
these decays is

TABLE IV. Constraints on the dimension-five coupling parameters dLIe, using a new-physics scale
of M=1 TeV.

Quantity

ldL;~ I

ldL'+dpi
ldg~+dg~l
Idee decl

I
di'" —dg"

I

I

d" d-I—
Idl de l(s =eep)
Iddd dddl lduu duul

Upper bound

2x10-"
3X10
5X10
2x10 '
Sx10 -'

3 x10-'
2x10 '

4X10-'
6X 10
3X10
2X10
4X 10
8X10
1X 10
8X10
0.05
5

5X10
6x 10-'

Source

prey [18]
p~3e [18]
mme y [18]
-m31 [18]
ropy [18]
rm31 [18]

Kl ~p p [18]
~mx ~ [181

D" Dmixing [18]-
Bmi+1 X [20]

b sy [24]
Bml l X [20]

a(e) [25]
a(p, ) [26]

Atomic EDM's [27]
(g„—2)/2 [28]

e e ~r' r [29]
verve [29]

Neutron EDM [30]
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[ld'"I'+ ld'"I']

The contribution to the processes r~el+l and r~pl l is obtained in the obvious way from the above equation.
This leads to the constraints shown in Table IV. As mentioned above, the constraints on the dL z from L~31 are only
slightly weaker than those arising from I.~1y.

One constraint on the ds FCNC's comes from the process KL ~p+p . Adapting Eq. (69) to the process s~1p+p
and using the results of Ref. [21]we have

The leptonic dI „FCNC's will also lead to the process L ~31. As noted earlier, since the photon is massless, there is
no suppression of this process relative to L ~1y due to the photon propagator. The only suppression is due to an addi-
tional factor of a, as well as from the three-body phase space, as compared to two-body phase space. And this is par-
tially compensated for by a large logarithm, due to the presence of an infrared mass singularity in the limit mr ~0. The
contribution of the dL z's to the process p~3e is found to be

2 3 2
'

8& m„ 1 m„1(p~3e)= ln (69)
M 24 m,

B(KL ~p+p )

B(K+~p+v„)
3072a n r(KI. } 1

ln
m2M2G2 r(K+) 24

m S

2
lt2d

[ld'I'+ ld "I'I
18 ly

(70)

We take m, =150 MeV and md =5 MeV, leading to the bounds in Table IV. There are also constraints from the KL -Kz
mass difference. However, as was the case for the nr'z FCNC's, we encounter new hadronic matrix elements. There-

fore, once again, we simply give a rough estimate of the contribution to AM+.

2

&M» - ', [Idr". I'+ Id»'I'] ', f»m»B»- (71)

This leads to the order-of-magnitude limits in Table IV. As was the case for the nL'„'s, these limits are much weaker

than those due to Ez ~p+p
The uc FCNC's are constrained by D -D mixing. Using the same procedure as was done for the KL-Ks mass

difference we arrive at the bounds in Table IV.
The process B~ppX constrains both the db and sb FCNC's:

B(B~ppX) 1536a n. 1

B(B~pv&X ) m&M Gz 24

m b

Ptl
q

[id/'I'+ id)'I']

I &„g, I'++ps I &,b I' ' (72)

in which q=d, s. The bounds are shown in Table IV.
For the sb FCNC, there is also a limit due to the experi-
mental measurement of busy [24]. Using Eq. (68) we
find the contribution of the dL z to this process to be

while that for the muon is [26]

a(p }=1165937(12)X10 9,

a(p+)=1 165911 (11)X10
(75}

3
mb

B(b ~sy) =7/a
p [IdL I

+ Id»"I ] . (73}
These are in good agreement with the corresponding SM
(i.e., QED} predictions [31]:

Taking ~z =1.49 psec leads to the constraints in Table
IV.

a'"(e)=1 159652 140 (5.3} (4. 1) (27. 1)X10

a'"(p ) = 1 165 919 18 (191) X 10
(76)

B. Anomalous magnetic moments

Extremely precise measurements exist for the anoma-
lous magnetic moments of the electron and muon:
a; =(g; —2)/2=(p;/pz )—1, for i =e,p and

t

p~ =e, /2m;. The current best experimental values for

the electron and positron are [25]
2mi

5a; = (dL'+dg ), (77)

The largest error in a'"(e) is due to the determination of
a, a fact which presently limits using the comparison
with a'"(e) as a precision test of QED.

The quantities dL'z and dg"„contribute directly to this
observable, by an amount

a(e }=1159652 188.4 (4.3)X 10

a ( e + )= 1 159 652 187.9 (4.3 ) X 10
(74) where i =e,p. We obtain our bound by requiring that

this contribution be smaller than the corresponding
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1.640. experimental error. Taking M=1 TeV, as before,
produces the constraints shown in Table IV.

(78)

In terms of the interactions in our effective Lagrangian
we therefore have

id —= ' (dp —d)cf)

=(2X10 ' e cm)(dP —dg) . (79)

In this last line, as in Table IV we take the fiducial value
M=1 TeV.

Extremely good limits currently exist for the electric
dipole moment of various atoms [27,32] and for the neu-

tron [30]. The atomic bounds permit the inference of a
very strong bound on the EDM of the electron [27]. Us-

ing these limits we arrive at the bounds given in Table IV.
The constraints on the EDM's of light quarks are ob-
tained from the experimental limit on the neutron EDM.
For both the electron and quark EDM's there is some un-

certainty in extracting these bounds since many operators
in the underlying theory can generate either atomic or
neutron EDM's. For electrons we quote here the bounds
as given by the experimental groups themselves. This is
not done for the neutron, since here there is the addition-
al uncertainty associated with computing the nucleon
matrix element of the quark-level operator. To be con-
servative we simply use the estimate

n u d (80)

and quote a limit on d which is ten times weaker than
the measured bound on d„.

The EDM's of other particles may also be constrained.

C. Electric dipole moments

The difference between dP and dg contributes to the
corresponding particle's electric dipole moment, defined
as the coefficient of the term in the particle's energy shift
which is linear in the applied field. For a fundamental
fermion such a definition is equivalent to defining df as
the coefficient of the effective electromagnetic interaction

That for the muon is directly limited by the experiment
which measures (g —2)„[28]. One may attempt to obtain
a bound for the ~, v„and v„electric moments from the
observed absence of the effects that such rnornents would
produce in the reactions e+e ~~+~ or in ve scattering
[29]. Since the EDM enters quadratically into these cross
sections, these bounds can only be inferred to the extent
that cancellations with other effective interactions can be
ignored. As may be seen from Table IV, although this
may be plausible for the neutrino moments, it is not
justified for the ~ lepton.

More indirect limits on neutrino moments also exist in
certain circumstances [29]. If neutrinos are Dirac (or
pseudo Dirac) particles then right-handed sterile neutri-
nos likely exist and are light enough to be produced from
left-handed neutrinos, via the magnetic moment interac-
tions, in stars, supernovas, and in the early universe. We
do not include these bounds here since we have excluded
sterile right-handed neutrinos from our low-energy parti-
cle content.

D. Charged currents

We next turn to the bulk of the constraints on the
effective Lagrangian, charged-current, and neutral-
current data. Since many of the effective interactions can
contribute to many observables, we evaluate the remain-

ing bounds by performing a global fit.
Some of the low-dimension effective interactions are

not bounded to the order we work. This is because many
operators do not contribute at all to linear order in their
coefFicients. This is true, in particular, for terms which
do not, on grounds of helicity conservation, interfere ap-
preciably with SM contributions. As a result we will not
be bounding the magnetic terms in Eq. (54). The same is

true for the right-handed currents in this equation, except
insofar as they contribute to linear order to the CKM
matrix elements, and in K~3m decays. We remind the
reader that in what follows we take a=1/128 and

s~ =0.23.
The W Mass: In the presence of new physics, the rela-

tionship between the W and the Z mass is modified. In-
spection of Eq. (51) gives the result

2
ng caaT cx U

~w=~~w ~s~
2(cw ~w) ~w ~w 4~a

s~(b, , +b,„)
2 2cw sw

= (M~)s~[1 —0.007 23S+0.011 IT+0.008 49U —0.426(b, , + b,„)] . (81)

Recall that the b,f are defined in Eq. (44), and since we do not assume the conservation of lepton number, the sum in the
definition of 6f is over all light neutrinos.

