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Cooling is used as a filter on a set of gluon fields sampling the Wilson action to selectively remove
essentially all Huctuations of the gluon field except for the instantons. The close agreement between
quenched lattice /CD results with cooled and uncooled configurations for vacuum correlation func-
tions of hadronic currents and for density-density correlation functions in hadronic bound states
provides strong evidence for the dominant role of instantons in determining light hadron structure
and quark propagation in the /CD vacuum.

PACS number(s): 12.38.Gc

I. INTRODUCTION

Understanding the quark and gluon substructure of
hadrons is particularly challenging because none of the
standard analytic techniques of theoretical physics is ap-
plicable to the nonperturbative solution of QCD. Indeed,
these standard techniques do not even provide a qualita-
tive understanding of the mechanism responsible for the
gross structure of hadrons —whether it is the Coulomb-
like interaction between quarks arising from short wave-
length fluctuations of the gluon 6eld, the behavior at
large distances associated with con6nement, or a mecha-
nism associated with topological structures in the QCD
vacuum corresponding in the semiclassical limit to in-
stantons.

The goal of this work is to use lattice QCD as a tool
to understand the role of instantons in determining the
gross features of the structure of hadrons and of the prop-
agation of quarks in the QCD vacuum. Thus in this work
we use lattice QCD as a means to obtain physics insight
into issues which are not experimentally accessible rather
than to calculate experimental observables.

Our strategy for elucidating the role of instantons in
hadron structure is to focus on correlation functions
which characterize the gross structure of hadrons and
quark propagation in the QCD vacuuxn and which are
well described by quenched lattice QCD calculations
which sample the full Wilson action. These calcula-
tions include all the fluctuations and topological exci-
tations of the gluon field and thus include the full per-
turbative and nonperturbative eKects of the short range

Coulomb and hyper6ne interactions, con6nement, and
instantons. We then use cooling as described below to
remove essentially all fiuctuations of the gluon field ex-

cept for the instantons which, because of their topology,
cannot be removed by local minimization of the action.
Thus, both the Coulomb interaction and con6nement are
almost completely removed while retaining most of the
instanton content. To the extent to which the gross fea-
tures of hadron structure and quark propagation in the
QCD vacuum are unaffected by removing all the gluonic
modes except instantons, we have strong evidence for the
dominant role of instantons.

The vacuum correlation functions we consider are
the point-to-point equal-time correlation functions of
hadronic currents R(z) = (0

~

T J(z) J(0)
~
0) discussed

in detail in an extensive review by Shuryak [1] and re-
cently calculated in quenched lattice QCD [2]. These cor-
relation functions characterize the propagation of quarks
and antiquarks in all the relevant hadronic channels
and complement bound state data in the same way
as nucleon-nucleon scattering phase shifts complement
deuteron properties in characterizing the nuclear inter-
action. Two results of Refs. [1] and [2] are of particular
relevance to the present work. First, the quenched lattice
calculations of the correlation functions agree well with
the dispersion relation analysis of experimental data in
all channels for which data are available (pseudoscalar,
vector, and axial vector) indicating that quenched QCD
with present lattice technology describes the gross fea-
tures of quark propagation in the vacuum. Second, the
random instanton model also agrees reasonably well with
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the empirical results in these channels and with the lat-
tice results in all other channels, indicating that if the in-
stanton content of the QCD vacuum were similar to that
parametrized in this model, the instantons also could ac-
count for the essential features of quark propagation.

To characterize the gross properties of hadrons, in ad-
dition to the mass, we consider quark density-density cor-
relation functions [3—5] (h~p(x) p(0) ~h). In contrast with
wave functions, which have large contributions from the
gluon wave functional associated with the gauge choice or
definition of a gauge-invariant amplitude [6], the density-
density correlation function is a gauge-invariant physical
observable which directly specifies the spatial distribu-
tion of quarks. Comparison of these correlation functions
in full quenched QCD and retaining only the instanton
content of the gluon configuration is therefore expected
to provide a quantitative indication of the role of instan-
tons in determining the spatial distribution of quarks in
hadrons.

This present work is strongly motivated by the physi-
cal arguments and instanton models of QCD by Shuryak
and collaborators [7,8] and by Dyakanov and Petrov [9].
The basic picture is that although the dilute instanton
gas approximation is inconsistent because the instanton
probability increases with its size, when the interactions
of instantons are taken into account, the vacuum may be
characterized by a dense, stable distribution of instan-
tons. The zero modes of massless quarks associated with
these instantons correspond to localized quark states, and
the propagation of light quarks takes place primarily by
hopping between these localized states. In the simplest
version of the model [8], the instanton vacuum is char-
acterized by a random spatial and color distribution of
instantons and anti-instantons of a single radial size p
and density n. For subsequent reference, we note that
when p is chosen to be 3 fm to fit the vacuum gluon con-
densate and n is chosen to be 1 fm to fit the vacuum
quark condensate, the random instanton vacuum model
results in Ref. [8] yield a good description of the vacuum
correlation functions.

