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We analyze the problem of the meson (q-q } spectrum in the formulation of nonperturbative QCD that
has been called anisotropic chromodynamics, the theory of finite energy quantum fluctuations (the had-
rons) around the (assnmed) QCD vacuum, the chromomagnetic liquid. We find very satisfactory results
for both the spectrum and wave functions, in terms of a minimal set of inputs: quark masses (both light
and heavy) and the gauge coupling constant.

PACS number(s): 12.40.—y, 12.38.—t, 14.40.—n

I. INTRODUCTION

The last 20 years have seen a definite shift of interest
from purely hadronic physics, the physics of long dis-
tances, to high momentum transfer (deep inelastic) phe-
nomena, the physics of short distances. The reason, as
we know well, for this momentous change in point of
view has been well described by Weinberg [I]: In QCD
short distances are quite simple, being governed by
asymptotic freedom (AF} and perturbative QCD, just like
the regime of lamellar Qow of the hydrodynamics of the
Navier-Stokes equations; long distances, on the other
hand, are very complicated, being dominated by the
severe quantum fluctuations of the color field, whose
analogy again with the turbulent regime of the Navier-
Stokes equations appears completely pertinent. And as a
solution of the problem of turbulent How within classical
hydrodynamics is slowly coming through massive com-
puter calculations, it is to be expected that the nonpertur-
bative QCD regime, with its strong hadronic fiuctuations,
can only be conquered by similarly massive computer
simulations: The great interest surrounding lattice gauge
theories (LOT's) bears witness to the general agreement
with Weinberg's point of view.

The work to be presented in the following sections is
an attempt that springs from a completely different point
of view, which, though recognizing the plausibility of the
above attitudefocu, ses on the peculiarity of QCD and on
the important steps, experimental and theoretical, that
were taken in the 1960s and led to the construction of the
standard model (SM). In particular, the lesson from the
quark model, even in its most naive form (which was cru-
cial in conjuring up QCD}, is that hadrons are not so
complicated after all, and in their apparently baroque ar-
chitecture they reveal to the perceptive eye many ele-
ments of order and simplicity that continue to operate at
the very high energies where, according to Weinberg, the
regime has suddenly changed from turbulent to lamellar.
Indeed, these elements of order, all keyed to the funda-
mental notions of local color fields (the gluons} and
colored matter (the quarks), do not appear to change
their relevance from long to short distances, the quark
footprint being as clear in, say, the baryon wave function

as in the structure of R + or in the Bjorken scaling of
deep inelastic scattering.

It must be stressed that the point of view of this paper
has found solid theoretical motivation in a research pro-
gram developed in the 1980s in which the problem of the
QCD ground state was analyzed in a nonperturbative
fashion [2]. As discussed in several published papers and
reviews, a remarkable phenomenon of chromomagnetic
instability of the perturbative vacuum, first discovered by
Nielsen and Olesen [3], makes the perturbative QCD
ground state unsuitable for describing the true dynamics
of QCD even at very short distances in spite of the AF in-

dication that the coupling constant, by increasing the en-

ergy, runs (logarithmically) to zero. It is upon this cru-
cial fact and on a reasonable conjecture on the structure
of the true QCD ground state that it has been possible to
build a complete dynamical strategy [4] to solve QCD in

a nonperturbative fashion that is summarized in the next
section. The nonperturbative approach to QCD, which
has been called anisotropic chromodynamics (ACD),
after several sparse attempts, is now being investigated
systematically and to a certain depth. This paper deals
with the basic problem of computing the meson (q-q)
spectrum from "basic principles, " i.e., from the assump-
tion that the chromomagnetic liquid (CML) (which will

be described in the next section) is a good approximation
to the true QCD ground state. As will be shown, the re-
sults are very promising, and the overall picture that
emerges is quite satisfactory.

%e are well aware of the antagonism, both conscious
and unconscious, that this work may excite on the reader,
and we understand it. But we ask of him an act of
strenuous intellectual sacrifice: to follow through what
we do and to dig into it as deeply as he can. He may find
it worthwhile.

II. QCD, ACD, AND THE PRIMITIVE WORLD

The question about the "true" QCD (or any other
non-Abelian Yang-Mills theory) vacuum can be answered

by analyzing the stability of the class of gauge field

configuration S„"(8),that we call Savvidy states, charac-
terized by quantum fluctuations around the special solu-
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where the constant a has been determined in a subsequent
lattice calculation' [7] to have the value

a =18.1+0.2 . (2.2)

This result shows that the perturbative vacuum S"„(0}is
essentially unstable against the condensation of a con-
stant chromomagnetic field: Indeed, the minimum of (2.1)
is attained for (A is the ultraviolet cutofl)

Be ~
—(1/2+a jg2 (2.3)

with the value of the energy density

b E(Be
) = —[1+(24/11)a]A411

64vr
(2.4)

The state of minimum energy S„"(B '
) turns out to be

characterized by a divergent expectation value of the
gauge covariant field strength, (Fk) ~e;k, u "5 "g B*;
this enormous background chromomagnetic field, which
is obtained by "freezing" in a highly correlated state
some of the gluon modes that we call "longitudinal"
gluons, makes the dynamics of the Savvidy state iso-
morphic to that of a (1+1)-dimensional theory, thus real-
izing, as is well known, color confinement.

Finally, on the Savvidy state the other gluon modes
have the energy spectrum typical of a relativistic particle
with a (finite) mass

m 2 4gB 0e 8d/g (2.5)

The crucial point [4], now, is that in order to obtain these
very promising results the background field needs to be
constant only in tubelike domains with a correlation
length

1

8m
(2.6a)

and vanishing (in the limit of infinite ultraviolet cutofi)
section

Recently, there have appeared in the literature other lattice
calculations [6], which are seen to corroborate the results of
Ref. [7].

tion of classical equations that reduces, in a particular
gauge, to a constant chromomagnetic field B"=By"u,
where g" and u are the direction, respectively, in color
and three-dimensional space.

This problem was analyzed by one of us (G.P.) in a
series of papers [2], whose results are summarized in Ref.
[5], where it is shown that the energy density of S„"(B)
with respect to the perturbative ground state B=O is
given by (note that the classical term B /2 has disap-
peared)

&E(B)=E(B)—E(0)

= 2~
gB'

(2.6b)

On the other hand, because of the liquid structure of
the CML, these fundamental fields are not directly ob-
servable, and the dynamics and space-time properties of
hadrons (i.e., the finite energy states) must be fully de-
scribed in terms of the "collective, "observable fields

q(x, t ) = g 5,(xt)q„,(x.u, t );1

N, Ap ua
(2.8)

here, 5,(x1) is the characteristic function of the tube, N„
is the number of independent directions in the solid an-
gle, and the normalization factor is chosen so as to ensure
canonical commutation relations:

Iq(x), qt(x')] =5' '(x —x') . (2.9)

X„can be evaluated by observing that X„AO is nothing
but the surface of the sphere with radius one-half of the
correlation length d; then,

4~d m

4A, g
(2.10)

As explained in Ref. [4], it is not too difficult to con-
struct the Lagrangian of the theory and perform explicit-
ly the Gaussian functional integration. One crucial point
here is that the "longitudina1" gluon fields, which do not

One can now gain extra energy by depolarizing these
domains and allowing them to be set in rotary motion; in
this way, we also restore all the invariances that the vacu-
um state must possess and that were obviously lost in the
Savvidy state.