CKM Unitarity: The strongest experimental constraint on new couplings of the 8 to quarks comes from the unitarity
of the CKM matrix. As discussed previously, the relation between the parameters in the Lagrangian V," and the mea-
sured quantities VJ is altered due to new physics. For V„z and V„„the relation is as given in Eq. (49). This is not the
case for V„b, which is measured using the end point spectrum of semileptonic B decays. However, in any event, because

V„b is so small, we drop terms of order V„b. The three-generation relation g3
&~ V„, ~

=1 leads to
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I V.g I'+
I V., I'+ I V.b I'=1 —2~„+2IV.g IRe(5hL, '+5h~'}+2I V„,l«(5hL, '+5h,"')

+2[Re( V» )Re(5hL )+Im( V» }Im(5hL }], (82)

where on the right-hand side we have replaced V;, by V, Note that the new-physics parameters Re (5hL'), Re (5hL" ),
and Im (5AL ) appear only in the above expression; they contribute to no other charged-current observables (at tree level
and to linear order). Therefore, in the simultaneous fit, only the sum of terms

I V„,IRe(5hL')+ [Re( V„& )Re(5hL )+Im( V„& )Im(5hL )] can ever be constrained, and we present the bound on this com-
bination only.

The second row of the CKM matrix is similar, except that V,& is measured differently, as discussed in Sec. IV B. We
find

I
V„I'+

I
V„I'+ I V„I'=1+2IV„IRe(5hz )+2I V„IRe(5hz'+5hz')+2I Vb IRe(5h~ ), (83)

where we have neglected all 6, „terms, as they are much
better constrained in other processes. In the simultane-
ous fit of all parameters, only the sum IV,&IRe(5hL }
+

I V„ I Re(5hr' +5hz )+ I V,b I
Re(5hL") arises; the indivi-

dual new-physics parameters are unconstrained by our fit.
As a consequence, as before, we present only the bound
on this sum when we perform the simultaneous fit.

Lepton Uniuersality: Lepton universality is tested in

pion and ~ decays. It is straightforward to calculate

" =R sM(1+2S, —2~ ),
I'(m ~pv)

R, —: =R (1+25,—2h„),
I (p~evv}

Ihuzl
8

lhusl
8X10

(84)

Following Ref. [16], in our fit we consider these upper
bounds as 10. errors.

There are also constraints on right-handed currents in
d~c and s~c transitions coming from the measurements
of the y distributions in vd, vs~p c and vd, vs~p c
[35]. Here too, however, the new-physics parameters ap-
pear first at quadratic order, so that the (rather weak)
bounds extracted in this way are somewhat unreliable,
prone as they are to cancellations from dimension-six
operators. For this reason we do not include these con-
straints in our fits.

R — Rs (I+26 2A )
r(p~evv)

Universality is also tested in leptonic kaon decays, but
the resulting bounds are weaker than those given above.

Right-Handed Currents: Right-handed leptonic
charged currents can be constrained through the Michel
parameters in muon decay. However, it is necessary to
go beyond linear order in the new parameters, so we do
not include these measurements in our analysis. For a
complete description of muon decay including lepton-
number-violating operators, see Refs. [16,33].

Hadronic right-handed currents can be constrained by
considering PCAC (partial conservation of axial-vector
currents) predictions for K 3 decay relative to K„2 decay
[34]. In terms of our parameters, this gives

E. Neutral currents-low energy

As shown in Sec. V A flavor-changing neutral currents
involving charged particles are very well constrained, at
least for the 5gL z couplings. On the other hand, there
are no bounds on FCNC's in the neutrino sector, and we
will therefore allow for this possibility. In practice, how-
ever, since we are working to linear order in the new

physics, only the nonstandard flavor-conserving Zvv ver-
tex will be constrained —the flavor-changing couplings
always appear quadratically in the expressions for the ob-
servables.

The p parameter: As was discussed in Sec. II D the p
parameter, defined as the relative strength of the low-

energy neutral- and charged-current interactions, can be
read off from the universal corrections to the neutral-
current and charged-current couplings [(Eqs. (53) and
(54}, respectively], taking also into account the correc-
tions to the Amass [Eq. (51)]. This gives

p=1+aT, (85)

R o (vN~vX) lo (vN~vX)
R o (vX ~pX) /o. (vX ~pX)

(87)

We next calculate the numerator and denominator of this
expression.

The charged-current process is dominated by u~d
transitions. We therefore compute the corrections only
to this process using the effective Lagrangian. A subtlety
arises, however, in that our new effective interactions also
appear in the reference charged-current SM cross section.

as before.
Deep Inelastic -v Scattering: vq neutral current scatter-

ing is measured via the ratios

cr(vN~vX) cr(vN +VX)—
o(vN~p X} " o(VN~p+X)

The presence of new physics affects not only the neutral-
current process in the numerator, but also the reference
charged-current process in the denominator. In principle
one must also worry about subsidiary quantities such as
the quark distribution functions and the charm threshold.
However, it has been argued in Ref. [16] that these are
rather insensitive to new-physics effects. The logic of our
discussion here follows the lines laid out in this reference.

We wish to compute R /R, which we write as
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This is because the SM result must be taken as a function
of V„d, as it is measured in superallowed P decays, which
itself receives corrections from Re(hi" z), etc. Whereas
one might expect these corrections to cancel with the cor-

responding terms in o(vN~pX), this is not the case
since V„d from P decay is corrected by the right-handed
term Re(h„" ), while cr(vN~pX) is not. As a result we
find

a(vN~p X)— (1 2b, , —2—b,„)(V„d+5hL ) g, (6;„+5hL,
'

)

o (vN~p X)

Re(5h ji")=1+26 —2A, —2 (88)

Note that all of the dependence on the oblique corrections S, T, and U cancels between the corrections to the charged-
current couplings, and those to the mass Mw of the virtual 8'.

We now turn to the neutral-current part of the ratio: o(vN~vX)lo (vN~vX). The easiest way to make contact
with the measurements is through the effective parameters eL jt (a). These parameters provide the conventional param-
etrization of the effective neutrino-quark interaction that is probed in deep-inelastic scattering:

4GF
—vr. r"vL
2

[~L(a)6'r „eL, +eR(~)qRrp'vR ] (89)

This is to be compared with the quark-Aavor-diagonal piece of the low-energy limit of our general effective Lagrangian:

8GFgvq y —rp(gsM+5g )ijr
lJ

e.r„[(gL"+6gi )"ri+(g~"+6g~ )"r~ )e. .

