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Heavy quark supermultiplet excitations
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Lorentz-covariant wave functions for meson and baryon supermultiplets are simply derived by
boosting SU(2),~;„representations corresponding to multiquark systems at rest.
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I. INTRODUCTION

A number of articles have recently appeared [1] where

descriptions of hadronic excitations containing one or
more heavy quarks have been presented. All of these re-
cent constructions have regarded the external velocity of
the hadron v as a four-vector parameter and have written
the wave functions in terms of v and of internal veloci-
ties u; in these schemes one encounters projections par-
allel and perpendicular to v and tensors and/or spinors
formed out of v, the several u, and the p matrices. Some
of the descriptions are quite elaborate and involve com-
plicated algebraic maneuvers over Lorentz-covariant ob-
jects before the final forms are attained. Occasionally the
derivations are given in the Bethe-Salpeter framework [2]
or variants thereof.

Most of these authors were (understandably) unaware
that this problem was tackled many years ago [3] in the
context of Reggeization of supermultiplet theory. At that
time there was interest in constructing supermultiplet
wave functions at arbitrary integer total angular momen-
tum J (or its Casimir generalization for the chosen su-

persymmetry group), before continuing somehow to com-
plex J values. Multispinor wave functions appearing in
Sec. IV of Ref. [3] were quoted abruptly without much
elaboration and the formulas may therefore look rather
mysterious today. Because this subject of hadronic exci-
tations has come back into vogue in the context of heavy
quark physics, we shall explain here the derivation of
multiquark excitation functions and will take the oppor-
tunity to correct a few normalization factors in Ref. [3].
Then we shall go on to discuss the application to heavy
quark composites.

The basic idea is extremely simple and direct: since
all such supermultiplets are massive we can always pro-
ceed to the rest kame, where the four-velocity v is a
unit timelike vector pointing along the time axis. In that
frame the only surviving space-time symmetry is the lit-
tle group of the full Lorentz group associated with n,
namely, spatial SU(2), and the states fall into irreducible
representations of it. We now know (as was not fully ap-
preciated in 1969; prior to the discovery of the 6 and c
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quarks) that hadrons are tohite composites of quarks and
gluons; the standard picture views the mesons as made
of one quark and an antiquark, while baryons are made
of three quarks, plus a colorless mixture of any num-

ber of gluons and quark-antiquark pairs. Some models
sometimes replace two quasi&ee quarks by a single com-
posite diquark, but the basic idea is essentially the same.
The internal degrees of freedom and the binding mecha-
nism, which is not completely understood at low energies,
produce a bound multiquark state that carries appropri-
ate quantum numbers; these can be nothing more than
the SU(2) z labels plus a possible multiplicity label N for
states which are repeated, as well as the internal flavor

group quantum numbers which we have not bothered to
expose. In other words the integrations over the inter-
nal momenta eventually lead, in the rest frame, to meson
and baryon states

[P ]~ ... } and [Q bc]~

where m is an O(3) vector index corresponding to orbital
excitation L, and a, b, c stand for two-component spinor
indices (barred for antiquarks). ( ) represents a sym-
metrized tensor product and we have assumed above that
all Kronecker traces over the m indices are zero to make
the orbital state irreducible with respect to O(3). In the
next section we shall reduce these states with respect to
total angular momentum J and in Sec. III we will boost
up the results to arbitrary velocity v. Finally we shall
discuss the connection with Lagrangians, Bethe-Salpeter
wave functions, and other work.

II. NONRELATIVISTIC REDUCTION INTO J
REPRESENTATIONS

The first task is to simplify the spin structure. Because
the quark and antiquarks can in principle be acted upon
by di8'erent spin groups (see Sec. IV), we first reduce
the rnultispinors into total spin states, disregarding their
orbital quantum numbers:

4'. = [4.h.'+ ( -)'.&-]/~2
@abc i/(abc} + 0(ab}c + P[ab[c

(o2~ )( b} P /v 2 + (e A'b + ebc"4)/~~

+e.by.'/V 2.
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Since antiparticles have opposite parity to particles we
recognize the pseudoscalar state Ps(0 ), the vector
state P (1 ), the spin 1/2 states Q, g', and the spin 3/2
state Q„obeying the irreducibility condition, a g = 0
which ensures that g& b, &

is symmetric. Note the occur-
rence of the o2 matrix which is the lowering operator for
SU(2) and the charge conjugation matrix nonrelativisti-
cally.

