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Dispersion relations and the nucleon polarizability
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Recent experimental results on the proton and neutron polarizabilities are examined from the
point of view of backward dispersion relations. Results are found to be in reasonable agreement
with the measured values. A rigorous relationship between the nucleon and pion polarizabilities is

derived and shown to be in excellent agreement with several models.

PACS number(s): 13.40.—f, 14.20.Dh

I. INTRODUCTION

There has been a good deal of recent experimental
activity involved with measurement of the electric and
magnetic polarizabilities of the nucleon, labeled n@ and

PM, respectively. As a result there now exist reasonably
precise values for both the proton [1—3] and the neutron

[4]:
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Above and hereafter all polarizabilities are quoted in
units of 10 4 fms. For the proton, the first error is the
combined statistical and systematic uncertainty based on
combining the results of several experiments, and the sec-
ond represents an estimated theoretical error based on
the model dependence in the extraction of the polarizabil-
ities from the Compton scattering cross sections [5]. For
the neutron, the first error is statistical and the second
is systematic. While there remain non-negligible exper-
imental uncertainties, it appears likely that the neutron
and proton magnetic polarizabilities are nearly identical
while the electric polarizability of the neutron is slightly
larger than that of the proton. The former result is not
unexpected. However, the latter is somewhat of a sur-
prise, at least in the context of a simple nonrelativistic
valence quark model for the nucleon. In such a model,
the polarizabilities are given by [6]

where Q is 1 for the proton and 0 for the neutron. In
Eq. (4) the sum-rule component, which is usually called
the paramagnetic polarizability, receives its most impor-
tant contribution from the b, intermediate state, which is
an isovector excitation and therefore contributes equally
to the neutron and proton. One finds, including only this
contribution [7]

pM = pM = ». (5)

The term DPM, which is usually called the diamagnetic
polarizability, can be estimated within a simple nonrela-
tivistic valence constituent quark model, with the Hamil-
tonian

II = (p, + p, + ps) + (r» + ris + r23) (6)
~~o

2m 2

resulting in [8]

where

AE = AE + AO.'E, PM —PM + +PM1 (2)
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is the proton charge radius. Such an approach is clearly
unrealistic. Indeed in such a picture the nucleon and 4
are degenerate and the neutron has zero charge radius.
However, if a spin-spin interaction is included these prob-
lems can be ameliorated but Eq. (7) is only slightly af-
fected [8]:

2
3'i I) —10.2, p,

5
9) —8.5, n.

(8)

Thus we anticipate

Combining Eqs. (5) and (8) we find

(45 n (10)

(r„') p 3.6 px

in reasonable accord with experiment. However, this
agreement should not be overemphasized, as the 6 is
only the most important of a large number of possible
intermediate states and the use of a simple valence quark
model is also open to question.

What is a problem is the electric polarizability in this
simple model, for which the recoil contribution is given
by 1

ture of the nucleon: namely, chiral symmetry is badly
broken in such models because of the omission of mesonic
degrees of &eedom. By including only valence quark exci-
tations in the sum over intermediate states, we are forced
into the conclusion that the electric polarizability of the
proton exceeds that of the neutron, in direct disagree-
ment with experiment. In fact, it is well known that in
the threshold region, the pion photoproduction on the
nucleon is primarily nonresonant and that the cross sec-
tion on the neutron is about 30% larger than that on the
proton, a result which can easily be understood from a
consideration of the effective dipole moment of the 7rN

system [11].Similar considerations lead us to expect that
o,@ for the neutron will exceed that for the proton. This
qualitative idea is supported in part by a calculation in
the context of the cloudy bag model [10], where it was
shown that both the electric and the diamagnetic polar-
izabilities are dominated by the polarization of the pion
cloud relative to the quark core and have very little con-
tribution from the polarization of the core itself. This
would lead one to expect the neutron electric polariz-
ability to exceed that of the proton, although a definitive
quantitative calculation in that model is not possible. A
reasonable estimate is possible in chiral perturbation the-
ory, where the only degrees are freedom that matter are
pionic, and a recent one-loop calculation yields results in
reasonable agreement with experiment [12]:

n p )CPT

(Nr —&M)'" = o 3.

while the sum rule in Eq. (4) gives [15]

2A 2nP~ =n~ = (r ) =10.8,
34)

where we have used a closure approximation and an av-
erage nucleon excitation energy of u —600 MeV. The
equality between the neutron and proton values is a re-
sult of charge symmetry, which requires that the valence
quark excitations lead to identical excited states and p, n
matrix elements. The precise value of the sum, which is
diKcult to calculate, then cancels out when we take the
difFerence

0,'@ —A@ ~ AA@ —Ao,'@ = —3.6.