We do not include a right-handed neutrino current in the above equation since this cannot interfere with the SM contri-
bution, and so cannot contribute to linear order. For the same reason, even though FCNC's are allowed, only the

flavor-conserving piece 5gL" "contributes to linear order.
Comparing these Lagrangians, and dividing out by the square-root of the charged-current correction factor,

QF&c =1+b,z —6,, —Re(5hjt )/~ V„d ~
of Eq. (88), then gives

Giig)(Q)=
&Fcc

gSM
a, L(R)

Re(5h„"")
1+aT+25g "" 2h +-

ivy

aS
4(cw sw )

cwswaT cwsw(b +b„)
2 2 2 2

~w cw ~w
+5gL(R) (91)

The cross-section ratios R, and R are finally given by the following expressions [16]: R„=gr +rgb and

R =gi +gz lr. Here r =0.383, r =0.371 are numbers, and the parameters g, (not to be confused with the effective

neutral-current couplings gL z) are related to the e;(a) by g; =e;(u) +e;(d), —with i =L,R. Combining these results
gives the quantities which we use in our fit:

(gL ) =(gL )sM
—0.002 69S+0.006 63T—1.4526„—0.2245,

+0.620Re(5hz )
—0.8566gL +0.6896gL"+ 1.2086gl" ",

(gR ) =(gji )sM+0 000937S—. 0.000 192T+0.0855,, 0 03595.„—.

+0.0620Re(5h ji )+0.1565gz —0.3115gji"+0.1215gL" " .

Neutrino-Electron Scattering: Neutrino-electron
scattering data are conventionally expressed in terms of
an effective vector- and axial-vector electron coupling,
defined by the following effective neutrino-electron in-
teraction

2GF
vLr vt. r (g v g Ars)v'2 (92)

which, when compared with our effective Lagrangian [cf.
Eq. (90) above] gives
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2gL"'"(gL+gR )

geV
&Fcc

(93)

geo =
Fcc

An additional complication arises here due to the fact
that the v„-e scattering cross sections are not all mea-

sured relative to the same charged-current cross section
[16]. The high-energy experiments at CERN and Fermi-
lab normalize to vN~p X as in deep-inelastic scatter-
ing, so that the charged-current correction factor is
1/QFccIHz= 1 b,„+—b,, +Re(5htt )II V„d I, as before.
The low-energy experiments from BNL, on the other
hand, normalize to the quasielastic process v„n~p p,
which &ives a slightly different correction factor:
1/QFccItE=1 —b,„+6,. Because the global averages
of these measurements are dominated by the high-energy
experiments, we use 1/QFcc I HE in our fits. We find

g,v=(g, ~)sM+0 007.23S—0.00541T+0.6566,, +0.7305„+5gt"+5g„" 0.074—5gL"" 0.037—Re(5htt ),
geg =(geg )sM

—0.003 95T+1.0126&+5gL' 5g~' —1.0125—gt" "—0.0506Re(5h& ) .
(94)

Atomic Parity Violation/Weak Electro-magnetic Interference: The low-energy Lagrangian describing atomic parity
violation is conventionally parametrized as

G~
g [C~,ey&y5etI, y"ti, + C2, ey&etI, y"ysq, ],v2

(95)

in which

2(gee gee)(gaa+gaa) CSM —2(g ee+g ee)(g aa
gaa) (96)

Inserting our expressions for 5gL 's and 5gz we find

C,„=C,„+0.004 82S —0.00493T+0.631(b,+b„)+0.3875gL' —5gL"—0.3875gt't —5g„"",

C)~ =C)d —0.00241S+0.00442T —0.565(h, +hq) 0 693—5gL.
'

5gt +—0 6935ga.
' 5gtt-

Cq„=C2„+0.00723S 0 00—S 44.T+0.696(h, +hq)+5gt" 0 085gt"—"+.5g~'+0 085gtt", .

C2d =C2d —0.007 23S+0.005 44T 0.696(h, +—5„) 5gL' —0 085—gL . 5gt't +—0 085gtt.

(97)

For heavy atoms, the matrix element of this effective interaction within the atomic nucleus, containing N neutrons and
Z protons, is proportional to the "weak charge" Qu, defined by

Qrr(Z, N)= —2[(2Z+N)C(„+(Z+2N)C)d] .

For cesium we find

(98)

Qu (ss Cs) = [Qu (ss Cs)]sM —0.796S—0.011 3T+1.45(b, +b„)+147(5gL' —5gt't')

+422(5gL +5g„" )+376(5gL"+5gR") . (99)

Note that these expressions are automatically real, even in the presence of CP violation, since the hermiticity of the La-
grangian requires all of the diagonal elements 6gL'~ to be real.

F. Neutral currents (Z peak)

Our next class of observables concerns those that are measured in e+e collisions at the Z resonance. Consider first
the Z-boson partial widths. Even in the presence of new physics one has (neglecting fermion masses)

[I,. ]„..=, , (Ig"I'+ Ig" I') .
6$$ cs

(100)

The contributions from the nonstandard operators can be separated simply by linearizing the above equation about the
SM value. This gives
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2 SM~-ff+2 SM~-ff
I sM 1+ T gf R gR

f f e P
( SM)2+( SM )2gfL gf R

2gf', L+2gf', R aS
(gsM)2+(gsM)2 f 4(c2s2)

cwswaT cwsw(b +b'„)
2 2 2 2

CW SW CW $W
(101)

Note that this expression holds for neutrinos as well as for charged particles since the potentially-present neutrino
FCNC s do not contribute to linear order. Using Eq. (101) we find the partial widths

I, , =(I, , ) [1—0.00230S+0 00.944T 1.20—9(b,, +5„)—4.295g +3.665g ],
I „„=(I ) [1—0.00649S+0.0124T 1.59—(b, , +b,„)+4.825g""—2. 135g""],

I -=(I -) [1—0.00452S+0.0110T 1.41(—b, , +6„)—4. 575g +0.8285g ],
I -=(I „-) [1—0.00452S+0.0110T 1.41(—b, , +b,„) 4. 575g —+0.8285g "],
I „, =(I „, ) [1—0.00518S+0.0114T 1.469(—b, , +6, )

—1.01(5gL +5gL'+5gL )+0.183(5gR"+5gR'+5g„),

+0.822(5gL" +5gL") —0.363(5gR"+5g„")],
I =(I „„)sM[1+0.007 81T (b, +b—„)+45gL' '] .

I

The total width is then

I z =(I z)sM[1 —0.003 85S+0.010 5T 1.35(b,, +—b,„)+0.574(5gL" +5gL')

—0.254(5gR" +5gR')+0. 268(5gL' '+5gL" "+5gL' ')

—0. 144(5gL'+ 5gz""+5g ")+0. 123(5gR'+ 5gg"+5gR')

—0.707(5gL +5gL'+5gL )+0.128(5gR +5gR'+5gR )] .

(102)

(103)
V V V V

Because the 5gL' ' and 5gL' '
only contribute to our list of observables through the Z width, only their sum can be

bounded in the simultaneous fit.
Various asymmetries are also measured at LEP. In terms of the new-physics parameters, the expression for the left-

right asymmetry, Eq. (27), becomes

4 SM SM
SM ge, L ge, R -ee SM -ee

LR LR SM 2 SM 2 2(ge, R gL ge, L gR )

[(g,, L) +(g, , R) ]

=( ALR )sM
—0.028 4S+0.0201T 2. 574(b, , +b,„—) —3.615gL' —4.2385g„" .

Similarly, we obtain the following expressions for A FB(f ) the forward-backward asymmetries for e e ~ff:
I I 3 e+e I I~ FB 4 ~LR ~LR

=( A„B)sM—0.00677S+0.004 80T —0.614(5,+b„)
—0.430(5gL + 5gL )

—0.505(5gR'+ 5gR ),

(104)

e e bbAFB(bb)= — 1 —kA ALR' ALR4

=[AFB(bb )]sM —0.018 8S+0.013 3T 1.70(&,+&„)—
—2. 365gLee —2. 775gRee —0.032 25gL —0. 1785gR

a
FB( ) 1 kA ALR ALR4

= [ A FB( cc ) ]sM
—0.014 7S +0.0104T —1.333(6, + b,„)

—1.695gL —1.995gR'+0. 1755gL'+0. 3966gR' .

(105)
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The factor (1—k~a, /n. ) represents a QCD radiative
correction, as in Ref. [2], for which we use the numerical
value 0.93.