We are thus led to the following picture of the QCD
vacuum: a totally disordered, stochastic ensemble of
needle-shaped magnetic domains with divergent (in the
limit A~ ac } background field ~B ~

~ A, which by its sto-
chasticity recovers both rotational and Lorentz invari-
ance; we call this state the chromomagnetic liquid
(CML). Please note that the picture we obtain is not un-
similar to the well-known "spaghetti vacuum" of Ref. [3].
The basic difference is that our "needles" have a much
smaller cross section [see (2.6b)]. We should also note
that A, the ultraviolet cutoff, cannot exceed the Planck
mass m~ =10' GeV for at that scale the neglected gravi-
tational quantum fluctuations will severely modify the
flat space-time in which we work.

Now we must set up the dynamics of the matter-field
excitations upon this state and write down the effective
Lagrangian of the theory. Following Ref. [4], we intro-
duce the fundamental field q„,( g, t) (q is any matter field,

but the same construction also applies, with the obvious
modifications, to the gluon fields), describing quantum
fluctuations upon the single "tube" (the needle-shaped
domain that for simplicity we take as infinitely long) po-
larized around the direction u and centered at the trans-
verse coordinate a, g=x.u being the coordinate along the
tube. This field obeys the equal-time commutation rela-
tion

(2.7)
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carry any autonomous dynamics, are completely integrat-
ed out, resulting in the very peculiar [(1+1)-dimensional]
dynamics of color charges inside a tubelike domain.

From the effective action we can extract the Hamil-
tonian

H =HD +g H„,+HGr,
u, a

(2.11)

where

X G„"„"(g—ri)j„'„,(ri), (2.13)

(2.14)

is the (normal ordered) color quark current inside the
tube and [n„=(0,u)]

iq(,(—g)

G„,"(g—ri)=5 "(g„„+n„n„)limf
(2.15)

is the longitudinal gluon "propagator" (in fact the in-

teraction is instantaneous and there is no propagation at
all). Please note the infrared singularity of G„", leading
to a divergent self-energy for any physical system with
nonzero color charge: This is nothing but color
confinement.

The last piece in the Hamiltonian (2.11) describes the
(short-distance) interaction between quarks and massive,
propagating, gluons:

2

Hzz= x y j" x 5„," x —
y j„'y, 2.16

jg (x) =:q(x)y"(A, /2)q(x): being the usual Dirac
current.

In writing down the Hamiltonian term (2.16), we are
requested to make a well-defined choice for the time com-
ponent of the gluon momentum qo in the propagator:

d3 iq-(I —y)
gmn(x y) —fimn

(2') —
q +q +m

(2.17)

We shall come back later to this point.
We note that the full Hamiltonian of the theory con-

tains other terms, namely, the kinetic term of the massive
gluons and their confining interaction, having the same
structure as (2.13), but they are not relevant in discussing
the meson spectrum.

The next point is to set up a new kind of perturbation
theory and outline a strategy to approximately (but com-
pletely) solve the problem of hadron dynamics. We start

HD is simply the usual Dirac kinetic Hamiltonian of the
quark fields,

HD= fd x:q(x)(iV y+.rn)q(x):,

which can be written directly in terms of collective fields.
As for the interaction term, we have

2

2 XAo

by fixing the timelike hypersurface defining the Hamil-
tonian and all global operators, and by writing the
decomposition

H =H' '+H"', (2.18)

III. RELATIVISTIC SPECTRUM EQUATION

Our main goal in this section is to solve the eigenvalue
equation for the meson spectrum. Let us choose the rest
frame and denote by lMJ ) the generic mesonic state of
mass MJ, the label J denoting the collection of all quan-

tum number of the particular state being studied. Then
such equation reads

T

H, +gH„,. IM&)=M, IM, ) .
u, a

(3.1)

In writing (3.1) we have neglected the last term of the
Hamiltonian (2.11), H&&, which we shall take into ac-
count in the next section (recall that Hor does not con-
tain any infrared divergence).

Let us define now the plane-wave color-singlet tubelike
meson (in the rest frame)

lp, u, rs ) = b„o(p, r, a)d„o( —p, s, P)lQ) (3.2)

and the co11ective one

lp, rs) = —b (p, r, a)d (
—p, s,P)lQ);v'3

where H' ' is obtained by replacing the currents jg (x)
and jg „,(() with their truncated partners j' '"(x) and
j' „'",(g), which by definition contain only terms of the

type b~b, d d in their usual expansion, while H'" con-
tains all the other terms. We make two fundamental ob-
servations.

(i) H'„,' is the only term in the Hamiltonian that is po-
tentially divergent, H„",' having no component containing
the color charge operator. Thus H,',' is the only term of
the interaction Hamiltonian that must (and shall) be
treated nonperturbatively.

(ii) H' ' commutes separately with all the field number
operators, its eigenstates being thus labeled by a fixed
number of quark, antiquark, and gluons (N, N, N ).
This is no longer true if we take into account the full
Hamiltonian H'" that contains pair creation and annihi-
lation.

Thus we first diagonalize H' ', this diagonalization be-

ing carried out separately in each subspace of Pock space
with fixed (N~, N, N~), obtaining what we call the "primi-ql qP g
tive world" (PW): the Fock space of stable, noninteract-
ing hadrons (i.e., color singlet), the right asymptotic Hil-
bert space for perturbation theory. Next we evaluate ha-
dronic interactions by taking into account, perturbative-

ly, this time, the effect of pair creation induced by H"'.
As a first step in our research program, in the next sec-

tions we carry out the calculation of the meson spectrum,
i.e., the diagonalization of H' ' in the (N =1, N =1,

q

Ns =0) sector
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they are eigenstates, respectively, of the relative longitu-
dinal and collective momentum operator, so that (3.3) is
also an eigenstate of the kinetic Hamiltonian:

HD~p, rs) =((v( p +m, +Qp +mj, )~p, rs) . (3.4)

It is useful to introduce also the (collective) state
~p;I, s,j), which is a simultaneous eigenstate of momen-
tum squared P, orbital angular momentum L, spin S,
and total angu1ar momentum J operators. Obviously,
the ~p;I, s,j ) states too are eigenstates of Hrj, and their
relation with the basis (3.3) is given by

~p;I, s,j)= g C(j, l, s;mj, m„mj) g f dQ Yj~ (p)y (s, m)~p, rr'), (3.5)

(M~iMq) =(2n) 2M' . (3.8}

Actually, our Hamiltonian (2.11) commutes with
J2,P, C, but not with J,L,S, so that the "good" quan-
tum numbers of meson states are j,not '+'I, as im-

plied by our expansion (3.6). However, the basis Il, s,j ) is
not very different from ~j,PC ), the only mixing occur-
ring in 1,2++,3, . . . sectors between Ij+, and
(I +2)&+, states and, only for the unequal mass case, in

the 1+,2,3+, . . . sectors between 'I& and Ij states.
In fact, it is easier to solve the eigenvalue equation by

expanding onto the basis ~l, s,j), the expressions of the
kernel Vz being simpler, and then carry out the complete
diagonalization of the Hamiltonian evaluating perturba-
tively the effect of the mixing, which we know in advance
to be rather small.