This expectation, however, is in strong opposition to the
experimental indication that

(14)

In fact, this difficulty is just another example of a well-

known problem with valence quark models for the struc-

In a relativistic treatment, An~ has an additional contribu-
tion ~~, where A is the anomalous magnetic moment [91.
Numerically, this extra term is 0.71 and 0.62 for the proton
and neutron, respectively.

However, here too a rigorous evaluation is not available,
as inclusion of important contributions such as the 6
are two loop in character and are outside the present
calculational framework [13].

We conclude then that a simple valence quark picture
of the nucleon is in disagreement with experiment and
that inclusion of meson cloud efFects is required in order
to understand the result that n& ) np&. This finding is
similar to that in the interpretation of the (¹~p„pss~N)
matrix element, which also vanishes in a valence quark
model but can be understood qualitatively by inclusion of
a kaon cloud via N ~ AK ~ N [14]. However, a reliable
calculation of the polarizability and of the strangeness
content in this fashion is not possible.

Instead we follow a completely difFerent approach, that
of dispersion relations. On the one hand, this technique
is capable of complete rigor in that the relations depend
only on unitarity and certain analytic properties of the
Compton scattering amplitudes. On the other hand, it is
semiphenomenological in that the evaluation of the dis-
persion integrals requires as input either experimental
data or some reasonable theoretical ansatz when the re-
quired data are not available. In the next section we

will present our results on the evaluation of the so-called
backward dispersion relation for n@ —PM. Then we show
how this dispersion relation can be used to calculate the
contribution of the polarizability of the pion to that of
the nucleon. Our conclusions are summarized in the con-
cluding section.



49 DISPERSION RELATIONS AND THE NUCLEON POLARIZABILITY 6103

II. DISPERSION SUM RULES FOR THE
POLARIZABILITIES

By combining dispersion relations with low energy the-
orems for the Compton scattering amplitudes, one can
derive sum rules for the polarizabilities. A comprehensive
review of this subject has been given by Petrun'kin [15].
The best known sum rule, the so-called Baldin-Lapidus
sum rule, is based on the forward dispersion relation for
the spin-independent part of the Compton scattering am-
plitude [16]:

d~~...(~)~E+ M-
27c o (d

(14.2 6 0.5) proton),
(15.8 + 0.5) neutron]. (16)

In this expression, 0'i i is the total photoabsorption
cross section, and the numerical values are based on the
tabulations of those cross sections for the proton and neu-
tron [17,18]. The numbers given in Eq. (16) were actually

I

used as a constraint in obtaining the experimental results
in Eq. (1), so that those results do not test this sum rule.
However, it is possible to reanalyze the recent data for
the proton without imposing the sum-rule constraint, in
which case one obtains [5)

n& + PM
——12.0 6 2.3 [experiment], (»)

verifying the sum rule at the 1-standard deviation level.
It is also possible to write down sum rules for the dif-

ference of the electric and magnetic polarizabilities. The
one we consider here is the so-called backward sum rule,
which is based on a 180' dispersion relation and has the
form [19]

6@ —PM = (8-channel contribution)

+(t-channel contribution). (18)

The s-channel contribution is similar to Eq. (16), with a
relativistic correction and with contributions &om exci-
tations with opposite parity entering with opposite sign:

1 du) ( 2u)l '
s-channel contribution =

~

1+
~

[ei,i(bP = yes) —a«(AP = no)],2z'2 o urz ( m )
where oi~i, (b,P = y'es) and os~i(b, P = no) represent those pieces of 0'i~i arising from multipoles which change and do
not change parity, respectively. The t-channel contribution can be written as

1 dt t —4m 2
t-channel contribution = — dA A~+~ (t, cos 8)64+2 4 i t2 t

t —4m2
+im cos HB + (t, cos 8) Fo (t, cos 8),4m2 —t (20)

which corresponds to the approximation of including only
the NN ~ zz m pp intermediate state. The integration
variable t is the square of the total center-of-mass energy
of the pp system. Here A~+l, B~+l are the conventional
Chew-Goldberger-Low-Nambu (CGLN) isospin-even am-
plitudes for NN m zvr [20], Fp(t, cose) is the I = 0

I

I

Gourdin-Martin pp +z z amplitu-de [21], and m and m
are the nucleon and pion masses, respectively. Because
of the restriction to isoscalar amplitudes required by G-
parity invariance, only even partial waves are permitted.
Including only 8 and D waves, Eq. (20) simplifies to the
form

1 dt 16 t —4m
t-channel contribution = — f+ (t)Fo

'
(t)16~2 4 g t2 4m2 —t

—
/

m ——
/ /

——m
/ f+(t)F, '(t),t) ft

4) E4
(21)

where the partial wave helicity amplitudes f+~(t) for
NN ~ mn are given by Frazer and Fulco [22] while
the corresponding partial wave amplitudes Fo~(t) for
pp ~ arm are defined in Ref. [21].