The outline of the paper is as follows. In Sec. II, we
describe the lattice calculation. The results for the in-
stanton content of the vacuum are presented in Sec. III,
where we characterize the size and density of instantons
in cooled configurations and indicate the degree to which
other gluon fluctuations are removed. Hadronic observ-
ables in the cooled vacuum are presented and discussed
in Sec. IV and the summary and conclusions are given in
the final section.

II. LATTICE CALCULATIONS

As discussed in the Introduction, we use cooling [10,11]
as a filter to extract the instanton content of 19 gluon
configurations obtained by sampling the standard Wilson
action on a 16 x 24 lattice at —,= 5.7. A configuration is9
cooled by an iterated sequence of relaxation steps, where
for each step, the action is minimized locally at every link
of the lattice using the Cabibbo-Marinari [12] algorithm
with three SU(2) subgroups and P = oo. Although it is

f 'D[U]O[U] e s[v]

f V[U] e s[&-] (2.1a)

and

O f &[U]OV-[U]] e '[']
f 17[U] e—s[U] (2.1b)

where f„[U]denotes the configuration of SU(3) elements
obtained deterministically by applying n cooling steps to
the configuration U. Then, by inserting 1 = f 'V[V]b[V—
f„[U]],we may write

f D[V] O['V] e s„[v]

f 17[V] e—s-[v] (2.lc)

where e s"[v]—:f D[U] b ['V —f„[U]]e [ ] is an effec-
tive action defining the distribution of cooled configura-
tions. Hence, the expectation value in the cooled config-
uration may be expressed

f O[U]O[U] ( "[ ' ' ]) e

f 17[U] e—s[v (2.1cl)

so that the filtering factor is seen to be e
For large scale, topologically stabilized modes present
equally in S and S, this filtering factor approaches 1,
while for short wavelength fluctuations effectively re-
moved by cooling, it approaches 0.

To monitor the filtering of different degrees of freedom
as a function of cooling steps, we measure several rele-
vant gluonic observables. Short wavelength fluctuations
giving rise to the perturbative Coulomb and hyperfine in-
teractions are reflected in the total action S, and when S
is reduced by several orders of magnitude, it is clear that
these modes have been strongly filtered. Denoting the ac-
tion associated with a single instanton So —— , , once s9 0

equals the number of instantons plus anti-instantons, we
know all other excitations have essentially been removed.

Similarly, we monitor confinement by measuring the
string tension extracted from a 4 x 7 Wilson loop. The
size of the Wilson loop is relevant, since the local mini-
mization of the action corresponds to replacing each link
by the sum of staples made up of the other three liuks
of each plaquette to which the original link contributes.

difficult to characterize the results of cooling precisely, it
is clear that short wavelength, local fluctuations are re-
moved most rapidly by cooling steps, and topologically
stabilized instanton excitations are removed most slowly.
[Although isolated instantons can slowly shrink and even-

tually disappear with extended cooling because of O(a )
errors in the lattice action, the primary mode of removal
is instanton —anti-instanton annihilation. ] Thus, as the
number of cooling steps increases, the instanton content
of the configuration is strongly enhanced relative to all
other gluon excitations.

To express this effect of cooling precisely, it is useful to
write the expectation value of an operator 0 in uncooled
and cooled configurations as



EVIDENCE FOR THE ROLE OF INSTANTONS IN HADRON. . .

Thus, each cooling step replaces a Wilson loop by a bun-
dle of loops smeared by at most one lattice site. So, as
long as the number of cooling steps is much smaller than
the size of the loop, one must still see con6nement. How-

ever, once the number of steps is larger than the loop
size, there is nothing to prohibit the string tension from

going to zero. The 4 x 7 Wilson loops were chosen as
a measure of confinement for the practical reason that
these were the largest loops that were already available
from an earlier calculation at the same value of P with
the same cooling algorithm [13].

Finally, to monitor the instanton content, we measure
the topological charge (Q) and topological susceptibility
(Q2), where

pseudosc alar,

R(z) = (OiTJ"(z)J~(0)]O);

vector,

R(x) = {OiTJ„(x)J„(0)iO);

nucleon,

R(x) = -'Tr[(O~TJ (z)J (0)]O)z p ];

R(z) = -Tr((OiT J„(x)J„(0)iO)x„p„);

Q=) Q(z„), (2.2)

and we use the simplest expression for the topological
charge density,

J =tkp5d )

J„=up„p5d,
J = ettSt-[lC C Qdt u ]

Jp = ett(tp[8 C ddt 'll ] ZL

(2.4a)

(2.4b)

(2.4c)

(2.4d)

Q(z„)= — e„„pRe Tr [U„„(x„)Up (z„)]. (2.3)
1

Although this expression for the topological charge den-
sity is known to be inadequate for the large Buctuations
occurring in uncooled configurations, it is adequate for
the smooth configurations which emerge after several
cooling steps. For subsequent reference, one should note
that for a random ensemble of Poisson-distributed instan-
tons and anti-instantons, (Q) = 0 and (Q ) = I+ A, the
number of instantons plus anti-instantons.