We can now determine the phenomenological con-
straints on the new-physics parameters in our elec-
troweak Lagrangian. The observables included in our fit

are listed in Table V along with their experimental value
and the SM predictions. The standard model values have
been calculated with m, =150 GeV and MH =300 GeV.
The LEP observables in Table V were chosen as they are
closest to what is actually measured and their uncertain-
ties are relatively weakly correlated. In our analysis we
include the correlations taken from OPAL results [36],
but note that all LEP experiments obtain similar results
for the correlations.

The expressions for most of the observables in Table V
have already been discussed. Of the remaining observ-
ables A,&(r), or P„ is the polarization asymmetry
defined by A,&(r)=(oa —oL )/(aa+oL ), where rri. a is

the cross section for the reaction e+e —+rr with a corre-
spondingly polarized r lepton; A, (P,) is the joint
forward-backward/left-right asymmetry as normalized in

Ref. [41]. ALz is the polarization asymmetry which has
been measured by the SLD Collaboration at SLC [38].
The expressions for A, (r) and A, (P,) are the same as
the expression we have already given for AL„. The two
remaining observables can be obtained using results al-
ready given. In particular the parameter R is defined as
R =I h,z/I &t, and o~=12ml, ,I &,d/MzI z is the ha-

dronic cross section at the Z pole.
We first consider the case in which only one of the pa-

rameters in our Lagrangian is nonzero. The results of
this fit are given in column 2 of Table VI. In this case
strong bounds on each of the parameters are obtained
since there is no possibility of cancellations. This pro-
cedure is commonly used by most practitioners when
bounding effective couplings. Although the constraints
obtained in this way are the tightest bounds possible, they
are clearly artificial in the sense that real underlying
physics would change more than one of the parameters.
Ideally one could calculate the effects of new physics on
the parameters of the global electroweak Lagrangian and
then do a global fit on the specific parameters of interest.

Conversely, a simultaneous fit to all of the effective pa-

TABLE V. Experimental values for the electroweak observables included in the global fit. The Z
measurements are the 1993 LEP results taken from Ref. [37]. The couplings extracted from neutrino
scattering data are the current world averages taken from Ref. [41]. The SM values are for m, =150
GeV and MH =300 GeV [44]. We have not shown theoretical errors in the SM values due to uncertain-
ties in the radiative corrections, hr, and due to uncertainties in Mz, as they are in general overwhelmed

by the experimental errors. The exception is the error due to uncertainty in a„shown in square brack-
ets. We include this error in quadrature in our fits. The error in square brackets for Qs (Csl reflects the
theoretical uncertainty in the atomic wave functions [45] and is also included in quadrature with the ex-

perimental error. All other quantities are as defined in the text.

Quantity

M, (GeV)
r, (GeV)
z, =r„.,/r, ,
z„=r„.,/r„„
z,=r„„/r„
harp

(nb)
~b=I bb/I h.d

AF, (e)
A~(JM)

AF, (~)

Ap, ](~)
A, (P,)

AF, (b)
AF, (C)

ALR

(GeV)
Mg /Mz
gL(vX vX)

gR (vN ~vX)

g,~ (ve —+ve)
g„(verve)
Qw«»
Iv. I'+Iv..l'+Iv. I'

I v, I'+
I v., l'+

I v, I'
g /ASM

R„,/R„'M

Value

91.187+0.007 [37]
2.489+0.007 [37]

20.743+0.080 [37]
20.764+0.069 [37]
20.832+0.088 [37]
41.56+0.14 [37]

0.2200+0.0027 [37]
0.0153%0.0038 [37]
0.0132+0.0026 [37]
0.0204+0.0032 [37]
0. 142+0.017 [37]
0. 130+0.025 [37]
0.098+0.006 [37]
0.075+0.015 [37]
0. 100+0.044 [38]
79.91+0.39 [39]

0.8798+0.0028 [40]
0.3003+0.0039 [41]
0.0323+0.0033 [41]—0.508+0.015 [41]

—0.035+0.017 [41]
—71.04+1.58+ [0.88) [42]
0.9992+0.0014 [41]

1.043+0.40 [18]
1.003+0.003 [43]
0.960+0.024 [43]
0.968%0.024 [43]

Standard model

Input
2.490[+0.006]

20.78[+0.07]
20.78[+0.07]
20.78[+0.07]
41.42[+0.06)
0.2162[+0.0007]
0.0141
0.0141
0.0141
0.137
0.137
0.096
0.068
0.137

80.18
0.8793
0.3021
0.0302

—0.506
—0.037

—73.20
1

1

1

1

1
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rameters gives the most conservative bounds, since can-
cellations can occur among diff'erent parameters. We
have performed such a fit. As mentioned in previous sec-
tions we have excluded some of the parameters in this
simultaneous fit. In particular there are a number of
quantities that only appear in particular linear combina-
tions, and so only these combinations can be bounded.
Some examples are

~ V,d i
Re(5hl' )+ i V„ i

Re(5hl"
+5hz')+

i V,b iRe(5hL") in the unitarity of the CKM ma-

trix and 5gL' '+5gL' ' in the Z width. As more mea-
surements become available the omitted parameters will

be able to be included in the simultaneous fit. The results
of this simultaneous fit are given in Table VI.

There are a number of interesting features in Table VI.
What is perhaps most surprising is that, despite the large
number of parameters, most of them are constrained, and
the bounds are fairly tight. This reflects the richness and
complementarity of the experimental data. The most
significant result of our fit is that every single parameter
is consistent with zero, the standard model value. There
is no evidence for physics beyond the standard model.

One should be cautioned to not take the central values

TABLE VI. Results of the fits of the new-physics parameters to the data of Table V. g, and g, are
defined as g, —=Re(5hL )+[Re(Vb)Re(5hl )+Im(V„b)lm(5hi )]/iV„, ~

and Q, =Re(5hL )

+
I V„)Re(5h, +5hs )/I Vd I+ I V,, IRe(5h,

'
)/I V„I.

Parameter

5
T
U

Ae

R (5h )

Re(5hg )

Im(5h~ )

Re(5h,"')

Re(5hg )

Im(5hR )

Re(5AL ), Im(5hL )

1
b

Re(5hq )

Re(5hL
R (5h )

Re(5hL )

Re(5h~ )

Re(5h )

2

Re(5hg )

5gL

5gg

CC

5g~
5gl

~gl.
' '

5gz +5gI.

PI-t

gI.
PP

ga

Individual fit

—0. 10+0.16
+0.01+0.17
—0. 14+0.63

—0.0008+0.0010
+0.00047+0.00056

—0.018+0.008
—0.00041+0.00072
—0.00055+0.00066

0+0.0036
—0.0018+0.0032

—0.00088+0.00079
0+0.0008

—0.09+0.16

+0. 11+0.98

+0.022+0.20
+0.022+0.20

+0.5+4.6

+0.0016+0.0015
+0.0037+0.0038
—0.0003+0.0018
+0.0032+0.0032
—0.0009+0.0017
—0.0052+0.00095
—0.0011+0.0021
+0.0028+0.0047
—0.0005+0.0016
+0.0019+0.0083
—0.0048+0.0052
—0.0021+0.0027
—0.0048+0.0052

—0.00029+0.00043
—0.00014+0.00050
+0.0040+0.0051
—0.0003+0.0047
—0.0021+0.0032
—0.0034+0.0028

Global fit

—0.2+1.0
—0.02+0.89
+0.3+1.2

—0.0011+0.0041
+0.0005+0.0039
—0.018+0.009

+0.0001+0.0060
+0.0003+0.0073
—0.0036+0.0080

+0.0007+0.0016
—0.0004+0.0016

+0.005+0.027

+0. 11+0.98

+0.003+0.012
+0.007+0.015
—0.002+0.014
—0.003+0.010
—0.003+0.015
+0.002+0.085

+0.001+0.018
+0.009+0.029

—0.0015+0.0094
0.013+0.054

+0.0023+0.0097

—0.004+0.033
—0.0001+0.0032
+0.0001+0.0030
+0.005+0.032
+0.001+0.028

0.000+0.022
—0.0015+0.019
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of this fit too literally. With so many free parameters the
central values obtained by the fit are naturally not
unique. We find that the errors seem to be stable so that
the best values lie within the error bounds irrespective of
the search strategy.