By projecting Eq. (3.1) on the basis (3.5), we obtain the
one-dimensional Schrodinger-like equation with relativis-
tic kinematics (E, =Qp +m„Eb =')pI p +mb):

where y'"(s, m, ), Yj (P), and C(j, l, s;mj, m„mj) are,

respectively, the spin wave function, the spherical har-
monics, and the Clebsch-Gordan coeIcients. We there-
fore expand the state ~Mz ) onto the basis we have just in-

troduced (for a moment we restore the flavor indices a, b
and Q is the flavor wave function):

~MJ ) =(2m )
~ +2MJQ 'f dp p uj(p) ~p; I,sj;ab );

0

(3.6}

uz(p) is the (longitudinal) reduced wave function and the
factor (16m. Mz)'~2 is chosen in such a way that

p Qgp =1 (3.7)
0

ensures the correct relativistic normalization of the state:

the potential entering our integral problem is given by

Vs(pp')=(p;Is j X „Hp';Is, j)
U, a

(3.10)

and can be extracted, using (3.5), from the matrix element

V(p, p')'* =(p, rs XH, , p', r's') .

U, a
(3.11)

The matrix element (3.11)cannot be evaluated directly,
for the Hamiltonian is expressed in terms of tubelike
operators, whereas the states are written in terms of the
collective ones.

Let us therefore use the completeness of the eigenstates
of the relative position operator

~ x, rs ) to get

V(p p')'*'= Id xd x'(prslx rs),
X V(x, x'),", (x', r's'~p', r's'), (3.12)

V(x,x')'* =( r XH,x, sx', r's'j,
u, a

(3.13)

and the projector ( x
~ p ) is simply given by

where we have introduced the (nonlocal} potential in
coordinate space,

(E, +Ej,—MJ)uj(p)+ f dp'pp'VJ(pp')uJ(p')=0;
0

e lP'x

&,x, rsvp, r's') = 5,„.5„, .
(2m )'~2

(3.14)

(3.9) Finally, we insert the completeness of the states (3.2),

gg f dp~p, u, rs)(,p, u, rs I=1,
U fS

(3.15)

Please recall that P=( 1~1+&, C=( 1~I+s, and that the
charge conjugation is defined only for the equal-mass case. to obtain
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V(x, x')""=g f dp dp'(x, rslp, v, rs) g(p, v, rsIH„, Ip', v', r's')(p', v', r's'Ix', r's') .
V&V u, a

(3.16)

The evaluation of the matrix element of the Hamiltonian H„, is now straightforward, and to complete the calcula-
tion we only need the scalar product between the collective position and the tubelike momentum eigenstates, which is
given by [8] (r = lxl )

(x, rslp, u, r's') =
4m Ao

' 1/2
e ~P~

5„(x) —5„„5„.
27T r

(3.17)

The result of the calculation, which is sketched in Appendix A, is that the potential can be written as the sum of a
long-range and a short-range part:

V(x, x') "„,
' = VI„(x,x')"„,' + V,„(x,x')'„,',

where

V,„(x,x')""=p'r 5"'(x—x')5„„.5„. ,

(3.18)

(3.19a)

—5„5„[&0«,lr —r'I)+&0«b lr r'I)] ——[5„5„+o„o„—«»„«x')„]y, 5' '(x —x') 3

TT 2

mg+mb
XEO lr+r' + V„,(r, r')"„,'

2
(3.19b)

We would like to make here a few remarks.
(i) The long-range, confining, linear potential is both flavor and spin independent; it stems from the cancellation of

the infrared divergence that occurs only if the state is a color singlet.
(ii) The short-range, nonlocal terms containing the Eo Bessel function depend drastically on the quark masses and

cause (3.18}to have a logarithmic singularity for vanishing masses; this is, of course, a good signal for chiral symmetry
breaking.

The "residual" interaction V„,(r, r')„",', whose explicit expression can be found in Appendix A, has a highly nonlocal
structure, and no simple formula can be given for its contribution to the potential kernel VJ(p,p ); we therefore discard
this term from the eigenvalue equation (3.9} and shall treat it perturbatively, controlling at the end the consistency of
such procedure. The contribution of the other terms of (3.19) to V~(p, p') turns out to be, according to the decomposi-
tion (3.18),

2
1 2+ &2

, Ql
7T pp 2pp

(3.20a)

pp' V,„J(p,p') = — — ' 30(p,p', m, )+30(p,p', mb )
—2(1+S)O p,p',

3V' 5(p —p'} u' . m„mb

p +m 2

in (3.20b), we have introduced

(3.20b)

1 q p++p +m

q
—p Qpz+m2 m

p q+&q'+m'
ln

V'q'+m' m
(3.21)

and the spin-dependent factor

4 111(1+1}—3j(j+1)+6
3 " 3(21 —1 }(21+3)

The simple pole of the Legendre functions QI'(z) at z =1
requires the integral appearing in (3.9) to be interpreted
as a principal value integral, thus rendering our integral
equation singular. A well-suited technique for dealing
with the numerical solution of such equations is
Multhopp's method, which we shall briefly describe in
Appendix B.

After having solved numerically (3.9) with the kernel

2

f dr dr' uJ(r) V„,z(r, r')uJ(r'), (3.23)

with uz(r) the Fourier transform of the reduced momen-
tum wave function:

(3.20), we can evaluate perturbatively the contribution of
the term V„,(r, r')"„'; to first order, this results in the
mass shift

(M, l v„, lM, )

(M, IM, )
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1/2
2

u (r)=
L

ppr JI pr ~J p
0

(3.24)

IV. "COULOMB" INTERACTION

It is a gratifying observation to check that the contribu-
tion 5MJ turns out to be, a posteriori, not very important:
It is completely negligible for heavy flavor quarks and
gives a correction of the order of 10% for the light ones.

in order to perform the integration over the relative time
variable xo —

yo in the effective action; this is equivalent
to the choice of the time component of the gluon momen-
tum qo=po —po in the propagator of the instantaneous
Hamiltonian.

The most natural choice [9] seems to take both the
quark energies po and p 0 on the mass shell, setting

(4.1)

We must now take into account the effect of HoT, the
one-gluon exchange Hamiltonian, Eq. (2.17), that until
now has been neglected.

As mentioned in See. II, the first question we wish to
ask concerns the ambiguity in propagator (2.18): Actual-
ly, the interaction among quarks and massive gluons is
not instantaneous, so that we must give some prescription

This choice is different from the usual static approxima-
tion qp =0 which completely neglects retardation efFects,
and amounts in approximating the true time evolution of
the quark field in the Hamiltonian with the free one.

The next point about the Coulomb interaction is to set
up the computational strategy: The relevant matrix ele-
ment turns out to have the form

4&s 1 1
U(p, p'}"' = ——

3 n 2m —(E, —E,' )2+(p —p')2+m z

X&(p p') 'fsr(p p'}+fss(p p')o' "0' +&Ifso(p p'I 0' +fso(p p')fi ~ l'(p~p')

+ I (~;)„(~,)„——(~)„"(~)„l[fsT'(p p')p'p'+f sT'(p p')p "p'+f sT(p p')p'p'] (4 2}l fl' J $$3

The calculation that leads to (4.2) is reported in Appen-
dix C, together with the explicit expressions of the
coefftcients f and of the normalization factor C. Here we
want only to stress that we have not performed any non-
relativistic expansion of our kernel to get a local Hamil-
tonian of the Breit-Fermi type: Equation (4.2) takes fully
into account the efFects of relativistic kinematics as well
as, albeit in first approximation, the retardation effects.

From (4.2) we can extract, via (3.5), the kernel

UJ(p p') = &p; I,s,j IH&T ~p', I,sj (4.3)

which contains the full action of HoT on a definite meson
state.