As explained in the Introduction, we characterize the
propagation of quarks in the vacuum by the vacuum cor-
relation functions R(z) = {O~TJ(x) J(0)~O). Specifi-
cally, as in Ref. [2], we calculate the following correlation
functions in the indicated channels:

As in Refs. [1] and [2], we consider the ratio of the cor-
relation function in @CD to the correlation function for
noninteracting massless quarks, & ~ ~, which approaches

1 as z ~ 0 and displays a broad range of nonperturbative
effects for z of the order of 1 fm. As described in Ref. [2],
the effects of lattice anisotropy are removed by calculat-
ing Ro(z) on the same lattice as R(x) and measuring the
ratio for a cone of lattice sites concentrated around the
diagonal. Finite lattice volume effects are corrected by
subtracting the contributions of first images as in Ref. [2].
Finally, the correlation functions are fit as in Ref. [2] by a
spectral function parametrized by a resonance mass, the
coupling to the resonance, and the continuum threshold.

Hadron density correlation functions are calculated as
in Refs. [4] and [5] for the pion, p, and nucleon. To
avoid calculating propagators between density operators,
we consider the correlation functions

(h)p (x)pt(0)~tt) f d y(T Jj (0, T) ou(ye+ y, t) dyp d(yt) dt(0, 0)), , (2.5)

where Jg denotes a point x, p, or N source and the cor-
relation function is averaged over the central two time
slices. Image corrections for 6nite volume effects are ap-
plied as in Ref. [14].

A signi6cant conceptual issue in comparing observables
calculated using cooled con6gurations with uncooled re-
sults is how to change the renormalization of the bare
mass and coupling constant as the gluon configurations
are cooled. Clearly, as the Huctuations corresponding to
gluon exchange are altered out, the gluonic contribution
to the physical mass and coupling constant change sig-
ni6cantly, and so our task is to 6nd the most physical
scheme to determine the hopping parameter x and the
lattice spacing a. A different, but equivalent way to state
the issue is to note that the cooled calculation samples a
different action, Eq. (2.1c). For the full theory, of course,
the result should not depend on the choice of the masses

or other observables used to determine K, and a. However,
after 6ltering out all the gluonic excitations except in-
stantons, there is no reason that all physical observables
should be correctly reproduced, and so different values of
e and a (as well as all other observables) will arise from
different choices of a pair of observables to determine the
parameters of the theory. Since we are primarily inter-
ested in the instantons after cooling, the most natural
quantity to use to determine a would be the topological
susceptibility y. However, given the limitations of the
naive topological charge density [15], the uncooled lat-
tice measurement of y is unreliable, and so there would
be a large uncertainty in using it to determine a. (We
will see below that if we did use this prescription, a would
be essentially independent of cooling. )

In the end, we have chosen to use the physical pion
and nucleon masses to determine K and a for the cooled
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confi. gurations. As expected, the critical kappa r ap-
proaches the free field value 0.125 with increasing cool-
ing. To the accuracy of our present calculations there is
not a significant difference between extrapolating to I-

and to the physical pion mass, and so results are quite in-
sensitive to this choice. As will be seen below, a changes
by 16%%uo after 25 cooling steps when the nucleon mass
is used to set the scale, and within errors, the p mass re-
mains unchanged after cooling with this value of a. The
other extreme would be to keep a fixed at the uncooled
value and thus display what remains in the original path
integral when only instantons are retained. This constant
a would also be consistent with the constant topological
susceptibility. It is a remarkable result that these two
extremes difFer by only 16%%uo, so that even if one took
the most conservative possible view of not changing the
scale, the qualitative results would still not be changed
s lgnlBcant ly.

III. INSTANTON CONTENT OF THE GI UON
VACUUM

In this section we present the results of cooling the
gauge field configurations. Since we are using the
quenched approximation, the gluon configurations are
not inHuenced by the quarks and may therefore be fully
described independently of the subsequent discussion of
hadronic observables.

To provide a clear picture of how cooling extracts the
instanton content of a thermalized gluonic configuration,
we display in Fig. 1 the action density S(1,1, z, t) and
topological charge density Q(1, 1, z, t) for a typical slice
of a gluon configuration before cooling and after 25 and
50 cooling steps. As one ran see, there is no recogniz-
able structure before cooling. Large, short wavelength
Huctuations of the order of the lattice spacing dominate
both the action and topological charge density. After 25

FIG. 1. Cooling history for a
typical slice of a gluon con6g-
uration at fixed x and y as a
function of z and t. The left
column shows the action den-

sity S(1,1, z, t)/P before cool-

ing (a), after cooling for 25

steps (c), and after 50 steps
(e). The right column shows

the topological charge density

Q(l, 1, z, t) before cooling (b),
after cooling for 25 steps (d),
and after 50 steps (f).
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FIG. 2. Mean values of three observables as a function
of number of cooling steps. (a) Total action in units of a
single instanton action Ss ——8Ir /g . The uncooled value
(S)/Ss = 20, 211 is far off scale and is not plotted. (b) Topo-
logical charge squared. (c) Topological charge.

