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Heavy quark solitons: Strangeness and symmetry breaking
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We discuss the generalization of the Callan-Klebanov model to the case of heavy quark baryons.
The light flavor group is considered to be SU(3) and the limit of heavy spin symmetry is taken.
The presence of the Wess-Zumino-Witten term permits the neat development of a picture, at the
collective level, of a light diquark bound to a "heavy" quark with decoupled spin degree of freedom.
The consequences of SU(3) symmetry breaking are discussed in detail. We point out that the SU(3)
mass splittings of the heavy baryons essentially measure the "low energy" physics once more and
that the comparison with experiment is satisfactory.

PACS number(s): 12.39.Dc, 12.39.Fe, 12.39.Hg, 14.20.Jn

I. INTRODUCTION

A natural method for describing a baryon containing a
single heavy quark in the "soliton picture" is to consider
the heavy baryon to be a bound state of a heavy-meson
and a light "baryon as soliton. " This was extensively ap-
plied by Callan and Klebanov [1] and others [2] to the
case where the K meson is considered heavy. A fairly
literal transcription of this approach was given for the
charm and bottom baryons too [3]. More recently, it has
been recognized that it is necessary to take into account
the Isgur-Wise heavy spin symmetry [4] when dealing
with the chiral interactions of the heavy mesons. This
feature was then incorporated, with somewhat different
results, by two groups [5,6]. In the present paper, we will
study further a possibly simpler method [7], based on
an explicit presentation of the ansatz for the "classical"
bound state. It was also noticed in [7] that the effect of
including light vector mesons in the underlying chiral La-
grangian was important for estimating the semiclassical
binding energy.

The new points here are mainly concerned with gener-
alizing the treatment of Ref. [7] to light SU(3) so as to be
able to treat heavy baryons with strangeness. A surpris-
ing feature is that this generalization actually simplifies
the procedure. The reason is the existence of the Wess-
Zumino-Witten (WZW) term [8] in the light SU(3) case
but not in the light SU(2) case. We will see that the
interplay of the WZW term and the heavy meson kinetic
term gives an important constraint on the allowed states
of the collective Hamiltonian. What emerges is that the
collective Hamiltonian describes a bosonic (light diquark)
rotator in addition to a decoupled (in the heavy spin
symmetry limit) spinor representing the heavy quark.
The heavy quark symmetry is then essentially manifest
and the entire treatment is rather simple. It is amusing
that, although the underlying Lagrangian is a theory of
mesons, the collective picture looks quarklike. Of course
this is implicit in [1], but here it will be seen to follow in
a particularly neat way.

We will also use this formalism to discuss the SU(3)
mass splittings of the heavy baryons. It seems natural to
do so in the limit of heavy spin symmetry. This is because
the heavy spin splittings vanish as the heavy quark mass,
M ~ oo, in contrast with the SU(3) splittings which
remain finite in this limit. The physics which is being
probed by these mass splittings is very similar to that
determining the mass splittings of the light baryons. In
the latter case, a treatment [9] based on lowest order per-
turbation theory is inadequate, as may be seen by a com-
parison with the exact diagonalization of the collective
Hamiltonian [10]. It was pointed out [11] that second-
order perturbation theory does provide an adequate ap-
proximation to the exact solution and that is what will be
used here. While it would be most desirable to compare
our predictions with data on the bottom baryons, there
is, at present, sufBcient reliable information only for the
charmed baryons. Comparing our results with the likely

experimental J =
2 states A„Z„:"„andO„gives

values for the basic coefFicients of the collective Hamilto-
nian which are reasonably close to those obtained from
studies of the light baryon spectrum. We also predict the
mass of another expected:", state and note that, in the
limit of heavy spin symmetry, it should not mix with the
already observed one.

For the reader's convenience, the underlying fields
and chiral Lagrangians are brieHy reviewed in Sec. II.
Both the Lagrangians with and without vector fields are
given since the form of the SU(3) invariant collective La-
grangian is the same in each case. In Sec. III, the clas-
sical soliton solution for the light meson fields as well
as the heavy meson bound state ansatz are listed. The
discussion of the collective mode quantization and its in-
terpretation is given in Sec. IV. Furthermore, the low ly-
ing SU(3) multiplets of heavy baryons are identified and
discussed. In Sec. V we introduce the SU(3) symmetry
breaking and Gnd its effects on the heavy baryon mass
splittings. We note the fact that SU(3) symmetry break-
ing among the heavy mesons has a rather small effect
at the collective Hamiltonian level; it is the light pseu-
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doscalar meson breaking which actually dominates the
heavy baryon split tings.