Unfortunately, if we try to solve Eq. (3.9) with the po-
tential kernel Vz+ UJ, we find that the eigenvalue equa-
tion becomes singular. This is due to the fact that we
have extracted our Hamiltonian from the one-loop
effective action and, in order to make contact with the
Schrodinger formalism, we have systematically dropped
out all the effect of pair creation. On the other hand, we
know that the quark-gluon vertex has to be renormalized
by including higher-order graphs that remove the singu-
larity at r =0 of the Coulomb potential.

One possibility [8] to overcome this problem, which is
a consequence of the approximations we have made in
our treatment, is to insert in the eigenvalue equation for
the meson spectrum the kernel UJ(p, p'), -obtained in the
static approximation of the propagator (qo =0), and then
evaluate perturbatively the retardation efFects induced by

IM'", n&= y
mXn M' '(M"' —M' ')

m n m

(4.4b)

here n, m are radial excitation quantum numbers and we
have omitted the subscript J; the slightly modified energy
denominator we have used in (4.4) is a simple way to take
into account vertex renormalization.

The matrix elements appearing in (4.4) turn out to be

UJ(p, p') UJ(p, p—'} Actual. ly, Uz(p, p') is less singular
than Uz(p, p') and makes the eigenvalue problem well
defined; however, it gives a bad asymptotic behavior
(p ~ ~) to the wave function uj(p) and causes some of
the matrix elements that we shall consider in the next
section to diverge.

For these reasons we treat the effects of Uz(p, p') with
standard perturbation theory, to get the second-order
correction to the eigenvalues and the first-order correc-
tion to the eigenstates, whose zeroth-order expression
M„'0' and ~M'o', n & are obtained by solving (3.9). We
have

M'"+M' '= (M' ', n ~HoT ~M' ', n &

M„"'~ &M'", m (HoT ~M"', n & ~'

M"'(M„'"—M"')

(4.4a)
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V. RELATION AMONG COUPLING CONSTANTS

The question we want to address in this section con-
cerns the relation among the coupling constants. Actual-
ly, the basic QCD Lagrangian contains, in addition to the
quark masses, a single coupling constant g, whereas our
potential is given in terms of three parameters: p, the
"string tension, " which has been defined in Appendix A
to be

(5.1)

where the coupling g is evaluated at the typical energy
scale of the "longitudinal" gluons, the gluon mass ms,
which from the variational calculation turns out to be
given by

m =4A exp — —+a+2 8m'

2 g2(A2)
(5.2)

and the usual running as entering the one-gluon-
exchange potential, which is simply

(Q2)
g' Q'

4a
(5.3)

As g appears in (5.1), (5.2), and (5.3) at different scales,
in order to achieve our goal, i.e., to relate p, m, and as
to each other, we need the evolution law of the running
coupling constant; what can we say about the form of the
function g (Q )? For energy scales much larger than
g&' [Eq. (2.3)], which is the typical energy scale of the
magnetic condensation of the vacuum, the CML is prac-
tically indistinguishable from the perturbative vacuum,
and the relevant dynamics is well described perturbative-
ly by the basic QCD Lagrangian, so that for Qz»gB'
we come back to the usual evolution law of asymptotic
freedom. On the other hand, when Q «g8' in the
CML the gluonic modes are "frozen, " so that at such en-
ergy scales the coupling constant has no evolution at all.

According to these considerations, we simply modify
the first-order evolution law for the QCD running cou-
pling constant in order to reproduce the limiting
behaviors that we have just sketched, and for the evolu-
tion law we write down the expression

2( Q
2 )—

1+(21/48m. )g (g8*)ln[(Q +g8')/2g8']
(5.4)

putting Q =A~ and Q =0 and inverting (5.4), we obtain,

simply

&I ',~ ~H, ~M ',.&

dp dp'pp' u (p)Uz(p, p')u„(p') . (4.5)
0

Since the Multhopp method is accurate only for few radi-
al excitations (n & no with no =10), for higher radial exci-
tations we take the zeroth-order masses and wave func-
tions obtained with a WKB approximation [10] to the
problem (3.9).

g 2( () )
2( A2 )

1 —(21/48m )(a+ —,')g (A )

From (5.1), (5.2), (2.7), and (5.5a), we have

64 g (A )A
p 3~ 1 —(21/48m. )(a+ —,

' —ln2)g (A )

(5.5b)

1 8m
Xexp — —+a+

g 2( A2 )
(5.6)

whereas to obtain as we are interested to the region of
low Q, where the coupling evolves very slowly; so we
can take as(Q ) =as(0) and obtain

1 g2(A2)

4~ 1 —(21/48m )(a+ —,')g (A )

In this way we have related the three parameters that
enter in the determination of the meson spectrum to a
single constant, namely, g (A ). We can now solve (5.6)
for g (A ) and then, using (5.4) and (5.7), obtain the
values of mg and as as a function of p. Unfortunately,
we do not know precisely either the value of the cutoff,
which we take as

A=1.22e'9*' GeV, (5.8)

or that of the constant a, whose value is reported in Eq.
(2.2). By taking

p=(0.48+0.02) GeV, (5.9)

a typical value that well describes the meson spectrum,
we obtain

g (A )=1.06+0.06,

ms =(0.15+0.04) GeV,

0.3+as +1 5

(5.10a)

(5.10b)

(5.10c)

We see that, once we fix the string tension, that is, the
most relevant parameter for the spectrum, we have a
good determination of the gluon mass and a reasonable
bound on the values of as. Nevertheless, it is a very re-
markable fact that we obtain the right order of magni-
tude for m and as to correctly reproduce the spectrum,
which is a good signa1 that we are on the right way to un-
derstand hadron dynamics.

VI. DECAY CONSTANTS

The simple expression (3.6) of the mesonic state and
the knowledge of the corresponding wave function allows
us to obtain simple expressions for the pseudoscalar and
vector decay constants fp and fv that parametrize, re-

spectively, the P~lvl and V~e+e processes. Let us
define fp and f„through

respectively,

2(A2 )g'(g& ')= , , (s.sa)
1 —(21/48m )(a+ —,

' —ln2)g (A )
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& QI A."b(x)le{p)& =ig "~2fzp"e

& Ql Jl'b(x)
I
I'(p, e) & =g"fye"e

(6.1a)

(6.1b)

J,"g(x)=5 pq ~~{x)y"q,(x),

A,b(x) =i5 @~q(x)y q, (x) .

{6.2b)

(6.2c)

[note the &2 in (6.1a)], and, for later use,

& QI A,b(x) I p(p ) )=g '&2f5MI e (6.1c}

«« I p(p) & and I V(p, e) ) are the pseudoscalar and vec-

tor meson state with momentum p" and polarization e",
while the expression of the currents are (the i in the last
expression is to ensure Hermiticity)

&Ql A:,(o)I» = g "&zf,M, ,

&QIJ.,(o)lv(e)) =g "fve,
&QIA.'b(o)lp&=g"~2f M

(6.3a)

(6.3b)

(6.3c)

In the rest frame (p=o) the nonzero components of (6.1}
become

A,"b(x)=5 pqf(x)y"y'q, '(x), (6.2a)
while, according to (3.5), the expression of the normal-

ized states are

IP&=i2~V Mp g f d'ppu, (p)b (p, r, a, n)d ( —p, s, bP)l Q),
3 2

I
I'(e)&=2~V'My g ' f d ppuv(p)b (p, r, a, a)dt( p, s, b—,P)IQ& .