cooling steps, three instantons and two anti-instantons
can be identified clearly. The action density peaks are
completely correlated in position and shape with the
topological charge density peaks for instantons and with
the topological charge density valleys for anti-instantons.
Note that both the action and topological charge densi-
ties are reduced by more than two orders of magnitude,
so that the Buctuations removed by cooling are several
orders of magnitude larger than the topological excita-
tions that are retained. [Also note that because we plot
S/Ig and include the factor (32''2) i in the definition of
Q in Eq. (2.3), the scales in Fig. 1 difFer by 47r2/3. ] Since
instantons with sizes equal to or smaller than the lat-
tice spacing are strongly distorted on the lattice, they
cannot be distinguished from any other short wavelength
Huctuations and therefore are presumably cooled away
at this point. From Figs. 1(e,f) we see that further cool-
ing to 50 steps results in the annihilation of' the nearby
instanton —anti-instanton pair but retains the well sepa-
rated instantons and anti-instanton.

With this orientation from a single configuration, we
now consider the ensemble averages of observables as a
function of the number of cooling steps shown in Fig. 2.
As expected, the action is dominated by the short range
modes and is therefore very strongly affected by cool-
ing, decreasing by two orders of magnitude in the first
five steps. The topological charge is less sensitive to
short range modes, which implies a much milder depen-
dence on cooling. (Note, as discussed below, that our

definition of the topological charge is only accurate af-

ter several cooling steps have smoothed the configura-
tions. ) At cooling step 25, the averaged total action in

units of a single instanton action is 65 whereas (Q ) is

f(&) = ).Q(y)Q(*+y), (3.1)

where Q(y) is the topological charge density at point y
and the sum is over the whole lattice. The ensemble
averages of f(z) at cooling step 25 and 50 are displayed
in Fig. 3. The strong peak at small x is the correlation
of a single instanton or anti-instanton with itself. The
vanishing of (f(x)) at large x implies that the topological
charge is uncorrelated at this larger distance and thus
averages to zero.

If we assume that all instantons are well separated,
we would expect that each individual peak can be ap-
proximated by the analytic instanton topological charge
density

4

Q (*)=~2p4 (2.2 + p2 ~
(3.2)

25. This difference indicates that there are sufficient

nearby instanton —anti-instanton pairs in each configura-

tion that we have not yet reached the dilute regime where

(Qz) 2+ I S.ince the nearby pairs continue to annihi-

late under further cooling, we only expect a clear plateau
for the topological charge but not for the action in this
region of cooling steps. It is only when the configurations
are composed of well isolated instantons that plateaus for
both action and topological charge would start to emerge.
In our case, we expect this will happen beyond 50 cooling
steps, where (S)/So and (Q~) are nearly equal.

It should be emphasized that, because we used the
naive definition for the topological charge density opera-
tor, which suffers both additive and multiplicative renor-
malizations, we cannot use (Qz) to estimate the topolog-
ical charge susceptibility when the configurations are not
yet smooth. So the first few points in Fig. 2 should not
be taken too literally. On the other hand, although the
cooled configurations are indeed quite smooth and hence
do not suffer from the contamination due to short wave-

length fiuctuations, the small instanton contribution is
also suppressed, giving rise to potential systematic error.
One may expect that this suppression should have less
effect for calculations with smaller lattice spacing, since
the running coupling constant in the instanton action will

eventually dynamically suppress small instantons.
The combined information from Figs. 1 and 2 suggests

the following qualitative description of our cooled con-
figurations. The configurations cooled with 25 steps are
comprised of smooth, clearly recognizable instantons and
anti-instantons and still retain many nearby pairs. The
configurations cooled with 50 steps consist of more dilute
instantons with their total action starting to be domi-
nated by the well isolated peaks. %e regard the config-
urations cooled with 25 steps as providing a more com-
plete description of the instanton content of the original
configurations, and will therefore emphasize them in our
subsequent calculation of hadronic properties.

In order to characterize the cooled configurations quan-
titatively and to compare with relevant instanton models,
we seek to determine the average instanton size and the
instanton —anti-instanton density. To estimate the size we

measure the topological charge density correlation func-
tion
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FIG. 3. Topological charge density-density correlation
functions after 25 and 50 cooling steps. Lattice measurements
are denoted by solid points with error bars. The curves show
the best 6t obtained using a convolution of the topological
charge density for a single instanton size p as described in the
text. The size parameters p are in lattice units.

where p is the size parameter. To show how Q (z) de-
pends on p we plot Q~(z) in Fig. 4(a) for several values
of p relevant to our present results.

Although in principle one should fit with a distribution
of values of p, a first approximation is obtained by using
a single value of p which we will interpret as an average
value. A convolution of Q~(z) with itself defines a func-
tion which can be used to fit the lattice data with p as
the fitting parameter. The continuous curves in Fig. 3
are the fitted results with p = 2.5a for 25 cooling steps
and p = 2.8a for 50 cooling steps. The fits fail to repro-
duce the detailed shape for z/a 5. Assuming a uniform
distribution for p improved the fit somewhat, but we are
reluctant to use this method to infer the distribution. %e
believe that this apparent imperfection of the fitting is
due primarily to the nonlinear overlap of instantons as
observed in Fig. 1.