The next step is to combine spin and orbital fac-
tors into representations of total spin J. As far as
the pseudoscalar meson excitations are concerned, there
is nothing more to be done: Psl, } stands for a

state with parity (
—1) + and CP = 1; the vector me-

son excitations (1 x L) require reduction to states with
J = L+ 1, L, L —1 as given below:

@(L+1) 1 x . (L) 1 2I —1
1'" i & ' Immi" ml. } 2L ~ Im, "k ml, n"& L 2L + 1 (mg" k" mi, }

k k

(L—x)
&~lmm "kl "m

l

(2)

a bar over an O(3) index, such as k, signifies that mk is missing from the tensor.
Turning to the baryons, one either needs to combine the orbital momentum with spin 1/2 or with spin 3/2. In the

former case one arrives at states with J = L + 1/2 and J = L —1/2, encapsulated by the decomposition

(L+X/2) 1 ~ (L y/2)
~I lm-™L} ~lm~ "mi, & &~(m " k mL 2L+1 L

3 ~( ~ g(L+1/2} (L+1/2) )
L ~(L+1/2)+

4L(2L + 3) ' & ' Imq" k ml, n} & ' Immq" k . .ml, &' 3 Imi mr. &"

3(2L —1) . f 2b

L(L+1)(2L+1))- ( 3

'i& ) &
I ](g— / y ~

g (](L i 2)—
(m& . . .k. . . i& m2L 1 Immq kl .mi, }

while in the latter case one must reduce to J = L + 3/2, L + 1/2, L —1/2, and L —3/2 representations:

(L+3/2).&
= i/I

+L~(L )( L )
g. ~ 2L 1 I, "k(m&

~ 2~mgm(am„@(i —3/2)
2L —1 (mm1" Icln "m (4)

These expressions are correctly normalized, in as much as 1 = P& ~g( &~, like the left-hand sides of Eqs. (2)—(4).

III. BOOSTED WAVE FUNCTIONS

It is not widely appreciated that Lorentz-covariant expressions for particle wave functions are readily obtained by
boosting the nonrelativistic formulas. An incoming meson which is a composite of an incoming quark and antiquark
must contain the projection factors [(1+po)/2]I'[(1 —po)/2] in the rest frame in order to pick out the upper two

components of the quark and the lower two components of the other quark. Likewise the nonrelativistic expressions

(o2)( k) and (a2cr )I k& should be interpreted as the upper 2 x 2 components of the four-component multispinors
[(1+po)psC/2] p and [(1+po)p C/2] p. From this point of view it is easy to understand why the properly boosted
versions (any direction of v) of the wave functions (2) are

[&( )].= [(1+~ )h.@ ( ) —~"& ( )]/2~~]. ,

where vector indices on fields are orthogonal to v, or v P„= 0, signifying that the P are polarization vectors. Also
the generalization of the nonrelativistic condition on the vector spinor cr Q = 0 reads p g = it. Q = 0. Results of this
type were originally derived [4] by carrying out Lorentz-covariant reductions of multispinors, using Bargmann-Wigner
equations acting on each Dirac spinor index and solving the constraint and symmetry conditions. (They have been
rediscovered several times in different ways. ) In the light of experience this is an unnecessarily complicated way of
proceeding: one simply "solves" the equations [5] in the rest frames, a totally trivial step, and boosts up to arbitrary
v, as above. The only other substitutions we must be careful with are for spin matrices and the Kronecker delta,
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v0~ ~ V Ovp. +5 = tUp. q
h „m -rI„„+v„v„—= d„„(v),

where we have assumed that v has unit length on shell.
With this point made, we may readily understand why the relativistic versions of Eqs. (2), (3), and (4) are

(L+~) + g ZV
~vv' ~(L )

~(~w IL. )"
k

1 2L —1 . ~(1. y) 2 . (L ~)+- ch»' () 1 "&"pL) 2L 1 - """' (»i &" ~"1.)
k

(6)