3 2

(6.4a)

(6.4b)

V 6My l E, —m,
fv= f dppNab(p) 1+

3 E + "v{p}~

277 0 b +Pub

(6.5b)

fs= f dp pNab{p} 1+
2n V'M o

' Eb+mb
QE(p),

(6.5c}

where we have introduced the factor

N,b(p) = (E, +m, )(Eb+mb)
E,Eb

(6.6)

Finally, we obtain (see also [11]for a careful derivation)

3 1 ~ Ea ma
f~ = f dp pN, b(p) 1 — up(p),

2m V'M o Eb+ mb

{6.5a)

VII. BREAKING OF CHIRAL STNIMETRY

We wish now to address the problem of what happens
in the chiral limit of QCD.

We recall that our q qpotenti-al [Eq. (3.19)] has a loga-
rithmic singularity in the chiral limit that originates from
the (effective) two-dimensionality of the dynamics. In
fact, when we solve (3.9) for vanishing quark masses, we
obtain the remarkable situation depicted in Fig. 1: For
m, (m ' (with m ' =85 MeV), the pseudoscalar state ac-
quires a negative energy. This means that IQ) cannot be
the true ground state of the theory, which therefore must
be quantized in terms of a new ground state lro ) and new
creation and annihilation operators. This can be
achieved, in general, via a Bogoliubov transformation
(see, e.g., [12]): The "true" vacuum Ico) can be easily
seen to be a superposition of the I Q ) state and of a con-
densed state of quark-antiquark pairs. Matter field exci-
tations on this vacuum are described in terms of an
"effective" mass that depends on the momentum, which

1.2

0.8

0 04

FIG. 1. Quarkonium vs quark mass. The
critical mass is m*=85 MeV.

0.2 0.225

Quark hfass (GeV)
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We assume in the following that the constituent mass
can be taken as momentum independent, in such a way
that the vacuum rearrangement process can be described
only by new mass parameters m,",which simply replace
in the Hamiltonian the "current" masses m, .

We would like now to find the relation between constit-
uent and current mass without analyzing explicitly the
Bogoliubov transformation and the consequent gap equa-
tion. To do this let us take the divergence of the axial
vector current (6.2a); recalling (6.2c), we write

i.75 '-

1.25

tl„A,"b(x)=(m, +mb)A, b(x) . (7.1) 0.75 I-

We now take the matrix element of this equation between
the vacuum and a pseudoscalar state, and observe that
[see Eq. (6.1)]

06
I"

0.25

thus, we finally obtain

(7.2) I j I I I I I I I I I I I I I I I I I I I I L I I0 '

0 025 0.5 0.75 I l25 I5
Current

1.75 2

Mass (Ge V)

Mp=(m, +mb)f, fp ', (7.3)

which is the relation that we needed, for Mz, f5, and fp

depend now on the constituent masses m,' and mb'.
We are now in the position to prove that the vacuum

rearrangement process that we have just sketched is
nothing but the spontaneous chiral symmetry breaking.
In fact, Eq. (7.1) tells us that in the chiral limit (m, ~0,
mb ~0) the axial vector current is conserved.

To meet the hypotheses of the Goldstone theorem [13],
we only need to show that the state leo) breaks chiral in-
variance; a standard way to do this is to evaluate the vac-
uum expectation value of the non-zero-chirality operator
q(0)q(0) in the chiral limit. The result of the simple cal-
culation is

lim (col5 g~(0)q, (0) co)

FIG. 2. Constituent vs current quark mass. For high masses
the relation is (almost) linear.

tonian. But when we take into account the action of mas-

sive gluons, a new effect arises: The negligible quark
self-energy diagrams due to the massive gluon exchange,
which could anyhow be incorporated in the definition of
the current masses, after the vacuum rearrangement due
to the (almost) spontaneous chiral symmetry violation,
are no more negligible for a non-negligible dynamical
constituent mass now arises. Thus, in calculating the
shift in the masses of the meson states induced to second
order by the massive gluon-quark coupling, we must con-
sider terms of the form

(c)e

2+ (c)e2
(7.4a)

2 24a&, , ~ m
5m,"=— m, '5

( ]2, ~ i23 7r m, ' I,' (7.5)

which is manifestly different from zero, being

m" *= lim m "[m, ]= 85 MeV,
m ~0a

(7.4b)

the chiral limit of the constituent mass.
In Fig. 2 we show the relation between current and

constituent mass that we have obtained solving (7.3),
whereas in Table I we report the values of the quark
masses that we used to get the meson spectrum (at this
level we have no need to take into account any mass
difference between the u and d quarks).

The smallness of 1ight quark mass shows that chiral
symmetry is nearly conserved in this sector and that the
pion, while conserving its q-q bound state character,
plays the role of the Nambu-Goldstone boson in the spon-
taneous chira1 symmetry-breaking process.

As explained above, the main dynamical consequence
of chiral symmetry breaking is that the constituent
masses replace everywhere the current ones in the Hamil-

TABLE I. Quark masses used in this paper.

Quark flavor

Up
Down

Strange
Charm
Bottom

Current mass
(GeV)

0.019
0.019
0.074
1.248
4.625

Constituent mass
(CxeV)

0.113
0.113
0.189
1.385
4.736

(the function b, is reported in Appendix C), where the
"cuto6" M must be of the order of the typical energy
scale at which the chiral symmetry breaking occurs.

This mass shift modifies the kinetic Hamiltonian and
hence the dispersion relation of quarks and antiquarks.
To be consistent with our treatment of the effects of the
Coulomb interaction, we expand the kinetic Hamiltonian
to second order in ez to get
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& p, rslHD lp', r's') =5' '(0)5' '(p —p')5~5„[E,+Ei, +5E,(p)+5Eb(p)], (7.6)

a m(c)2 2 m2 a
(

4 s Q ~ M g 1 4 s
3 ~ E m(c)2 m(c)2 2 3a a

2
1

E
m (c)2

m")2a
E2 m~

a

M mg2 2

~g' (a
ma ma

(7.7)

Thus, in (7.6), in addition to the usual kinetic term, we have the potential (we omit, as usual, the rest-frame 5 function)

U (p, p')"' =5"'(p p—')5„„.5„[5E,(p)+5Eb(p)], (7.8)

and to evaluate the effects of U (p, p')"' on meson eigenvalues and eigenvectors, instead of (4.5) we must apply (4.4)
with

(M'OI m ~IIoT~M'0', n ) =f dp dp'pp'u (p)[UJ(p, p')+U/ (pp')]u„(p');
0

(7.9)

the projection of U a(p, p')„',' on the ~l, s,j ) basis can be
immediately carried out to give

ous way from (4.4b). We have fixed the relevant parame-
ters (without any best fitting procedure) at the values

[5E.(l )+5E~(p)]csn 5(p
(7.10) p=0.48 GeV,

as =0.40

mg =0.14 GeV,

(8.3a)

(8.3b)

(8.3c)

VIII. RESULTS
AND COMPARISON KITH EXPERIMENTS

MJ =MJ '+5M' '+MJ" +MJ ', (8.1)

where the first term is the eigenvalue of the Schrodinger
equation (3.9), obtained by Multhopp's method, while the
other terms are perturbative correction evaluated by
means of (3.23) and (4.4a); as for the wave function, this is
given by

uz(p) =uz '(p) +uz" (p ), (8.2)

where the correction uz"(p) can be extracted in an obvi-

We open this section by recalling that the structure of
the meson spectrum that stems from our approximation
1s

whereas the quark masses we have used are reported in
Table I.