In the individual fit, three parameters remain uncon-
strained: Re(5hz ), Re(5hz ), and Re(5hz }. [As ex-

plained in the text, there are in fact (weak) constraints on
Re(5hz ), but they appear only at quadratic order in this
parameter, and so could be canceled by higher-dimension
operators. ] In addition, the constraints on Re(5hi ),
Re(5hL ), Re(5hL ), and Im(5hL ) are quite weak One
physical consequence of this observation is that the
chirality of the 5 ~c and b~u transitions has really not
been tested. In other words, this is an ideal area to look
for new physics. In fact, models have recently been con-
structed [46] in which B decays are predominantly right-
handed.

In the simultaneous fit, three combinations of the nine

parameters 5gL' ', 5gL' ', Re(5hz"'), Re(5hL ), Im(5hi ),
Re(5hL ~), Re(5hi"), and Re(5hl' ) are also unconstrained,
since only three independent combinations enter into
well-measured observables. Apart from these exceptional
cases, all the other parameters are well bounded. In the
individual fit, most of the parameters are constrained at
better than the 1% level. In the simultaneous fit the lim-
its are only slightly weakened, to about 2—3% for most
new-physics parameters. (Note that, although S, T, and
U appear to be poorly constrained, their constraints in
fact represent strong bounds on new physics, since a fac-
tor of a has been divided out in their definitions [see Eq.
(2)].)

The only case in which there is a discrepancy with the
standard model is in h„which differs from zero by about
20. This is a well-known problem, which is due to the
apparent breaking of weak universality in r decays [43].
Many people remain skeptical that this really is a sign of
new physics, suggesting instead that the cause of the
problem is probably an incorrect measurement of the v

mass. However, recent remeasurements of m, have not
caused the effect to disappear [47].

Note also that, as expected, the Im(5hg) remain virtu-

ally unconstrained. Such operators can contribute to
CP-violating processes, and could very well be observed
in studies of CP violation in the 8 system. This under-
lines the significance of CP-violating observables as po-
tent probes for new physics.

One of the interesting conclusions to be drawn from
the results of the simultaneous fit is that, although many
of the hadronic charged-current experiments are ex-
tremely precise, there is still a great deal of room for new
physics in this sector —many of the 5h's are only weakly
constrained, if at all. This is due to the fact that, in the
standard model, the values of the CKM matrix elements
are not predicted. Hence, the only constraints we have
are due to the unitarity of the CKM matrix. And, since
only the magnitudes of the CKM matrix elements involv-
ing the u and c quarks have been measured, the only two
constraints which can be used are the normalization of
the first two rows [Eqs. (82) and (83)]. This is not very

restrictive. There are, however, a number of ways to con-
strain new physics in the hadronic charged-current sector
more strongly. First, it would be useful to remeasure the
known CKM matrix elements, but using methods sensi-
tive to different combinations of the new-physics parame-
ters. Second, measurements of CP violation in the 8 sys-
tern allow one to obtain the imaginary parts of the ele-
ments of the CKM matrix. Using the unitarity of the
CKM matrix, these can be used to extract the magni-
tudes of the CKM matrix elements, which mill help in
overconstraining the matrix and putting limits on new
physics. Finally, using the fact that the columns of the
CKM matrix are orthonormal, accurate measurements of
the CKM matrix elements involving the top quark can be
used to constrain different combinations of the 5h's.

Since we have performed this analysis in a model-
independent fashion, the constraints presented here must
hold for all physics beyond the standard model, provided
only that it agree on the low-energy particle content, and
that dimension-six operators may be neglected. In any
particular model of new physics, one must simply com-
pute the above new-physics parameters in terms of the
parameters of the model. The constraints can then be
read off from the tables. As an example of how this
works we consider in the following section the case of the
mixing of ordinary and exotic fermions, first studied in
Refs. [16,17]. Before doing so, however, we briefiy turn
to possible constraints from loop-level processes.

G. Loop constraints

In the previous subsections we found the constraints
which current tree-level experimental data put on our
new-physics parameters. The bounds on most of these
parameters are quite stringent, though there are certain
new couplings which are constrained only weakly, if at
all. In this subsection we consider the limits which apply
to the new-physics parameters due to loop-level process-
es. For a given observable we have already argued that in
general there can be cancellations between the loop-level
contributions of certain effective interactions, and the
tree-level contributions of other operators. The only pos-
sible case where a reasonably reliable bound can be ob-
tained is when the constraint on a new parameter from
such loop-induced processes is so strong that cancella-
tions with the higher-dimension operators would require
significant fine-tuning. For this reason we need only con-
sider the loop-level contributions to observables which
are extremely well measured.

Another reason to consider loop-level bounds is that,
up to now, almost a11 CP-violating operators have
remained essentially unconstrained. (The only exception
are the constraints on the Aavor-diagonal d~~'s from
EDM's. } Since the only observation of CI' violation to
date is the parameter ez in the kaon system, which is a
loop-level process, it is interesting to investigate the im-
plications this measurement might have for CP-violating
new-physics parameters.

We wi11 therefore consider the contributions of the
new-physics parameters to four classes of loop-level ob-
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l. Anomalous magnetic moments

Although the measurements of a, and a„are extremely
precise, they turn out to be sensitive only to comparative-
ly few of our eff'ective interactions [48]. The reason for
this is fairly easy to see. Consider first a dimension-four
fermion-gauge boson interaction, such as 5gPz of Eq.
(35). These can contribute to a fermion anomalous mag-
netic moment through Feynman graphs such as that of
Fig. 1. An order-of-magnitude estimate for the contribu-
tion to a;, i =e,p due to this graph is

CX

4ms wc w

m, m;F (106)

Here the second term on the right-hand side is the usual
loop factor, and the third term arises because a; is defined
relative to the corresponding Bohr magneton

ps =e, /2m, . Largely due to the suppression by the

small electron or muon mass, the product of these two
terms is already very small: -2X10 for the electron
and -3X 10 for the muon. As a consequence, no use-
ful bound on the couplings 5gL'z or 5gg"z is possible un-

less the remaining function F(x;) of the small mass ratio

x, =m, /m w is not itself suppressed by a power of x, for
small x, .

For the dimension-four interactions, helicity conserva-
tion along the fermion line shows that F(x;) is always

suppressed by at least one power of x;, and so no useful

bound for these operators is obtained in this way. For
the same reason current anomalous-magnetic-moment ex-
periments are not yet sensitive to ordinary SM weak-
interaction effects.

The same need not be true for the dimension-five in-
teractions. The only effective couplings whose contribu-

servables: anomalous magnetic moments, EDM's,
neutral-meson mixing, and ez. It must be kept in mind
that the only reliable constraints from this analysis are
those which are extremely stringent —weak bounds are
suspect due to the possibility of cancellation with effects
from other operators. (This last point is frequently
glossed over when only one effective interaction is con-
sidered at a time. ) For the purposes of argument we will

arbitrarily consider here any bound which is greater than
10 to be too weak to preclude its cancellation by other
operators.

tion to a, and a„ is not further suppressed by light fer-
mion masses, together with the order-of-magnitude of
their corresponding bounds, are

nl"~, cL' ~5X10 ' ng"~, c~" 50.08 . (107)

Given the ever-present possibility of cancellations that
is inherent in these loop-generated bounds, we do not
consider these limits to be particularly severe.