II. THE MESON FIELDS AND THE CHIRAL
LAG RANGIANS

A„=&p('+ =(&p('
g

A„" = ('p~(+ =(to~(,

+g ~ = ~ppv ~vpp ig[pp~ pv]~ (2 2)

In this section we briefly summarize the SU(3) chiral
Lagrangians under consideration. The total action con-
sists of a "light" part describing the first three Bavors
(namely u, d, s) and a "heavy" part which describes the
"heavy" multiplet H and its interaction with the light
sector:

where F .132 GeV and g —3.93 for a typical fit.
The interactions of the heavy meson fields can be en-

coded in a compact way by using the so-called "heavy
superfield" [12] which combines the heavy pseudoscalar
P' and the heavy vector Q'„, both moving with a fixed
four-velocity V„:

4I of' = I hghg + ~ & ~hery ~ (2.1)
H = " "(ipsP'+ ip„q'„), H—:p4Htp4. (2.3)

2

fig&f = exp
/

U=(,

The relevant light fields belong to the 3 x 3 matrix of
pseudoscalars, P, and to the 3 x 3 matrix of vectors, p„.
It is convenient to define objects which transform simply
under the action of the chiral group:

In our conventions the superfield H has the canonical
dimension one. It is a 4 x 4 matrix in the Dirac space
and it also carries an unwritten flavor index for the light
quark bound to the heavy quark. The chiral interactions
of H with the light pseudoscalars were discussed in [13].
The inclusion of the light vector mesons were given in
[14,15]. Here we follow the notation of Ref. [14].

Using (2.3), Eh, „r can be simply written as

=iVI„Tr H(8„—ingp„—i(1 —n)v„)H +id Tr Hp„ps@„H + Tr Hp„p„F„„(p)II
mv

where m„0.77 GeV is the light vector mass and

(2.4)

(2.5)

Furthermore M is the heavy meson mass and o, , c, d are dimensionless coupling constants for the heavy-light interac-
tions. It seems appropriate not to include terms in (2.4) which are higher order in 1/M or contain inore derivatives
of the light meson fields.

The action involving the light pseudoscalar and vector rnesons, I'~;gq, can be written as the sum of a usual piece,

f F 1 m2
T(a„Ua„Ut) —-'T [Z„„( )Z„„()]— ", T (- „- „)' (2.6)

and a piece proportional to the Levi-Civita symbol. The latter is most conveniently written, using the difFerential
form notation, in terms of the one-forms n„—:B„UUt ~ n and A~ -+ A~:

1 LI' + Tr ic (A n )+c (dA nA —A ndA +A nA n)+c —2i(A ) n+ —A nA n
g

(2 7)

where the Wess-Zumino-Witten term [8] is given by

I'wzw = —
2

Tr (n ).
80m 2 ~5

(2.8)

Note that the ci, c2, cs terms in (2.7) perform the func-
tion of stabilizing the Skyrme soliton in this model. More
details are given in [16] (wherein g is denoted by g).

We shall also consider here a simpler light Lagrangian
in which the vectors are absent. [In this case the con-
stants n and c in (2.4) should also be set to zero. ] We
then have the standard SU(3) Skyrme model,

I'1 h = d*Tr~ „„+ [ „, ] ~+I'wzw,(8 "" 32e' "' "
)

(2.9)
wherein e is the Skyrme constant.

The discussion of SU(3) symmetry-breaking terms is
deferred to Sec. V.

III. SARY'ON STATES AT THE CLASSICAL
LEVEL

Following the Callan-Klebanov strategy [1], we first
find the classical solution of I'~;zest and then obtain the
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classical approximation to the wave function in which this
"baryon as soliton" is bound to a heavy meson (yielding
a heavy hyperon). To avoid confusion we remark that
whereas the original approach [1] dealt with a two-fiavor
light action and considered the strange quark as "heavy, "
in the present work we are dealing with a three-flavor
light action, considering the strange quark as light. When
one improves the treatment of flavor symmetry breaking
for the SU(3) soliton one obtains results for the strange
hyperons of comparable accuracy to those of the Callan-
Klebanov approach.