Figures 3-9 show our results for the meson spectrum.
For heavy quarkonia, our results are in very good agree-
ment with available experimental data, with the only ex-
ceptions of high radial excitations in the 1 sector: In
our opinion this is due to the fact that, over the threshold
for charm-anticharm production (the same kind of con-
siderations, of course, applies to b-b states), we expect a
considerable amount of mixing and mass shift induced by
the "unitarity" effects on the self-energy function of the
state; this is a very interesting problem that belongs to
the perturbative effects associated to the pair creation
Hamiltonian H" '.

Heavy flavored mesons also are in satisfactory agree-
ment with the data.
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FIG. 3. Comparison between our theoreti-
cal calculation (solid lines) and the available
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TABLE II. Theoretical pseudoscalar and vector decay constants. The experimental values, where
available, are shown for comparison.

Pseudoscalar state

7l

7l'

D
D,
B
B,
Ic

101
79
78

170
186
164
180
311

492

fp (MeV)

(92.5+0.2)

(113.0+ 1.0)
(92+5)
(83k 5)

( (220)

Vector state

J/0
4(2S)

Y(2S)

0.14
0.047

0.10

0.97
1.00
2.17
1.87

fv (GeV )

(0.117+0.003)
(0.036+0.001)

(0.081+0.001)

(0.84+0.02)
(0.69+0.03)
(2.26+0.03)
(1.63+0.04)

For the light states, we make the following remarks.
(i} There is nothing in our Hamiltonian that distin-

guishes between isovector and isoscalar states. Thus in
the unQavored sector we have no mixing between u -u and
s-s states; in particular, this explains why in the 0 + sec-
tor we have not a good description of g and g' mesons
that, as is well known, are strongly mixed. This is anoth-
er interesting problem whose solution has recently been
found in the effects of H'" [14].

(ii) The pseudoscalar states lie systematically above the
experimental data; this is probably due to our "crude"
approximation in treating chiral symmetry breaking.

(iii) For the P-wave states, one must repeat the con-
sideration made above on the heavy quarkonia: The
states are strongly coupled to the open channels, so that
one expects unitarity mass shifts of the order of the
widths.

Table II shows our results for the pseudoscalar and
vector decay constants: The overall agreement with data
is good; we observe that the value of the decay constants
depends strongly on the wave functions. It thus appears
that our approach gives us a good approximation of the
"true" wave function.

IX. CONCLUSIONS

What has been presented in the preceding sections is
the first comprehensive analysis of a key problem of non-
perturbative QCD. When computed in the framework of
ACD, the theory of finite energy (in the limit A~ ~)
quantum fiuctuations of QCD, the hadrons, around the
(most likely) ground state, the CML, the meson (q-q}
spectrum and the associated qq wave functions show a re-
markable likeness to the real world. This is a11 the more
comforting, since our calculation is, within the limita-
tions and approximations that have been clearly spelled
out, really a "first principles" calculation, based on a
minimal set of inputs: g(A ) (the bare coupling con-
stants) and the quark masses (the constituent masses,

whose unique connection to the bare masses has been elu-
cidated in Sec. VII}.

The fact that we have been able to obtain all masses
within 100—150 MeV, in terms of a (relatively) simple
analysis, is, in our opinion, remarkable for two reasons.
First, the agreement we obtain is within what we do ex-
pect for the approximate calculation that we have carried
out here, neglecting all "unitarity" effects, which we
know are governed by the quark pair creation Hamiltoni-
an H'", which does not belong to the primitive world.
Indeed, the discrepancies we register are of the same size
of the typical hadrons' widths, which are induced by the
same dynamics. As for the second reason, we must stress
that obtaining a complete set of eigenvalues and eigen-
functions belonging to the diagonalization of the PW
Hamiltonian has cost relatively little in terms of calcula-
tion, with the very definite advantage that, differently
from the costly and complicated Monte Carlo simula-
tions of LGT's, we do get a simple understanding of what
confinement is and where it comes from.

Finally, at least in the case of heavy quarkonia, there is
quite a lot of overlap with other "QCD-inspired" calcula-
tions: We modestly acknowledge that the progress we
have achieved there may not look impressive; however,
we note that for the first time we have a unified approach
of heavy quark (short-distance) and light quark (long-
distance) spectroscopy, and that this has not required any
methodological shift.

The road ahead is certainly very long and steep, but
this work convinces us that it is well worthwhile to
proceed along it; we do hope that this is also the convic-
tion of the reader who has had the endurance to get this
far.
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APPENDIX A: CALCULATION OF THE q
—

q POTENTIAL

We start the calculation of the "potential" writing down the expansion of the Dirac field at t =0:

q„,(g)=g f —Ib„,(p, r, a)u (pu, r )e'P~+dt, (p, r, a)v (pu, r )e
2'jr

(Al)

to ensure (2.7} the commutation relations for the creation-annihilation operators turn out to be [spinors are normalized
according to u (p, r}u(p,s)=5 and so on]

I b, ,(p, r, a ),b t. , (p', r', a') ]
=5„n5, ,5„5 5(p —p') .

The normal-ordered (0}current is therefore given by

(A2)

dh, dh2j"ir,(t„) Z=Z J (ii(,iiii(( ,r
2 Q)Q2

-I(~, -~,g gu(h3u, t3)e ' ' b„,(h„ t„a))b,(h 3, t3, a2)

—v(h iu, ti )y"
I'( II

&
A ~ )g

v( h3u, t 3e}' ' d„,(h3, t3, a3)d„,(hi, t),a, )
1 2

(A3)

Let us now concentrate on the typical term entering the matrix elements of the Hamiltonian appearing in (3.16):

(p, v, rs ~(II„,)p', v', r's' &")

g
2 dq dh dih 3dh 3dh 4

lim X I dt dr(
1' 2' 3' 4

e~~ " '(h —h )f '(h —h )v i)(,
X

2 2
e ' ' e ' ' u(h)u, t, )y"

q +A, 2 Q)Q2

r

u(h3u, t2 )u (h3ui t3 )

Xy" u(h4 ut4)( Q~ d„o( p, s,p)—b„o(p, r, a)b„,(h), t),a))b„,(h3, tz, a2)
a3a4

Xb„,(h3 t3 a3)b„,(h4, t4, a4)b„()(p', r', a')d„()( —p', s', p')~Q) . (A4)

Evaluating the operator string by means of (A2), we obtain the following.
(i) From the color part of the expression we have the factor

~ ~

5ap 5a'p' gm gn 4
mn ~3 ~3 2 2 , PP'

i ~ r

(ii) The "tube" (transverse) part of the diagram reduces simply to

5, ()5„„5„„.
(iii} The integration over g and g leaves us with

(2n. ) 5(0)5(q —h, +h 3 ) .