One way to estimate the instanton density n, defined
as the number of instantons plus the number of anti-
instantons per unit volume, is to simply divide the total
action by a single instanton action and then divide by
the space-time volume, which yields (n) = 64/V for 25
cooling steps and (n) = 31/V for 50 cooling steps. In ad-
dition, once instantons in the cooled configurations were
suKciently dilute to obey Poisson statistics we could also
estimate the density using (Q ), and we note that the two
estimates (Q ) and (S)/So begin to agree after 50 cooling
steps.

As a further consistency check, we have also analyzed
the cooled configurations directly by defining clusters.
Two adjacent lattice points belong to the same cluster if
the product of their topological charge density is greater

20

0
0 2

P

FIG. 4. Plots showing relevant instanton geometry. (a)
Topological charge density of a single instanton for the range
of sizes p dominating the lattice measurements. (b) Cluster
size V&(p) [Eq. (3.3)] for the single instanton as a function of
its size p at several values of threshold t.

than the square of a threshold value t. A threshold pa-
rameter is necessary since instantons have tails that de-

cay only algebraically. Once again, if instantons are di-

lute, the size of the cluster for a given p and t is approx-
imated by the single continuum instanton formula

~, |'6)'"
V, (p) =— d'z e(Q, (z) —t]

2 I,7r2t )
(3 3)

We display Vi(p) for several values of t in Fig. 4(b). Note
that Vi(p) has a maximum for each threshold, and ob-
serve in Fig. 4(a) how for t = 0.002 the maximum is ap-
proached as p decreases &om 3 to 2.5 to 2. In Fig. 5 the
distribution of Vq measured in 19 configurations is his-

togrammed for two thresholds t = 0.003 and t = 0.005.
One distinct feature in Fig. 5 is the sharp sudden drop
(indicated by arrows) in each case beyond a maximum
value V, ", reflecting the maxima in Vi(p). Since V,
depends on the threshold t, we can use Eq. (3.3) to esti-
mate its magnitude and t dependence. The ratios of these
maxima at ti and tz follow the prediction of Eq. (3.3) but
the magnitude V~

" is roughly a factor of 1.5 larger in
absolute value than Eq. (3.3). We again attribute this
discrepancy to the overlapping between adjacent instan-
tons.

Equation (3.3) may be inverted to express p as a func-
tion of Vq.
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FIG. 5. Distribution of instantons as a
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the sudden drop at the value V, " in each
case, as discussed in the text.
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Since the cooled configurations have very few instantons
with p ( 2 lattice units, we may choose the p1us sign in
Eq. (3.4) and calculate p uniquely &om Vi. If we cor-

rect the overlapping problem in our lattice data by sim-

ply dividing the lattice V& by 1.5, then we can convert
Fig. 5 into a histogram in terms of the sizes of instantons.
Figure 6 shows the result, including the Jacobian factor
de/dp. These p histograms can be regarded as a rough
estimate of the instanton size distribution in the cooled
configurations. At t = 0.005, where the overlapping is
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FIG. 6. Distribution of instantons as a

function of p. Each bin in the histogram of
Fig. 5 is converted from V& to p using Eq. (3.4)
and multiplied by the Jacobian dV~/dp.
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TABLE I. Summary of properties of cooled configurations.

Cooling steps
0
25
50

Instanton model

(S)/So
20,211

64
31

o.a
0.18
0.05
0.03

a (fm)
0.168
0.142
0.124

p (fm)

0.36
0.35

0.33

n(fm )

1.64
1.33

y (MeV )

(177)'
(2oo)'

(180)

less severe, we see that the distributions are centered
around the mean values determined f'rom the topologi-
cal charge density correlation function, with widths of
the order of a half lattice spacing. Note that the factor
1.5 introduced to extract an approximate distribution of
p does not affect our determination of the average p and
the density n.

Table I summarizes our result in physical units. The
lattice constant a is determined using the proton mass
which is measured as described in the next section. The
string tension in lattice units was estimated in Ref. [13]
using Wilson loops up to sizes 7 x 4, which corresponds
to a distance of around 1 fm. For comparison, the rel-
evant parameters used in instanton models by Shuryak
and collaborators [8] are also included.

Finally, we should note that a similar analysis of cooled
configurations has previously been carried out in the case
of SU(2) with smaller lattices and slightly different tech-
niques [16]. In that work, the positions and magnitudes
of peaks in S(2:,y, z, t) were used to determine the distri-
bution of sizes of instantons.

IV. HADRONIC OBSERVABLES IN THE
COOLED VACUUM

In this section, we present the results for quark propa-
gation and hadron properties in the cooled vacuum and
compare them with the corresponding results before cool-
ing.