The backward sum rule has been previously evaluated
by several authors [19,23,24]. However, several recent
developments have renewed interest in this sum rule and
have motivated us to perform a reanalysis with an eye
toward a meaningful conkontation with the new experi-
mental values. Such a confrontation is now possible be-
cause, as we will point out shortly, developments in un-

derstanding of the pp —+ mvr process has removed a major
uncertainty in the calculation. Also the recent recogni-
tion of the importance of pions has rekindled interest in
the relationship between the nucleon and pion polariz-
abilities [24], an issue that we will specifically address
later in this paper. We now describe in detail our calcu-
lation.

In principle the 8-channel integral is straightforward
to calculate —provided one knows the multipole decom-
position of aq &, one can separate the AP = yes from the
AP = no contributions. Such a decomposition has been
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f d however only for the mX final state, which weper orme, ow
t ere ore rea seh f t t separately from the multipion fina s a
For the vs% final state, which dominates O.t t e ow

MeV, we use the multipoles of Amdt et al. [25] and in-

for the proton are s owh t shown in Fig. 1, and the correspon ing
integran s or ed f th neutron are quite similar. Integrating
up to 1800 MeV we obtain the results

+4.80
-10.78

+6.04™-11.31

[s-channel single pion, AP = yes],
[s-channel single pion, AP = no],

[s-channel single pion, AP = yes],
[s-channel single pion, AP = no].

(22)

o.o7
~

0.06 -t

0.05--
mN, hP=YES

s channel

~ ~

For the multipion contribution, a precise calculation is
not possible since an ex'bl '

experimental multipole decomposi-
tion has no ye eeh t t been performed. Nevertheless, one can
establish. rigorous ounbi' h

'
bounds on that contribution in t e o-

the entire multi-l 'ng manner. At any given energy the entire mu ti-
pion contribution to oq t can be determined' y su-
tracting the calculated value of the single-pion con-
tribution j using e(

'
th VPIkSU multipoles) from the

full experimen a o at 1 t t 1 photoabsorption cross section.
Of course, this multipion piece is presumably associ-
ated with both AP = yes and AP = no multi-

1, d th two components contribute wit op-
e can ob-posite signs to the dispersion integral. We can o-

tain an upper or owerlower bound to the contribution o
ltthe multipion final states by assuming that the mu

pion photoabsorption is completely AP = yes or AP =
no, respective y. e av1 W h ve applied this procedure using
two different compilations of the experimental total p o-
toabsorption cross sec

'
ection: one due to Damas e an

Gilman [17] and the other due to Armstrong [26]. T ese
give similar results for the dispersion integral. The in-
tegrand is shown in ig.h

' F' 1. In this way we find for the
8-channel multipion contribution

—P = +3.0 [s-channel multipion], (23)

+1.66 [s-channel multipion, AP = yes],
—1.10 [s-channel multipion, AP = no],

(24)

with identical values for the neutron and proton, since
such an approach yields a strictly isoscalar amplitude.

contributions (2.76) is slightly less than the value of 3.0

of final states with three or more pions in the model.
We further no e a et th t th re is considerable cancellation
between t e = yes anh AP — nd AP = no components in the
model ca cu a ion, so a1 1 t' that the net contribution of the

0.004 ——

where the positive sign applies if the multipion photoab-
sorption is pure yl AP = yes (such as would obtain if t e

mu tipion par t were principally vrA pro uction in a re a-
is ureltive S state) and the negative sign applies if it is pure y

were principally nonresonant vrvrN with everything in a
relative S state). The value quoted is for the proton since
only in this case is there available a full tabulation o t e
total photoabsorption cross section. However, it is rea-
sona e to assume ath t the neutron contribution would
be similar.