2. Electric dipole moments

Some light-fermion EDM's are also extremely well

bounded, so one might expect these to also give
significant bounds for operators which contribute at the
loop level. This turns out to be true, but only for those
comparatively few operators which can contribute to the
electron or u- and d-quark EDM's unsuppressed by small
fermion masses. We consider here each type of effective
coupling separately.

The analysis for dimension-four interactions follows
closely that for the anomalous magnetic moments of the
previous section. Helicity conservation always implies a
suppression by at least one factor of a light fermion mass.
The only bounds which we can infer in this way are

Im[5gL'~ ], Im[5hL' ] ~4X10

Im[5gL "z ], Im[5gi" z ], Im[5hL ] 0.08 .
(108)

The suppression of Aavor changes in the SM by factors of
A, =sin0, =0.2 precludes obtaining significant bounds for
other quark operators, e.g. , we find Im [5hL'],
Im[5hL ] S0.4.

At dimension five there are three kinds of effective cou-
plings: diaz, cgz, and nfl. It turns out that no new

bounds arise for diaz from loop-level EDM's, however.
These operators might have potentially contributed
through the Feynman diagram of Fig. 2, but the follow-

ing argument shows that this graph leads to no new lim-

its. There are two cases to consider, depending on
whether or not the exchanged gauge boson is a photon, a
8', or a Z. For the two neutral bosons, the absence of

FIG. 2. The Feynman diagram through which an effective
fermion-photon coupling (blob) can contribute at one loop to a
light-quark or electron electric dipole moment.

FIG. 1. The Feynman diagram through which an anomalous
fermion-Z-boson coupling (blob) can contribute at one loop to
the anomalous magnetic moment of the electron or muon.

Because of our neglect of gluon operators, we are unable to
consider some loop contributions to the neutron EDM, such as
those of Ref. [49].
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Im[cr' ], Im[nt". „] 3X10 ',

Im[cL z], Im[nl z], Im[nL "z] 2X10

Im[cL'z], Im[cL z] 1X10

Im[cL" R], Im[cL „]&3X10

(109)

Again, keeping in mind the potential for cancellations,
we regard only the first three of these as being of real
significance.

SM Qavor-changing vertices only permits contributions
from the same operators which are already directly
bounded at tree level, such as dL'„, and so no new bounds
are obtained. For the graph with a 8'boson, the result
must always be suppressed by one factor of the mass of
both the external and internal fermions, and so gives too
small a result to furnish a useful bound.

It is the remaining couplings, cgz and ntj'z, that can
receive nontrivial constraints from loop-generated
EDM's. We find that the only contributions which are
unsuppressed by too many powers of light masses and
mixing angles are

3. Neutral meson mass differences

In the standard model the short-distance contributions
to neutral meson (M ) mass differences (EMst) are due to
the box diagrams which mix M and M . These SM box
diagrams predict values for the mass diS'erences in the
E-, B-, and D-meson systems which are in agreement
with the experimental values, within significant hadronic
uncertainties. Because of these uncertainties we can re-
gard this agreement as only to within an order of magni-
tude, and so in order to obtain estimates of the loop-level
bounds on the new-physics parameters, we therefore re-
quire that their contributions to EMst be less than those
of the SM.

a. b,M». The SM contribution to hM» is

b,MsM
2GF a 2

2 f»B»M» 2
Re(V,~V„)~2 6ms~ m~

(110)

Consider now the case in which 5hL replaces one of
the SM ud couplings. One finds a partial failure of the
GIM mechanism in the calculation of the box diagram,
leading to the appearance of a logarithmic enhancement:

m m

&2 6ms m m,

A comparison of this contribution with that of the SM
leads to the bound

IRe(».'"')
I

& IRe( V., ) l&n
2m pr

m C

(112}

Similar constraints exist for the new-physics parameters
5hL"', 5hL, and 5hL', yielding

I Re(5f,"')
I

& 0. 1,
IRe(5hL') I

& 0.03,

IRe(5hz )I &0 03,

IRe(5hL, )I &0. 1 .

(113)

As these constraints are quite weak, they cannot be con-
sidered at all reliable, due to the possibihty of cancella-
tions with the contributions from other operators.

Consider now the case of right-handed currents, in
which 5hg (i =u, c, j=d, s) is the new-physics parameter
in the box diagram. We find

GF tt zb,M» -7.7 — I»B»M&2 6ms~2

1m Intmext
ln

Nl ~
m~

Re(5h~"J V, V,~ V„), .
mc

(114)

where the factor 7.7 arises from the enhancement of the
LR matrix element relative to the LL matrix element
[23], and m;„,(m,„,} is the mass of an internal (external)
quark. Comparing this contribution with that of the SM

[Eq. (110}]we see that there are no significant bounds on
Re(5hz ) and Re(5hz'), due to the smallness of m„. Tak-
ing m, „,-M»/2, the bounds on Re(5Itz") and Re(5hg}
are of the same order of magnitude as their left-handed



6142 BURGESS, GODFREY, KONIG, LONDON, AND MAKSYMYK

counterparts [Eq. (113)j.
Finally, the contributions of the parameters cL and cz

to AM+ should be of the same order as those of 5hz~z,
with an additional suppression of a factor of m /M, where
m is a light quark mass. Since the constraints on the
5hL z are relatively weak, there are thus no limits on the
Re(cL, »).

b. AM&. In the SM, 8 -B mixing is dominated by the
t-quark contribution in the box diagram:

gMSM

GF a
2 fttBsMtt x,f(x, )Re( V~ Vb ), (115)2

2 6mss,

in which x, =m, /m~ and f(x, ) takes values -1 for 100
GeV &m, &200 GeV.

We now estimate the new-physics contributions to
b,Ms. We begin by considering the case in which one of
the internal t-quark lines is replaced by a u quark, and
5hL" replaces the SM ud coupling. A calculation of the
box diagram yields

As was the case for AM+, these constraints are weak and
are therefore not reliable.

For the 5hg (i=u, c, j=d, b), the contributions to
AMs are suppressed relative to those of the 5hLJ by a fac-
tor m;„,Ms /m, . This leads to virtually no bounds on the
6hRJ

Finally, the contributions from the cI ~ to hM~ are
suppressed, as in the kaon system, by a factor of m/M
relative to those of the 5hLJ &, leading to no constraints.

c. hMD. The analysis of D -D mixing proceeds com-
pletely analogously to that in the kaon or B systetn. As
in these two systems, no significant bounds are obtained
on any of the new-physics parameters.

Eg.'In the SM, ez is calculated from the imaginary
part of the K -E mixing box diagram. There are contri-
butions from diagrams with two internal c quarks, and
with one c and one t quark, but the largest e8'ect comes
from the diagram with two internal t quarks:

e» —— —
2 f»B»M» x,f(x, )™(V,'d V„)

2 6m.ss

G~
2 fttBttMs x,f'(x, )Re(5ht'" V„bVdVb),

2 6nsts,

(116)

in which f (x, ) is a different function from that in Eq.
(115). It also takes values -1 for 100 GeV&m, &200
GeV. A comparison of this contribution with that of the
SM produces the constraint

IRe(5hL'" V„& )I & IRe( V,d V,b ) I, (117)

with similar expressions for 5ht"", 5hL, and 5hL . Using
the estimates of the sizes of the CKM matrix elements
given in Eq. (46), this gives

IRe(5hL")I &1,
IRe(5h"")I &O(A, )-0.01,
IRe(5h'")I &O(A, )-0.2,
I
Re(5h '

) I

& 0(A, )-0.05 .