As in Ref. [2], we extrapolate the masses and vacuum
correlation functions calculated at several values of v

1 25
I I I

(

& I I 1

)

I I I I

[

l 1 f

to the physical pion mass. The masses extracted from
the asymptotic decay of the correlation functions (which
agree within errors with the less accurately determined
resonance masses obtained fmm fitting the spectral func-
tions) are tabulated in Table II as a function of K for 25
and 50 cooling steps. The quality of the chiral extrapola-
tion for masses calculated at 25 cooling sweeps is shown
in Fig. 7. We note that M, M~, M~, and M~ are quite
linear over the relevant region of K. They thus provide
a good determination of the values of a and v at which
simultaneously M = 140 MeV and M~ = 940 MeV.
The chiral extrapolation at 50 steps is comparable, and
together these extrapolations yield the values for n in
Table I and the masses shown in Table III. The chiral
extrapolation of the spatial dependence of the ratio of
correlation functions R ~*~ was carried out using poly-Rp(z)
nomial extrapolation as in Ref. [2]. The quality of the
extrapolation was comparable to that shown in Fig. 5 of
Ref. [2], and is not presented here to save space.

At this point it is appropriate to address error esti-
mates for the parameters tabulated in Tables II and III.
The errors quoted in Table II for hadron masses are stan-
dard jackknife errors. As observed in Fig. 1, the magni-
tude of short range Quctuations in the uncooled gluon
configurations is several orders of magnitude larger than
the smooth cooled gluon fields, which are reHected in
significantly larger statistical errors for uncooled than
for cooled configurations. Hence, we were unable to use
the asymptotic decay of correlation functions to mea-

TABLE II. Hadron masses in lattice units as a function of
~ for 25 and 50 cooling steps. The extrapolated values of K,
are 0.1285(5) for 25 steps and 0.1283(5) for 50 steps.

25 cooling steps

1.00

0,75

0.122
0.124
0.1255
0.127

Mpa

0.630(13) 0.713(13)
0.513(16) 0.631(16)
0.416(20) 0.572(17)
0.301(28) 0.507(16)

1.089(21)
0.958(23)
O.862(29)
O.75O(44)

M~a

1.102(17)
0.987(19)
0.911(22)
0.839(33)

0.50

OOO i
3.8 4

1/2~
50 cooling steps

0.122
0.124
0.127

0.571(12) 0.662(16) 0.999(17)
0.454(13) 0.581(15) 0.874(22)
0.268(39) 0.471(28) 0.603(63)

1.005(29)
0.896(26)
0.715(50)

FIG. 7. Chiral extrapolation of hadron masses for config-
urations with 25 cooling steps. Masses in lattice units cal-
culated at four values of w are denoted by error bars. The
linear extrapolations of M to determine K = 0.1285 and of
M~, M~, and M~ to the point at which M = 140 MeV are
shown by the straight lines.
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TABLE III. Hadron parameters determined from point-to-point vacuum correlation functions

for uncooled and cooled configurations.

Channel

Vector

Pseudoscalar

Nucleon

Lattice (cool=00)
Lat tice (cool=25)
Lat tice (cool=50)
Instanton
Phenomenology

Lattice (cool=00)
Lattice (cool=25)
Lattice (cool=50)
Instanton
Phenomenology

Lat tice (cool=00)
Lattice (cool=25)
Lattice (cool=50)
instanton
Sum rule'
Phenomenology

Lattice (cool=00)
Lattice (cool=25)
Lattice (cool=50)
Instanton
Sum rule'
Phenomenology

M (GeV)
0.72 + 0.06
0.65 + 0.03
0.70 6 0.05
0.95 6 0.10
0.78

0.156 6 0.01
0.140
0.140
0.142 6 0.014
0.138

0.95 6 0.05
0.938'
0.938'
0.960 + 0.030
1.02 6 0.12
0.939

1.43 + 0.08
1.06 + 0.04
1.05 6 0.09
1.440 + 0.070
1.37 6 0.12
1.232

A

(0.41 + 0.02 GeV)
(0.385 6 0.004 GeV)
(0.410 6 0.005 GeV)
(0.39 6 0.02 GeV)

(0.409 + 0.005 GeV)

(0.44 + 0.01 GeV)
(0.341 + 0.010 GeV)
(0.475 + 0.015 GeV)
(0.51 + 0.02 GeV)

(0.480 GeV)

(0.293 6 0.015 GeV)
(0.281 + 0.004 GeV)
(0.297+ 0.004 GeV)
(0.317 + 0.004 GeV)
(0.324 6 0.016 GeV)

(0.326 6 0.020 GeV)
(0.285 + 0.002 GeV)
(0.298 + 0.003 GeV)
(0.321 + 0.016 GeV)
(0.337 6 0.014 GeV)

~op (GeV)
1.62 + 0.23
1.38 + 0.05
1.42 + 0.04
1.50 + 0.10
1.59 + 0.02

& 1.0
1.05 6 0.15
1.80 + 0.18
1.36 6 0.10
1.30 + 0.10

& 1.4
1.47 + 0.13
1.54 6 0.11
1.92 6 0.05

1.5
1.44 + 0.04

3.21 6 0.34
1.91 6 0.08
2.22 6 0.06
1.96 + 0.10

2.1
1.96 6 0.10

Instanton liquid model of Shuryak et aL [8].
Phenomenology estimated by Shuryak and from the particle data book.