(A5)

(A6)

(A7)

Taking into account (A5) —(A7) and (3.17), (3.16) becomes

2 e i(px —p'x')

V(x, x'}"'= 5(0)5' '(x —x')—
A. 3 2N„Ao —~ 2m xx' I( (p,p', x)"; (A8)

in this expression, the factor ( I/A())5(0) is the rest-frame three-dimensional 5 function (we systematically omit this
term, as it factorizes froin all terms of eigenvalue equation), and we have used

N„
lim g 5„(x}5„(x')=5'2'(x —x')

N„—+ oo 4' (A9)

(this is exactly the same limit as A —+ ao }.
I(:(p,p';x }"' is simply the longitudinal spinor part of the matrix element (A4) and for the full Hamiltonian turns out

to be the sum of two contributions, the first of which is to be interpreted as due to "self-mass" diagrams (the b bb b and
d dd d terms in the product of the currents), while the second one is due to "exchange" diagrams (the two b bd d com-
binations}:
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K" '(p, p';x)"' =5(p —p') lim g I0, —m 2n (p —h)2+$2

X {5„u(px,r)yiu(hx, t)u(hx, t)yj„u(px, r')

+5,„v(h x, t )yiv( —px, s )v( p—x,s')y i„v (h x, t )],
u(px, r )yiu(p'x, r')v( —p'x, s')y~„v( —px, s)

K'"'(p, p';x)"„' = —2 lim
X~O 2' (p —p') +A,

where we have introduced the notation

y ~= y„(g~"+ n "n ") .

To evaluate (A10) let us define the functions

(E +m )(E +m )+pq

[4E&Eq(E +m)(E +m)]
(E +m)p (Ez+—m)q

b(p, q;m) =
[4E E (E +m)(E +m)]'

which have the properties

a (p, q;m)+b (p, q;m)=1;
we easily obtain

u (px, r )you (qx, s ) =a(p, q; m, )5„,
v ( px, r )yov—( —qx, s ) =a(p, q; mb )5„, ,

u(px, r)y|u(qx, s)=ib(p, q;m, )(o Ax)„, ,

v( px, r)y—~v( —qx, s)= ib(p, q—;mb)(o~hx)„, .

We finally have

(A10a)

(A lob)

(Al 1)

(A12a)

(A12b)

(A13)

(A14a)

(A14b)

(A14c)

(A14d)

K' '(p, p', x)"„,' =5(p —p')5„„5„.lim J 2 [2—3b (p, h;m, ) 3b (p, h;—mb)],
0 —~ 2' (p —h )2+g2

(A15a)

1 1K'"'(p,p';x)"„,' = —21im [a(p,p';m, )a(p,p';mb)5„„5„+b(p,p', m, )b(p, p', m&)(o~)„„(trl)„] .
02qr (p —p')~+$2

(A15b)

We can now extract the singular terms when A, ~O and perform the limit in the regular ones; moreover, we use

b (p, h) 1
dh

P —h' Ep

to rewrite K(p,p';x)" as the sum of a singular and a regular part:

(A16)

K'""s'(p,p', x)"„,' =—lim —5(p —p') — 5„„.5„. ,
7r z 0 A, (p —p')~+ g~

(A17a)

K(sm)(p i. )r's' 3 1 1+ 5(p —p')5„„5„., (A17b)

(A17c)

V„(x,x')"' =—,5(x —x')5„„.5„.lim —[1—e "]4 g 5' '(x —x'), . 1

3 2N„Ao xx' "' "
x ok

1 [1 a(p, p', m—, )a(p,p', mb )] 1 b (p,p', m, )b(p, p', mb )
K""'(p,p', x)",;=+— 5„,.5„——

(cubi),„(oi)„
7T (p —p')' (p —p')2

By inserting the expression of K'""s'(p,p', x)"„;,(A17a), into (AS) and performing the integrations, we obtain the long-

range part of the potential:

=t"5"'(x—x )5„„.5„,x, (A1S)
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where we have defined the "string tension" p as

1/2
4 g2

3 2N„A0
(A19)

Please note that in order to obtain the cancellation of the O(1/A, ) term in (A18) the color factors coming from the self-

mass and exchange graphs need to be equal to each other, and this happens only if the color wave function of the meson
is the singlet one; i.e., color is confined.

By using the integral representation of the Ko modified Bessel function

itx

Ko(x) =f dt 1+t'
the contribution of the regular part of the self-mass diagrams to the potential can be cast in the form

3p 5' '(x —x')
V, (x,x')"' =—,5 .5„,[KO(m, [r r'~—)+Ko(mb~r r'~)—];

XX

(A20)

(A21)

as for the contribution of the regular part of the exchange graphs to V(x, x')" ', we cannot give a simple formula for the
general case; however, in the equal-mass case (m, =mb =rn) we are able to obtain

(2) ~
V,„(x,x')"'=, [5„„5„.+(tr~)„„"(trj)„]f Ko[m+x +x' +2xx'cosh(2t)]; (A22)

this is why, in order to perform explicit calculations, we choose to write this last term as in (3.19b), with V„,(r, r')"'
given by

m, +mb
V, (r, r'}"' = [5„„.5„.+(o j ),„~(o j }„]Ko ~

r+ r'~
2

[1—a(p,p';m, )a(p,p', mb)]—2
"

dpdp'e"&" &'"'.
00 (p p')

b (P,P';m, )b (P,P', mb )„.5„.— ', (o, )„„.~ (tr, )„.
(p p')

(A23)

APPENDIX B: MULTHOPP'S METHOD

h d0'
[g(8) E]+f 2

—V(8, 8')u(8') =0,
~&2 sin 8' (B2)

Multhopp's technique is a method for finding eigen-
states and eigenfunctions of bound state equations that is
very appropriate when dealing with singular integral
equations.

Let us consider the integral equation

[g(p) E]+J dp' V—(p,p')u(p')=0 (Bl)
0

and make the change of variables p = —h cot8,
p'= —h cot8', with h a positive, arbitrary constant and
8E [~/2, m. ]. Then the above equation reads

1+, k=1, . . . , N;

for these special values, the expansion (B3) becomes

N

uk = g c„sin(2n 8k }
n=1

where ut, =—u(8I, ).
By using the orthonormality relation

N

g sin(2n8k)sin(2m8k)=5 „,
k=1

we obtain

(B4)

(B5)

(B6)

where, for simplicity, we have written u ( —h cot8) as
u(8}, g( —h cot8} as g(8) and V(8, 8') instead of
V( —h cot8, —h cot8'}.

As [(&4/m, sin(2n8)]„~„ is an orthonormal basis on
[n./2, n.], we can write the expansion

N N
u(8')= g g c„5„sin(2m8')

n=1 m=1
N 2 N

g sin(2m 8 }sin(2m 8'}u, (B7}
j=1 m =1

u(8)= g c„sin(2n8) .
n=1

(B3)
and the integral equation (B2) reduces to the simple alge-
braic problem

We now truncate the series at a maximal value N and in-
troduce N discrete values ("Multhopp's angles" ):

N

g Mkj. uj =Eu„, k = 1, . . . , N,
j=1

(B8)
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with the A XXmatrix Mk; given by

Mkj g(8k )~kj

N

+ g sin(2m 8, )X+1

X f V(8k, 8')sin(2m 8') .h dO'

~t2 sin 0'

(B9)

Once the eigenvalue problem (B8) has been solved, we
can extract from (B5) [use (B6)] the expansion coefficients
as

X
c„= g sin(2n8k)uk, k= 1, . . . , j))' . (B10)

Ic = l

The accuracy and stability of the method can be
checked by iterating the procedure with increasing values
of X. We have found that the solution converges quite
rapidly and that E of the order of 80 gives us very good
results for the first low-lying eigenvalues and eigenvec-
tors. Also, the convergence of the method depends criti-
cally on the value of h, which must be chosen in such a
way that the eigenfunctions are well centered around the
values 6jk, this means that h must be of the order of the
mean value of p; on the other hand, small variations of h

around this value have no relevant effect on the solutions.
In fact, Multhopp's technique provides us with excel-

lent approximations of the wave function u (p) only far
from the asymptotic regions p ~0 and p ~ o() (that corre-
spond to 8~m/2 and 8~~), the reason being that, when
we discretize the variable 8 (and hence p), only a few

points fa11 into these regions.
Moreover, it is easy to see that Multhopp's solution

has the behaviors

p y p~0y
u(p) —'