(119)

Note that, according to Eq. (46), V,d has a large imagi-
nary piece, and Im( V,d V„) -A, ' .

Consider now the diagram in which there is one inter-
nal c quark and one t quark, and where the SM cd cou-
pling is replaced by 5hL . A calculation of the contribu-
tion of this diagram to e~ yields

GF
2 f»B»M» x,g(x, )Im(5hL" V„Vz V„),~2 6m.s~

(120)

where g(x, ) is another function which takes values —1

for the allowed range of m, . Comparing this contribu-
tion with that of the SM yields Im(5ht" V„V,d V„)& A,

' .
There are similar expressions for the parameters 5ht",
5hL', and 5hL'. These lead to the constraints

IRe(5h~ )I, llm(5h~ )I, IRe(5h,")I, llm(5h f)I &O(&')-»&10 ',
IRe(5hL"')I, IIm(5hL')I, IRe(5hL )I, llm(5hL")I &O(A, )-5X10 (121)

The second of these two constraints is perhaps sufficiently
stringent to be taken seriously. However, one must al-
ways be aware of the possibility of evading such bounds
via (fine-tuned) cancellations with the contributions of
other operators to ez.

On the other hand, the constraints on the 5hg (i =u, c,

j =d, s) are much weaker. As was the case in the calcula-
tion of AMj-, there is a suppression of the contribution of
the 5hz to ez by a factor -m„,Mz/m, relative to that
of the corresponding 5hL. Even taking into account the
enhancement of the LR matrix element [23], Re(5hg) and
Im(5hg) are essentially unconstrained by e».
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Similarly, there are no constraints on the cL z, whose
contributions to e)r are suppressed by a factor m /M.

To summarize, the only loop-level observables which
yield significant constraints on the new-physics parame-
ters are the CP-violating electron and neutron EDM's
[Eq. (109}]. The bounds on these parameters are
—10 —10 . There are also limits of —10 —10 on
other new-physics parameters from the CP-violating
quantity e)r [Eq. (121)]. However, one cannot discount
the possibility of evading these latter (weaker) constraints
through cancellations with contributions of other opera-
tors.

VI. APPLICATIONS TO EXOTIC-FERMION MIXING

In this section we illustrate how the above constraints,
which have been obtained in a model-independent way,
might be applied to a specific model of new physics. The
class of models we consider here are those containing ex-
otic fermions. "Ordinary" fermions are defined as trans-
forming in the standard way under SUL(2) [left-handed
(LH) doublets, right-handed (RH) singlets]. "Exotic" fer-
mions have noncanonical SUL (2) assignments. Here we
restrict ourselves to LH singlets and/or RH doublets.
These exotic fermions can mix with the ordinary fer-
mions and, in so doing, change the couplings of the ordi-
nary fermions to the W +— and Z . (In the effective-
Lagrangian language, these mixings induce new opera-
tors. ) The precision measurements described in the previ-
ous sections have been used to put constraints on these
mixings [16,17].

Our aim here is to simply show how the formalism in-
troduced above could be used to bound ordinary-exotic
fermion mixing. We do not wish to perform a complete
update of the limits on such mixings. As a result we keep
the description of the mixing formalism to a minimum.
Those wishing more details should refer to Ref. [16]. In
addition, we do not present a complete analysis of all the
constraints, preferring instead to focus on a few illustra-
tive examples.

We begin by considering mixing between charged
particles —neutrinos are be treated separately below. For
each type of charged particle (Q, = —1, ——,', —', ), we put
the LH and RH eigenstates of both ordinary (0) and ex-
otic (E) fermions into a single vector

(to
0L (R) 0 (122)

E L(R)

4L(R)
A L(R)

(123)

The weak and mass eigenstates are related by a unitary
transformation

(124)

in which a =L,R. The matrix U can be written in block

in which the superscript 0 indicates the weak-interaction
basis. Similarly, the light (1) and heavy (h) mass eigen-
states can be written

form as

A, E,
Ua — F G (125)

Although U, is unitary, A, and F, are not by themselves
unitary. These matrices describe the overlap of the light
eigenstates with the ordinary and exotic fermions, respec-
tively. We henceforth restrict ourselves to the light
eigenstates only.

The effects of mixing on the couplings of the light fer-
mions can now be seen. In the weak basis, the charged-
fermion neutral current can be written

—,
' Jg =

g(L y"T3L AL AL ((t))L +Q(R y"T3LFR FR g)R
p

A—r"Q. »n'~w4) ~ (126)

The important implication of the above equation is that,
since neither AL nor Fz is unitary, Al AL and F+F„are
not necessarily diagonal, and thus mixing in general in-
duces FCNC's among the light particles. In order to
avoid these problems, the assumption which is usually
made is that each ordinary left- and right-handed fermion
mixes with its own exotic partner. In this case, AL Az
and Fz Fz are diagonal, thus eliminating FCNC's.

With this assumption one can write

g [ P LY ( T3L(cI. ) 'Qg»n'8~ )g(L

+~Rl ( 3L(sR ) 'Q» ew}4'R ]

where the sum is over the known particles. Similarly, for
quarks the charged current is

,'J5 =ituL7'"I'Lf—dL+ituRr" I'RAR (129}

in which g„L and gdL are column vectors of the light LH
u-type and d-type quarks, respectively. The CKM matrix
VL is nonunitary in the presence of mixing. It can, how-
ever, be decomposed as

ll d.
VLig

—
cL, c (130)

where, as before, VL is the usual (unitary) CKM matrix.
The second term in Eq. (129) is a RH charged current.
Like Vl, the apparent RH CKM matrix V& is nonuni-
tary, but can be written

u- d. —
s~'ss' V (131)

where Vz is unitary.
It is now straightforward to make contact with our

general formalism. To do so we first imagine integrating
out all of the heavy particles in the model which have not

(A,~A, ); =(c,') 5;, (FtF, ),, =(s,')25,",
a =L,R, (127)

in which (s,')—:1 —(c,') =sin 8'„where O'L(R) is the mix-
ing angle of the ith LH (RH) ordinary fermion and its ex-
otic partner. Therefore, in the presence of mixing the
neutral current takes the form
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yet been discovered. This produces the low-energy
effective theory with which the earlier sections of this pa-
per have been concerned. At tree level the removal of
heavy fermions is very easy: one simply transforms to a
basis of mass eigenstates, and sets all heavy fields equal to
zero. We are led in this way to interpret Eqs. (128) and
(129) as the resulting low-energy effective weak interac-
tions. Other terms, such as contributions to the oblique
corrections, are generated once loop effects are included.
Although these contributions can be phenomenologically
interesting, for ease of presentation we do not pursue
them here. We focus instead on the tree-level case, and
accordingly set 3 =B=C =6 =m =z =0, which leads to
S=T= U=O.

The key observation to now make is that Eqs. (128) and
(129) are the expressions for the effective charged and
neutral currents after diagonalization of the fermion
fields, but before shifting to the physical parameters.
They should therefore be compared to Eqs. (41) and (42)
(remembering that 8 and C in these equations are zero).
This gives

5gL T3L(Sr ) ~ 5gR —+ T3L (Sii ) (132)

5hL' '= —
—,
'

V; [(si') +(sL') ],
—M;d.

6AR —SR SR VRij

(133)

The mass eigenstates can be classified according to
whether the neutrinos are "light" (i.e., essentially mass-
less) or "heavy":

nL— (135)

The unitary transformation which relates the weak and
mass bases can be written nl = UI nL, in which0

w s'
UL= F G

0 J
(136)

This matrix, then, describes the mixing of ordinary and
exotic neutrinos. Note that we do not require that each
ordinary neutrino mix with only one exotic neutrino.
This is because there is no experimental evidence against
FCNC's in the neutrino sector.