In the absence of additional experimental information
on the multipole content of the multipion final states,
the only way to improve on the above bounds is in the

f del. One such model is that due to L'vov

[18,27], wherein m7rN production is approximate y e

and the amplitudes for all but the relative ark S wave are
calculated in the Born approximation. The S wave com-
ponent is a jus e so ad' t d that the total vrvrN cross section

t 27.evaluated in this manner agrees with experiment 7.
Using the computer code supplied by L'vov we have ca-
culated these amplitudes and used them as input to the
8-channel integral, the integrand of which is shown in
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FIG. 1. Integrand of the s-channel contribution for the pro-
ton. The solid/dashed curves are the iutegrands for the sin-
gle-pron pari y-c1 't — hanging/parity-uouchanging multipoles, re-

l . The dotted curve is the integrand obtasne yspectively. e o e c
subtractin the single pion from the total p o opro uc
cross section, an et, d the integral of that curve gives a rigorous
bound on the multipion contribution.

500
E {MeV)

1000 1 500

FIG. 2. The integrand of the 8-channe pnel multi ion contri-
b the vrA model of L'vov.butions for the proton, as given y

The solid/dashed curves are the integraurands for the two-pion
parity-changing/parity-uouchanging ni 'pmulti oles, respectively.
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multipion final states is quite small (0.56). We return to
this point below when we compare with experiment.

For the t-channel integral we require the amplitudes
for both x7r ~ NN and pp —+ arm. The former can be
reliably obtained by extrapolation from the cross-channel
vrN —+ aN process as done by Bohannon and Signell
[28], from which we take the amplitudes f+' (t) for use
in Eq. (21). Previous calculations of the backward sum
rule have utilized these same forms. The amplitudes for
pp —+ 7m' have traditionally been considered less reliable,
especially for the S-wave part. However, in recent years
there has been renewed interest in this reaction &om both
the experimental and theoretical sides. In particular, new
calculations lead to cross sections that are in excellent

I

16vram2 t + Qt(t —4m2)
ln

gt(t —4m ) t —gt(t —4m )

+4~m tnE+ (25)

for the S wave and

agreement with experimental data for both the x+m and
aron. o channels [29]. These calculations utilize dispersion
relations with subtraction constants fixed by low energy
theorems, taking into account the vrvr scattering phase
shifts as well as the effects of m, p, ~, and Aq exchange
[29]. At very low energy, the amplitude is dominated by
the pion Born and polarizability terms:

6m 6m l m
S,'(t) =40~a —,+2

~

1+
t —4m~ ( t —4m2 ) gt(t —4m2)

t+ gt(t —4m )ln
t —gt(t —4m2)

(26)

for the D wave. Here a& is the electric polarizability of
the charged pion, for which there is a precise prediction
of (2.8 + 0.3) based on chiral symmetry, with parameters
fixed from radiative pion decay [30]. The fact that nei-
ther the chiral prediction nor the mn -+ pp results are
expected to be accurate for energies E ) 600 MeV is not
a significant problem as the factor t 2 in Eq. (21) guar-
antees rapid convergence of the dispersion integral (see
Fig. 3). The contributions to the proton and neutron in-
tegrals are identical as only the isoscalar NN channel is
allowed by G-parity invariance.

In our numerical t-channel calculation, we include only
S- and D wave compo-nents. The integrand for the S-
wave piece is given in Fig. 3, in which three different
curves are shown, corresponding to three different repre-
sentations of the sr~ —) pp amplitude: the Born approxi-
mation [the polarizability-independent term in Eq. (25)),
Born plus pion polarizability [Eq. (25)], and the full dis-
persively calculated amplitude. The chiral prediction for
6& is used. We see that the full amplitude looks signif-

+16.1
~z —Ar =

& +191
+10.3

[t-channel S-wave, Born],
[t-channel S-wave, Born + n&],
[t-channel S-wave, full],

are quite sensitive to the location of this zero, which
explains much of the uncertainty in the previous cal-
culations of this contribution. Nevertheless, the excel-
lent agreement between the full amplitude and the recent
cross-section data [29] gives us confidence in our result.

For the D-wave piece we use the Born approximation
for vrx ~ pp [Eq. (26)]. The integrand is shown in Fig. 4;
the integral

a@ —PM = —1.7 [t-channel D wave] (28)

is significantly smaller than its S-wave counterpart,
thereby providing some justification for the neglect of
higher partial waves. We note that the magnitude of

I

icantly different ft. om the other two, mainly because of
a zero in Fz~(t) near 400 MeV which arises due to the
Omnes function for I = 0 vrx scattering [29]. The nu-

merical results

2 5--

2--

1.5-—

I, s wave
0.12

0.1--

0.08--

cQ.
I5 0.5--

0

Full
0 ~ 0 6--

0.04--

-0 ~ 5
10 30

t(m }
40 50

FIG. 3. The integrand for the t-channel S-wave contribu-
tion. The solid, dotted, and dashed curves correspond to the
Born, Born + pion polarizability, and full amplitudes, respec-
tively, for the pp —+ vrvr process.