'/CD sum rule by Belyaev and Ioffe [17].
Used to fix the quark mass.

'Used to fix the lattice constant.

sure hadron masses for the uncooled configurations to
the same accuracy as the cooled configurations, and so
in Table III the uncooled hadron masses are determined
from the dispersion relation fit.

One source of systematic errors, as discussed in Ref. [2],
is our limited knowledge of the functional form of the
spectral function. Thus the resonance plus background
parametrization of the spectral function could lead to
systematic errors larger than the small statistical errors
quoted in Table III. Furthermore, since we fix the hadron
mass to its asymptotic value in the dispersion relation
fit for the cooled two-point functions, the errors for the
fitted parameters are usually underestimated, due to the
nonlinear nature of the dispersion relation fitting.

Because of these statistical and systematic errors, we
emphasize that the error bars in Table III are underesti-
mates, and care should be taken to avoid misinterpreting
the results. For example, one might superficially con-
clude from the numbers given in Table III that the mass
splitting between the E and the nucleon is decreased by
cooling. However, f'rom Fig. 9 of Ref. [2), we know that
the dispersion relation fitted E mass is about 20'%%up higher
than its asymptotic mass determined by the APE group.
Therefore, in order to determine the amount of the mass
splitting between the A and the nucleon which originates
from perturbative one-gluon exchange, one needs to go
beyond the numerical precision of the present exploratory
calculation.

A. Vacuum correlation functions of hadron currents

The principal results for vacuum correlation functions
are presented in Figs. 8 and 9. As in Ref. [2], the indi-
vidual contribution of the resonance and continuum com-
ponents of the spectral function, as well as the sum, are
plotted. In the top panels of Fig. 8, we show the ratio
of interacting to noninteracting current correlation func-

tions, R(()), in the pseudoscalar channel for uncooled

/CD, for 25 cooling steps and for 50 cooling steps. This
channel is by far the most attractive of all the meson
channels, as reQected in the fact that the correlation func-
tion for interacting quarks is roughly 50 times larger than
for free quarks, and is thus the only channel to be plot-
ted on a logarthmic scale. Since the pion mass is used
to determine the bare quark mass, masses of the pion
resonance term in Fig. 8 are constrained to be fixed at
140 MeV. Note that after 25 cooling steps the correla-
tion function is qualitatively similar to the uncooled re-
sult, although the magnitude at 1.5 fm is roughly half
as large. After an additional 25 cooling steps, the peak
grows in strength. Apparently, although the distribu-
tion of instantons after 50 steps is more dilute and less
representative of the /CD vacuum than after 25 steps,
it reproduces the uncooled correlation function slightly
better. To assure that this behavior is not a statisti-
cal artifact, in this and every other channel we analyzed
two independent sets of nine and ten configurations sep-
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FIG. 8. Comparison of un-

cooled and cooled vacuum cor-
relation function ratios R ~ ~Ro(~)
for pseudoscalar currents (P)
and nucleon currents (N). The
left, center, and right panels
show results for uncooled QCD,
25 cooling steps, and 50 cool-
ing steps respectively. The solid
points with error bars denote
lattice correlation functions ex-
trapolated to M„=140 MeV.
The solid lines denote fits to the
correlation functions using a
three-parameter spectral func-

tion, and the dashed and dot-
ted curves show the contribu-
tions of the continuum and res-
onance components of the spec-
tral functions respectively. The
upper scale shows the spatial
separation in lattice units and
the lower scale shows the sep-
aration in physical units using
the values of a in Table I deter-
mined from the nucleon mass.

arately and verified that the same behavior occurred in
both cases.

Analogous results for R ~*
~

in the nucleon channel areRo(*)
shown in the bottom panels of Fig. 8, where again the
nucleon mass is constrained to be constant because it
is used to determine the lattice spacing. The behavior
is similar to that in the pseudoscalar channel. After 25
sweeps, the correlation function is qualitatively similar

to the uncooled result. In detail, the peak also appears
lower after cooling, although this time it agrees within
errors. After an additional 25 sweeps the peak height
increases again, agreeing even more closely with the un-

cooled result.
The ratios of correlation functions R ~ )

for the vec-

tor channel are shown in the upper panels of Fig. 9. In
this case, the p mass governing the resonance peak is un-
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FIG. 9. Comparison of un-

cooled and cooled vacuum cor-
R(z)relation function ratios

for vector currents (V) and
currents (D). The notation is
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constrained, but as seen in the figure and in Table III,
it does not change significantly with cooling. Further-
more, in this channel there is virtually no change in the
correlation function ratio with cooling.

Finally, the ratios of correlation functions in the 4
channel are shown in the lower panel. Again, although
the position of the 4 peak is unconstrained, it does not
shift significantly with cooling. Although the peak height
may grow somewhat with cooling, it is also consistent
within errors with remaining constant.