In the presence of fermion mixing, the leptonic
charged current takes the form

The formalism in the case of neutrinos is somewhat
different. As before we denote all LH neutrino states as
nI and all RH states as nR. In the weak basis there are
three types of LH neutrinos: those with T&r =+ ,'(noi ), —

those with T&r = ,'(nzL—), —and those which are SUL(2)
singlets (nsL). These can be put into a single vector:

noL

nL nEL (134)
0

nsL

"I, 'V AL cl.el. +"i'll I'ii ~iieR (137)

in which eL [R] represents a column vector of charged LH
(RH) leptons. Following the previous analysis for the
charged fermions, it is straightforward to compare Eqs.
(137) and (42) to obtain the relations

v,.e
5hL' '=(AL ),,c~' —5.. .
—v e
hi~' '=(FR ),,s

(138)

It is useful to write AL =1+6AL, where the new-physics
contribution 5Ai' is assumed to be small. As a result the

vi ea
quantity b,, =Re+, 5hL' ' which appears in all physical
observables becomes

b,„=—
—,'(sL') +Re+ (5AI' ).. . (139)

1',

b,, = —
—,'[(sL') +(sL ') ] (140)

to leading order in the square of the mixing angles.
(In the original exotic-fermion mixing paper [16],mix-

ing in the neutrino sector is not assumed to be small.
However, this does not significantly change
the above analysis. If the new-physics parameters

v e
(5Ai );, (and hence the 5hL' ') are allowed to be big, then
one uses Eq. (138) and the exact definition of b,, given in

Eq. (44) to again arrive at Eq. (140).)
For the neutrino neutral current, the relations between

the mixing angles and our parameters are somewhat
more complicated to derive, so for the sake of brevity we
do not include them here.

There is one other point we would like to reemphasize.
In Refs. [16,17], the analysis of ordinary-exotic fermion
mixing was done observable by observable. This led to a
certain amount of confusion since mixing affects not only
each observable, but also such parameters as GF and s~
which appear in the theoretical expressions for each pro-
cess. While it is true that the analyses in these papers ul-

timately dealt correctly with these problems, our formal-
ism avoids such headaches altogether by incorporating all
new-physics effects at the level of the Lagrangian.

The translation from ordinary-exotic fermion mixing
angles to our parameters has been summarized in Eqs.

to linear order in the new physics. These represent the
correspondence between our parameters and those of the
mixing formalism before the shift to the physical parame-
ters.

Note, however, that it is conventional to parametrize
the mixing in the neutrino sector in terms of the mixing

angles (cL') =( AL" Ai' )„,since these are the only quan-
tities which arise in the rates for realistic reactions in
which the final-state neutrinos are unobserved. (There is

also a piece coming from the right-handed current in Eq.
(137), but this is of higher order in the mixing. ) Recall
that this is precisely the same reason that only the com-
bination 6, appears in our expressions in earlier sections.

Linearizing (ci') in the new physics we have

Re+;(5Ai' );, = —
2 (si '), yielding the correspondence
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(140), (133),and (132). It is now a simple matter to bound
the mixing angles using these relations and the con-
straints in Table VI. As mentioned already, the bounds
obtained in this way are in fact weaker than those which
would be obtained in a direct fit to the mixing angles
themselves. This is simply because there are more in-

dependent parameters in our fit. In this sense our results
can be considered the most conservative bounds possible.
Nevertheless, the constraints on the mixing angles are
really quite restrictive.

One minor complication is that, while our parameters
are allowed to be a priori either positive or negative, the
mixing angles (sr' s ) are necessarily &0. This should be
taken into account in a proper fit (see Refs. [16,17]). Ig-
noring this detail we find the following limits at 90%%uo

C.L. (defined as 1.640):

5h" .

5gL, R '

(sz), (sr'} &0.016,
(sg)2, (si") &0.012,
(sL), (sL ) &0.02,
(sR ) &0.01,
(sA) &0.09,
(ss ) &0.03,
(ss ) &0.05,
(sr' } &0.05,
(si) &0.03,

(141)

where the numbers have been obtained using the con-
straints from the simultaneous fit (Table VI), and we have
indicated which of our parameters has been used to ob-
tain the limit on the mixing angle. We have not present-
ed all the limits since our purpose was simply to show
how our results could be used to bound a specific model
of new physics. A comparison of the above numbers with
those found in Eq. [17] reveals that the bounds obtained
in this way are very similar to those found in a fit to the
mixing angles themselves. Of course, our analysis applies
to al/ models of new physics, not just the particular case
of the mixing of ordinary and exotic fermions.

VII. CONCLUSIONS

New physics can manifest itself in one of two ways: ei-
ther new particles will be discovered or their presence
will be detected via the virtual effects they induce in low-

energy processes. Until the next generation of accelera-
tors comes on line, we will probably have to content our-
selves with the second possibility. Given this, it is fruitful
to study, in as model-independent a manner as possible,
the various virtual effects which might be detectable us-

ing today's colliders.
A useful framework in which to perform such an

analysis is using an effective Lagrangian. It has the prin-
cipal merit of being completely systematic, so that one is
sure that no potential low-energy effects of new physics
are accidentally missed. Here the new-physics operators

can be classified according to their dimension, i.e., the
number of powers of I/M which are required by dimen-
sional analysis. One subset of operators which has al-
ready been studied consists of the new-physics contribu-
tions to gauge-boson propagators —the "oblique" correc-
tions. In this paper we have extended the analysis to in-
clude all operators of the same dimension, including
corrections to the Zff and Wff vertices.

We have developed a formalism which can deal with
all these new operators in a relatively straightforward
way. One of the main effects of new physics is to shift the
relationships between the input parameters to the stan-
dard model, a, Gz, and Mz, and the measured values of
these quantities. We take these shifts into account in the
Lagrangian itself. Having done this, it is no longer neces-
sary to separately adjust each observable as it is con-
sidered. This facilitates the calculation, and removes a
considerable amount of confusion from the analysis.

We find a great many operators which satisfy the fol-
lowing three assumptions: (i) we concentrate on the elec-
troweak sector alone; (ii) we only keep interactions with
dimension 5, both CP preserving and CP violating; (iii)
we consider only those operators which contribute at tree
level in well-measured processes. Despite the large num-
ber of operators, most of these are well constrained by
the current experimental data. There are a few interest-
ing exceptions.

(1) Of the FCNC operators, dimension five terms of the
form f~"'f'Z„„are quite poorly bounded, their effects
could easily be visible at LEP.

(2) With a few exceptions [see Eq. (109)], the con-
straints on the other dimension-five operators, the flavor-
conserving neutral current couplings fa""fZ„„and the
charged current fcr""f'W„„are also quite weak.

(3) There is still a great deal of room for new physics in
the hadronic charged-current sector. For example, the
chirality of b decays has not yet been tested. There are a
number of ways to constrain new physics in this area-
remeasurements of the known CKM matrix elements us-

ing different methods, CP violation in the B system, and
measurements of the CKM matrix elements involving the
t quark are a few examples.

(4}Universality violation in r decays remains a puzzle.
(5} Most CP-violating operators are virtually uncon-

strained. Their effects might well be seen when CP viola-
tion in the 8 system is studied.

All other operators are well constrained, particularly
the neutral current couplings, most to at least the 2 —3 /o

level. The utility of such a global, model-independent
analysis is that it presents limits which must be satisfied

by all models of new physics. For any particular choice
of physics beyond the standard model, it is only necessary
to compute the coefBcients of the above operators in
terms of the parameters of that particular model. The
constraints presented in this paper then serve to con-
strain that model. As an example of how this works, we
considered mixing of ordinary and exotic fermions. For
this case we have shown that, indeed, our constraints
reproduce the results of previous analyses, but frequently
in a simpler way. It is our hope that this work will serve
as a guide to future model builders.
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