(I+~/2) (L—1/2)
(»" Pc) gL(2g ~i F ~ » (» s )A"L, )'"

(L+3/2)
~)'(» " &&) ~'() i vL, ")

+ ( ~ A gvv' (L+&/2)
XV 6P v~ + v) — ) — (v—(1+1/2) ) L (1+1/2)

4L(2L + 3) & -'( "»"" (I i 1 )c~"') """(» i" I ir. )~"
Ic

3(2I —1) ) - /2d»„ iv"eel, »&w l (I,—z/2)

L(L+ 1)(2L+ 1) „(, 3 3 )

4 am (L —~/2)
- 2L 1 (»g" Igl igc)"

l

1 & ( 2v)„d» „, ~(1, s/2)

LQ(L —1)(2L + 1) „, ( "" "' 2L —1 )

2d»). i v)~„g(L,—s/2)
(I » "ann" ~&)

These expressions make no reference to the internal
momenta, nor should they. The final covariant wave
functions carry the quantum numbers associated with
external momentum and its little group, no more and
no less. For instance, the first excited states (L = 1) of
mesons (0++ 1 +, 2++) and baryons (1/2, 3/2, 5/2 )
are represented by

IV. CONNECTION WITH LAGRANGIANS AND
BOUND STATE EQUATIONS

It will pay us to reexamine the origin of supermultiplet
symmetries as the older interpretation [4] differs slightly
&om the modern viewpoint advocated in Ref. [6]. Con-
sider a set of quark fields with different masses described
by the Lagrangian

(~)
)

— v ex„„„ri P„, + d„„())Pv 8 3
@(s/2) + ~ @(~/2)/~g.

(/) 3;„~ ' )
'(i( )Av 0(») + [ &V & A)A v ig g

+~ @(s/2) &~ y(s/2)]

1 - . ~ „- (z/2)+ 2d~„ —zv eg~„„v)
3 2

The only place where a connection may be made with
the internal, relative momenta, and the dynamics that
leads to such bound states, is via the dependence of the
masses on total angular momentum, p = M&(N), and
on the (suppressed) quantum number N, difFerentiating
between states of the same J. We shall turn to this aspect
of the problem now.

g = ) f d F qFC(Z)(P (ig —gA(Z)) —mF)()FC(Z)
F,C

+Z~+ l:, (10)

where F stands for the Bavor and C for color and A
is the (matrix-valued) gluon octet field. If we disregard
gluon interactions and make a Fourier transformation to
momentum space we get

&F, = )./A"g gFC(gib' g —mF)gFC(g).
F,C

The early relativistic interpretations of the Wigner su-
permultiplet symmetry for particle physics [7] neglected
mass differences between quarks in order to show that the
momentum space wave functions admitted an SU(2' ) x
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SU(2NF) invariance of E. It was Isgur and Wise [8] who
realized that this assumption of mass equality was not
needed and who extended the concept to heavy quarks
like 6 and c. Heeding their lesson, let us change to ve-

locity space by redefining hFc (v) = Ms)'2q(p) as a new
heavy quark field [normalized to 1 compared with q(p)
which was normalized to M ) ]. The free part of the
Lagrangian

F,C
d v hFc(v)[p v —1]hFc(v)+ 8;„t(A)+Z.„

(12)
then admits a U(2NF) x U(2NF) symmetry between the
quark fields at fixed velocity. This is most readily seen
in the rest frame vp

——(1,0, 0, 0) with h(vp) obeying the
projection equation (pp —1)h(vp) = 0. The little group
generators then consist of

Q(T) m T exp
~

z A(() d(
~

Q(x),
)

in order to simplify the quark-gluon interaction (at the
expense of the measure in the functional integral over the
fields), but that is irrelevant for the present discussion.