The resonance masses M, couplings A, and continuum
thresholds So, characterizing these correlation functions
in each channel, are tabulated in Table III. These num-

1.00 iv

0.50
Ii

5+y
0.10
0.05

0.01

0.10
0.05

0.01

0.10
0.05

bers reQect the same features discussed above, and em-

phasize the similarity of the results after 25 and 50 cool-

ing steps to the uncooled results. In addition, one ob-
serves quite general agreement both with phenomenolog-
ical results where available and with the random instan-
ton model and sum rules.

B. Hadron density-density correlation functions

Density-density correlation functions in the ground
state of the x, p, and nucleon are shown in Fig. 10. The
striking result for both the p and the nucleon is the fact
that the spatial distribution of quarks is essentially un-

affected by cooling —instantons alone govern the gross
structure of these hadrons, as indeed they also governed
vacuum correlation functions of hadron currents in these
same channels.

The only case in which a noticeable change is brought
about by cooling is in the short distance behavior of the
ground state of the pion. This difference is understand-
able since in the physical pion, in addition to instanton-
induced interactions, there is also a strong attractive hy-

perfine interaction arising from perturbative QCD which,
combined with the 1/r interaction, gives rise to the cen-
tral peak in the uncooled density. In contrast, in the p
the hyperfine interaction has much less effect, both be-
cause it is repulsive and because it is three times weaker.
Despite this difference at the origin, which receives small
phase space weighting, when the correlation functions are
normalized to the same volume integral as in Fig. 10, one
observes that the overall size and long distance behavior
do not change appreciably with cooling.

It is noteworthy that the cooled density-density corre-
lation functions shown in Fig. 10 for the vr, p, and nu-

cleon are comparable, within error bars. This uniformity
strongly suggests that instantons set the overall spatial
scale for these hadrons.

V. SUMMARY AND DISCUSSION

0.01

0.5
x (fm)

1.5

FIG. 10. Comparison of unco oled and cooled den-

sity-density correlation functions for the pion, p, and nucleon.

The solid circles denote the correlation functions calculated
with uncooled +CD, the open circles with error bars show the
results for 25 cooling steps, and the crosses denote the results

for 50 cooling steps. The p and pion results are compared for

M = 0.16 GeV and the nucleon results are compared for
M = .36 GeV . As in Figs. 8 and 9, the separation is shown

in physical units using values of a from Table I. All correla-
tion functions are normalized to 1 at the origin, except for
the cooled pion correlation functions, which are normalized
to have the same volume integral as the uncooled pion result.
Errors for the uncooled results and for 50 steps, which have

been suppressed for clarity, are comparable to those shown

for 25 steps.

In this work, we have used cooling as an effective filter
to remove most of the excitations of the gluon field except
for instantons. For example, after 25 cooling steps, when
the presence of instantons and anti-instantons is clearly
visible in the action density and topological charge den-

sity, reduction of the action to 0.3%%up of its original value
has essentially removed all the perturbative, Coulomb-
like contributions and reduction of the string tension to
27% of its original value has removed most of the effects of
confinement. We have shown that the instanton content
of the QCD vacuum extracted by cooling with no free
parameters is remarkably similar to that of phenomeno-
logical models for which the average instanton size p
fm and density of the order of 1 fm are chosen to re-
produce phenomenological values of vacuum quark and
gluon condensates.

We have also demonstrated nearly quantitative agree-
ment between cooled and uncooled vacuum hadron cur-
rent correlation functions in all channels. Similarly we
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have shown that the distributions of quarks in the ground
state of the p and nucleon, as measured by density-
density correlation functions, are virtually unchanged.
The most noticeable qualitative effect of cooling is the re-
moval of the peak in the pion density-density correlation
at short distances arising &om the attractive hyperfine
interaction, but even for the pion, the gross size and long
range behavior are not substantially altered.

The conclusion we draw from these results is that in-
stantons do indeed play a dominant role in light quark
propagation in the vacuum and in the low energy struc-
ture of hadrons. The picture which emerges is that a
light quark propagating in the /CD vacuum does not re-
ally respond to the details of the huge, short wavelength
Huctuations seen in the top of Fig. 1, but rather hops
between the localized quark states corresponding to the
zero modes associated with the instantons which become
visible in the lower panels of Fig. 1.

Although we believe these results provide substantial
evidence for the role of instantons, we recognize several
significant limitations. Despite our best efforts to moni-
tor the effects of cooling, cooling remains an imprecise
filter. In addition to exploring alternative filters and
characterizing the effect of cooling more completely it
would also be worthwhile to complement this work with
a companion calculation in which one modified the Monte
Carlo algorithm to emphasize other excitations and sup-

press instantons.
There are several significant problems associated with

use of the quenched approximation. Clearly, when nearly
zero modes are playing an important role in quark prop-
agation, it is also important to include the small weight
arising from the small eigenvalue in the determinant.
In addition, in studying the instanton content of the
vacuum, it is important to include fermion feedback
so that, for example, the tendency of quark-antiquark
pairs to bind instanton —anti-instanton pairs is included.
Hence, in view of the significant role of instantons in the
quenched results reported in this work, it is important to
explore the effect of dynamical fermions.
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