0 ~ 0 2--

0 I

0 10 20 30
t(m }

I I l I I I I I I

I

40 50 60

FIG. 4. The integrand for the t-channel D-wave contribu-
tion.
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our D-wave contribution is nearly a factor of 4 smaller
than that given by previous authors [19,24]. We do not
understand the origin of this discrepancy.

Putting everything together we arrive then at our final
results:

E t M

' 5.6 [upper bound],
3.2 [srA model],
—0.4 [lower bound],

' 6.3 [upper bound),
3.9 [xA model],
0.3 [lower bound].

These numbers are to be compared with the experimental
values:

8.4 + 2.1 experiment p],
9.4 + 5.0 experiment n . (3o)

~z = —,
' (+E+As)+(~z —As), (31)

and then take the neutron-proton difFerence of these
quantities. The dispersion prediction should be partic-
ularly accurate for this difference because the principal
uncertainties in our calculation are in the s-channel mul-
tipion contribution, which is approximately isoscalar, and
the t-channel contribution, which is rigorously isoscalar.
Therefore, those uncertainties are largely removed when
we take the neutron-proton difference. We find

' 1.2 [dispersion relations],
1.3 6 1.9 [experiment],
—3.6 [valence quark model],

, 3.1 [CPT].

(32)

We see that the dispersion theory does remarkably well
in quantitatively accounting for the relative sizes of the
electric polarizability for the neutron and proton. It ap-
pears that both the chiral perturbative, and dispersive
calculations are quite consistent with the experimental
Bndings, while the simple valence quark model is strongly
at variance. We conclude that taking the pion cloud com-
ponents of the nucleon into account is essential in order
to understand the recent polarizability results.

Taking into account the errors on the experimental re-
sults, there is good overall consistency with the back-
ward sum rule, provided the actual contribution of the
s-channel multipion contribution is somewhere between
the upper bound and the xb, model prediction. How-
ever, additional work would be very helpful in extend-
ing these findings. In particular a multipole analysis of
the pX ~ mere process, such as is presently planned
at Argonne [31], would help to clarify the full s-channel
dispersive analysis.

We now return to the point that originally motivated
this work, the size of a& relative to 6~&. Combining the
Baldin and backward sum rules, we obtain

III. CONNECTING PION AND NUCLEON
POLARIZABILITIES

+L 0Tr F UF '" Ut (33)

where F„' are the left, right chiral field strength tensors,
which in the electromagnetic case take the form F„„'
2 7 3F„. In the linear 0 model, U describes the chiral
field U = + (o +ir 7r). At the tree level the charged

pion polarizability can be completely described in terms
of L9, L10..

F2(r2 )
12

m F24vr6@ m F24vre@
10= 42 9= 42

(34)

In a mean field approach, treating the meson operators
as classical fields and taking E, B to be constants, one
finds

4e
d xC d x (Ls+ Liii)(E —B )(c x xi,),

(35)

where vrI, is the hedgehog pion field and c is defined in Ref.
[32]. The spatial integral can be related to the fraction
of the total moment of inertia carried by the pion degree
of freedom and yields the estimate [32]

Since the electric and the diamagnetic polarizabilities
are dominated by the pion cloud, it is reasonable to ask
whether the intrinsic polarizability of the pion itself con-
tributes to that of the nucleon. Intuitively such a connec-
tion is expected since the presence of an external electro-
magnetic field cannot only polarize the pion cloud rela-
tive to the quark core but can also, to the extent that
the pion is polarizable, polarize the pions themselves.
The backward dispersion relation enables us to derive
a model-independent relation between the nucleon and
pion polarizabilities, which can be compared to the pre-
dictions of various models. In this section we address this
issue.

Cohen and Broniowski have derived a quantitative re-
lation between the nucleon and pion polarizabilities in the
context of a hedgehog model of the nucleon [32]. They
focus on the L9, L10 component, the piece responsible for
giving the pion electromagnetic structure, of the effective
action describing the interaction of Goldstone bosons, as
written down by Gasser and Leutwyler [33]:

r.„=. . —L,T F„'.D UD Ut+FRD U~D U

bing = —CPM~ = 0.5m~, (36)

To obtain the error on os —PM, we first combine in quadra-
ture the errors on ci& in Eq. (2), then double the result, since
the errors on oa and Piif are anticorrelated [5].

where bo;& refers to that part of the nucleon polarizabil-
ity that is due to the intrinsic polari. zability of the pion.