1/p, p —+ oo, (Bl 1)

to compare with the analytic asymptotic behavior of the
solutions of our eigenvalues problem

I+ i 0
uJ(P)- '1 i+4 (B12)

1 p, phoo

Hence we take as the reduced wave function of the meson
the expression

p'
p+b p +pinf ~

u()= ~
N

g c„sin 2n m
—arctan-

n=1 p

C

d )I +4 ' P PsuP
. p

~ pinf —p —psup

(B13)

which has the correct asymptotic behaviors; the
coefficients a, b, c, and d are chosen in such a way that
u E C'(I), and the continuation points are chosen to be
in the region of the first and last Multhopp angle, respec-
tively; we have also checked that any variation ofp;„f and

p,„ in these regions has no notable effects on the matrix
elements that we evaluate with the functions u (p).

APPENDIX C: CALCULATION OF THE COULOMB POTENTIAL

The calculation of the relevant matrix elements of the Hamiltonian term Ht-T is much less involved than that
sketched in Sec. III and Appendix A for the confining potential; for now, the Hamiltonian is written directly in terms of
the collective operators, those appearing also in (3.3).

Writing the usual decomposition for the Dirac field at t =0 |remember that spinors are normalized according to
u (p, r)u(p, s)=5„,],

d p
q (x)=g f" Ib(p, r, a)u(p, r)e'P" +d(tp, r, a)v(p, r)e 'P'"]

—~ (2~)

and expanding the Hamiltonian on the creation and annihilation operators, we obtain, as usual, four terms: two corre-
sponding to quark self-mass diagrams and two corresponding to exchange diagrams.

We start by evaluating the contribution of exchange terms, which results in the kernel

U(p, p')'„,' = ( p, rs ~HoT ~

p', r's' )'"

g
2 d 3q d h &d h2d h3d h4 P~P Z~'P'

t (2 )3 (2 )6 ltlll Pv
1' 2' 3' 4

i(h& —h)) I i(hs hs) y-
Xe ' ' e ' ' u h), t))y"

2 a)a2
u (h3, t3 )u (h3p t3 )y"

2 cK3Q4

u(h4, t4)

X (Q~d( —p, s,P)b(p, r, a)b (h, , t„ai)b(h2, t2, a2)

xdt(h3, t3, a3)d(h4, t4, a4)b (p', r', a')d ( —p', sp')~Q), (C2)

%'e have tested Multhopp's technique by solving eigenvalue problems whose analytical solutions are known.
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where the factor 2 takes into account the existence of two identical contributions. Carrying out the evaluation of the
operator string and the I and y integrations, we are left with

4 2 g(3)(0) u(p, r)y"u(p', r')v( —p', s')y u( —p, s)
(2m )' (E—. E—,' )'+ (p —p')'+ mg

(C3)

the factor —, coming from the color part of the diagram; we discard, as in the other terms of our equations, the factor
5( '(0), which is the center-of-mass momentum conservation, and rewrite (C3) as

U(P, P')"„' = ——,1,2 18(P,P')"„,',
2~ (E,—E,')—+(p —p') +m

where

(C4)

a ——gas (C5)

and

8(p, p')'„' =u(p, r)y&u(p', r')u( —p', s')y„u( —p, s)

is simply the product of the current. After a little algebra we obtain

&(p p } =~(p p }Ifst(p p }+fss(p p )tr-"tr '+'lfso(p p'+ tr '+fso(p p')& '(r 'l'(p~p')

+ l(~;)„(~,)„—-3(~ „)"o(„))lfs T(p p' )pp'+f sT'(p»p'}p "p'+fsT(p p'}p'p']

+fMx(p, p')(tr „„Ao „)(p h p') I;

(C6)

(C7)

we thus have a structure comprising spin-independent,
spin-spin, spin-orbit, and tensor terms; the last term, in
particular, is different from zero only in the unequal mass
case and, moreover, has no diagonal matrix elements (in
the il, s,j ) space); it is responsible for the mixing in the
1+,2,3+, . . . sectors for the flavored mesons, so that
we take into account this term only in the final step of
our calculations.

If we define the quantities

(1) hb hb hII hb hII hb p.p''"p,p'=2 +,+, +

h, h,
'

h,'hb h, hb
(so p, p' =2,+,+, +

(C9c)

(C9d}

h, =QE, +m, ,

hb =QEb+mb,

h,
' =gE,'+m, ,

hb QEb +mb—

(C&)

h,'hb i2
f(t)( I) —4

~ b + P
h, hb h, hbh, 'hb

2
P(2)( I) —4

~ b + P
h,'hb h, hbh, 'hb

(C9e)

(C9f)

the functions appearing in (C7) are given by

h, hb 1 h,'hb
fst(p p')=h. h, h.'h,'+, , p' +

h h
p

hahb ha hb

h h,
'

hb hb h hb h'hb
+ + + + pp'

hbhb hah,
'

hahb h, hb

h, hbfsT (p p'}=—4
h,'hb

h,'hb
fMX(pIp )=2

h, hb

a b+ 2pph'h I

h, hb h, hb h,'hb

h, hb

h,'hb

(C9g)

(C9h)

+ (p.p')'
h, hbhahb

)
4 p p

h h h'h'
a b a b

h, hb+2
h,'hb

(C9a}

h, hb h,'hb
+2 ' +2

h,'hb h, hb

hQh b (p.p')+
h, hb ha hb h,'hb

(C9b)

whereas the normalization factor is

«u s 'i=
4+E,EbE,'Eb

(C10)

As for the self-mass terms, they are best evaluated
without making any approximation in the propagator,
coming back to the original Lagrangian and evaluating
the self-energy function X(p}; this is a completely stan-
dard calculation, except for the fact that we have massive
gluons; the result is
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4 & l
X, (p)= — —f dt(2m, t—IJ)

3 7T' 2 0 b, (y, x)=—3 lny+ —+x ——x lnx
1 3 1

4 2 2

Xln
tM

(1 —t)m 2+ tmg2 —t(1 —t )p2

(Cl 1)

x +2 +x —4x x++x +4x+ 9(x —4) ln
2 x —&x' —4x

—0(4—x )}~ 4x —x

5m, =g(p)~~ (C12)

the integration can be carried out explicitly, and we ob-
tain

where M is a momentum cutoff introduced via the Pauli-
Villars regularization method in order to avoid ultra-
violet divergences. We can now extract the quark mass
shift as

4—x
Xarctan

1/2

(C14)

Thus the contribution of the self-energy terms results
only in a (divergent for M~ac) mass shift, which is
reabsorbed in the process of renormalization of the QCD
Lagrangian and in the definition of the current mass,
which is a free parameter of the theory, so that the self-

energy diagrams have no effects on the dynamics of the
bound states.

4cs M
5m, =— m, h

3 7T m

where the function 6 is

2m

2 7

ma
(C13)

4Actually, we have made some approximation also in the eval-

uation of this contribution, putting the quarks on the mass shell,
i.e., setting I{=m, . This is the same kind of approximation that
we make in order to obtain the instantaneous propagator for the
exchange term; namely, we replace the matter-field time evolu-

tion in the bound state with the free one.
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