To finish off let us briefly compare our formulation of
hadronic excitations with the work of others ([1,2]). The
early work by Isgur et al. concerning strong and semilep-
tonic decays of excited hadrons was cast in a noncovariant
framework and based on an SU(NF )~ symmetry [11],as-
sociated with a three-system coupling, and used standard
Clebsch-Gordan technology. It was shown to be entirely
equivalent to the covariant approach by Hussain, Korner,
and Thompson [2]. In our language the interaction be-
tween an excited meson state (L, incoming velocity v)
and the two ground states (L = 0, outgoing velocities
vi, v2) is written as

[1,Pp, cr, o Pp] TF,

where T are the generators of the U(NF) flavor algebra.
When boosted to any velocity v,

S(L„)ppS '(L„) = p v, (i4)

the free spinors h(v) = S(L„)h(vp) retain that supersym-
metry but we should now interpret the generators as

[1,v p, u))u))ggv ' f]TF

Note that we have not toed the modern party line which
considers the heavy quark field h to be a full function
of space-time x with v regarded as an external parame-
ter (eventually identified with the velocity of the heavy
hadron, we may need to integrate over at the end of the
day [9]). Instead we have surmised that v is associated
with the Fourier transform space, so that integration over
v is automatic and x does not appear at all. The similar-
ity transformation S(L„) which carries spinors from the
rest frame vp to any v can be construed as the Fourier
transform of a coordinate-space Foldy-Wouthuysen-like
transformation [10] applying to h(z).

The usefulness of this concept hinges upon considera-
tion of the quark-gluon interaction

g, ;m = ) jd vd v' gK(v)d(v —v') Ttv(v')/mv,
C,F

where the fluctuations over the gluon field A produce
a distribution over mornenta of order Aggro. Since this
will lead to corrections AqcD/mF to the free system,
these will be most substantial for the lighter quarks and
will become negligible as the quark mass mF gets ever
larger, which Isgur and Wise [8] first observed. Thus
one concludes that the really significant supersymmetry
when @CD becomes operational is for the heavy flavors.
However, we believe that the formulation above, where
the heavy quark fields are functions of four-velocity v

alone and not x and v simultaneously, brings this feature
out much more clearly and elegantly. It may be possible
to carry out a further transformation,

X Vy V2 Vy V2

and similarly for baryons; flavor quantum numbers are
implied and traced over as well. In the rest frame of
the decaying particle one may easily recover the expres-
sions of Isgur et al. , since the summation over the relative
momentum indices produces the appropriate SU(NF) ro-
tation function [3].

Falk and Luke [1] constructed states which are very
similar to ours. However, we differ from their approach
in that we have recognized that the heavy quark must
be accompanied by other quarks to produce the correct
colorless state; after identifying them and their spin con-
tributions (which are added to the heavy quark) we have
afterward appended the excitation numbers (L, N) corre-
sponding to the quark sea and gluons. The similarity of
their spinor wave functions with ours can be established
by noticing that the Pauli-Lubanski spin m„acting on a
spinor g(v) gives

v ~ ),ps/(v) mi(p), + vt, )ps/(v).

The connection with Bethe-Salpeter 4 wave functions

[2] is more distant. In this paper we have adopted the
attitude that the excited states are projected out from
the wave functions using an orthogonal set of functions
of the relative velocities u; specifically [12] for the mesons

say,

g (V)LM

with v = 1 or p = mN & since we are at the meson pole.
All we can be sure of is that the orthogonal functions P
contain the spherical harmonic 1LM (u) in the rest frame
vp of the meson. Naturally, the dynamics which comes
via the Bethe-Salpeter kernel (and is presumably dom-
inated by nonperturbative gluon exchange) will dictate
the remaining dependence of g on u - v and u, viz. ,

some linearly independent combinations of hyperspher-
ical harmonics. An alternative approach [2] is to leave
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the 4 of initial and final hadrons intact and carry out an
internal integration over projections involving relative ve-

locities of the current matrix elements. The only point
one can be reasonably sure of in both approaches is that
the degree to which the quarks in the meson are off shell

(or spread in [u[) is of order AclcD/m~. It could be that
a Bethe-Salpeter equation, something like

[7 (Alp + k) ™1]@(pk) [ Y (P2p k) + rnz]

is as singular as Az/(k —k') at small momentum trans-
fer. Gudehus [2] indicates that the details may not be
very important anyway in obtaining the requisite heavy
quark symmetry and wave functions, and in deriving the
supermultiplet universal form factors, at least for the low-

est state N = 0. This is a topic that could bear closer
investigation.
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