It is possible to understand this result in an alterna-
tive fashion, using Feynman diagrams. Thus the effective
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charged pion electromagnetic interaction due to its po-
larizability can be written in the local form [34]

insertion into the diagram shown in Fig. 5 then yields

N N

FIG. 5. Pion-exchange diagram contributing to the nucleon
polarizability.

N pa -m d4k 1 1
ir —— F»—F""4maR2m~(+29)

(2 )4 (k2 2)2@Vs ~( k)
Ysg

= F„„F""//47m@( )r—I(r ),4x (38)

where r = m /mN and

u( —u)

() y2 + z(1 —y)
'

We identify then the contribution to the nucleon polar-
izability due to the analogous pion polarizability as

2

~ng = ~8MN =4 —' .I(.') '=08n'
4x (40)

~(~z PM) =~a J— .. . ;If+(~)1 (4~)

Numerical evaluation of this integral then givess

which is somewhat larger than the hedgehog number.
However, it must be emphasized that this is a simple
one-loop calculation and must therefore be considered to
be only a crude estimate.

Finally, we derive a basically model-independent result
based on the backward dispersion relation. The connec-
tion comes via the t-channel integral, Eq. (21), and the
low-energy form of the S-wave part of the pp m n~ am-
plitude, Eq. (25), &om which one easily derives

8 (n@ —PM) = 1.01n

Since from our previous discussion the pion contribution
to the nucleon electric and/or magnetic polarizabilities is
equal and opposite, we can rewrite Eq. (42) as

hag = —b'pM~ —0.5~~ (43)

nR = —&M

= 2.8 [chiral prediction],
4n(Lg+ I go)

m.F2 (44)

the experimental situation is yet unclear with three dif-
ferent results being provided by three very different tech-
niques:

which is a rigorous result and in satisfactory agreement
with the estimates provided above via hedgehog and
Feynman diagram arguments.

The size of this contribution to the nucleon polariz-
ability depends upon the size of the charged pion po-
larizability, whose value is still experimentally uncertain.
Although chiral symmetry makes a rather firm theoreti-
cal prediction [30]:

2.2 + 1.1 [pp m xz.] [»]
a& ——g 6.8 + 1.4 [radiative pion scattering] 36),

20 + 12 [radiative pion photoproduction] [37 .
(45)

Comparison with the recently measured nucleon val-
ues Eq. (1) indicates that the pion contribution to the
nucleon polarizability is relatively modest if the chiral
prediction or the pp —+ vrx result is correct, but is rather
significant if the radiative pion scattering value were to
be correct. Note that since the t-channel dispersive piece
is isoscalar, its contribution to neutron and proton val-
ues is identical. Clearly it is important to remeasure
the pion polarizability in order to resolve the origin of

these discrepant values, and such efforts are planned at
Brookhaven, Fermilab, and DA@NE.

IV. CONCLUSIONS

Recent experimental measurements of the nucleon elec-
tromagnetic polarizabilities are shown to be inconsistent

This procedure has been looked at previously by Budnev aud Karuakov [24]. However, there appear to exist a number of
serious dimensional errors in their paper [cf. Eqs. (4) aud (9)] so that the numerical vajues given therein must be questioned.
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with expectations based on a simple constituent quark
model picture of the nucleon and mesonic contributions
must be included in order to understand these findings.
Dispersion relations offer a rigorous approach to this
problem, but depend sensitively upon the correctness
of the s- and t-channel integrands. Considerable recent
progress has been made in this regard. In the case of
the t channel, successful dispersive and/or chiral pertur-
bative analyses of the pp ~ xm reaction have enabled a
reasonably reliable estimate of this contribution, while in
the case of the 8 channel a multipole analysis of the ¹r
intermediate state enables a believable calculation of this
piece. Further progress awaits a similar multipole decom-
position of the (smaller) multipion component as well as
an improvement on the precision of the neutron polar-
izability measurements. However, overall agreement be-
tween-the experimental numbers and the dispersive pre-

dictions must be judged to be quite satisfactory. Finally,
we have used the t-channel part of the dispersion relation
to do a precise calculation of the contribution of the pion
polarizability to that of the nucleon.
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