The "hedgehog" ansatz for the classical light baryon
in the SU(3) case simply corresponds to embedding the
two-flavor ansatz as follows:

& exp 2 [8 ~ rF(r)] 0 l
0 (3.1)

~( ~+ ~) o&
0 1) (3.2)

In a model with vectors present, we have similarly the
classical solutions

is then written as

(x ~ r)s ~i~u(r)yg if b = 1, 2,
if b= 3.

This represents an embedding of (3.1) of [7] into the
three-dimensional representation of SU(3). The radial
wave function u(r) is taken in the classical approximation
to be localized at the origin, r ~u(r)~ —b(r) Clearly,
this is reasonable at the limit M —+ oo. Note that the
quantity x represents the angular part of the spatial wave
function and the first factor couples it to the isospin in-
dex b to give G = 2. In turn, this is coupled to the light
spin index t with the Clebsch-Gordan coefficient ~a~
to give G = 0. Finally, h is left uncoupled (as appropri-
ate to the heavy spin symmetry) to give the desired net
result G = &. The two-component heavy quark spinor
yh, [which was iinplicit in (3.1) of [7]] basically carries the
heavy spin.

Substituting the ansatz (3.7) into l:h, „in (2.4) yields
a classical binding potential (Vp

———f d zl:h, ~) given
in (4.3) of [7]:

with (see [16] for example)
3c II 0!g

Vp ———dF (0) + G (0) — id(0).
m„g

(3.8)

1
p, , = e;I, zi, G(r),

+2gr
po, ——0,

(d~~ = 0, tdp~ = (d(r). (3.3)

F(o) = -~, G(o) = 2, ~'(0) = o,

F(oo) = G(oo) = |d(oo) = 0. (3.4)

For describing the soliton-heavy meson bound state it
is convenient to define the grand spin G as the sum of
isospin and the angular momentum:

G =I+J (3.5)

In [1] it was found that the attractive channel for the
ordinary hyperon, treated as a bound state of the nu-
cleon as soliton and the kaon, was the one with orbital
angular momentum l = 1 and this was combined with
the kaon isospin to give G = 2. In our previous work

[7], it was shown that the same situation persisted in the
heavy meson-nucleon bound state. In this case it is more
intuitive to think of the heavy meson as being at rest
and the soliton bound to it. When the heavy meson is at
rest (V; = 0) the 4 x 4 matrix heavy superfield H given
in (2.3) has nonvanishing elements only in the lower-left
2 x 2 subblock:

( o oiH=~H o ~

lh )
(3.6)

The boundary conditions for a flnite energy light baryon
are

The experimental determination of the light-heavy cou-
pling constants d, c, and n is at a very primitive stage.
Some information about the light-heavy coupling con-
stants d and c can be obtained from the semileptonic
D ~ K and D ~ K* transitions, respectively. This
suggests that the first two terms of (3.8) are negative,
suggesting that Vo is also negative. Taking into account
a simple model for the effect of the quantum fluctuations
on (3.8) (see Sec. V of [7] ) as well as estimates based on
semileptonic data gives an approximate fit [see Eq. (2.15)
of [17]]:

d = 0.53, c = 1.6, (3.9)

Vp remains negative (attractive ) in the model with
pseudoscalars only, in which just the first term of (3.8)
is kept. We remark that, as previously mentioned [14]
a natural notion of light vector dominance for the light
heavy interaction would suggest that n = l. It is
hoped that more experimental data from both meson and
baryon sector of the theory will clarify the situation.

IV. COLLECTIVE MODE QUANTIZATION

In the soliton approach, the particle states with defi-
nite rotational and flavor quantum numbers do not ap-
pear until the so-called "rotational collective modes" are
introduced and the theory is quantized. This is conve-
niently done [18] by first finding the time independent
parameters which leave the theory invariant. Then those
"collective" parameters are allowed to depend on time.
Specifically, we set

The first lower index l of the submatrix H&h represents
the spin of the light degrees of freedom within the heavy
meson, while the second lower index h represents the spin
of the heavy quark. The wave function for the heavy field

$(x, t) = A(t)$, (x)A'(t),
p„(», t) = A(t) p„,(»)At(t),
H(x, t) = A(t)H, (x),

(4.1)
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8

AtA= —) A 0.
2

(4.2)

where the Al, are the usual Gell-Mann matrices. Now

substituting (4.1) into the total effective Lagrangian (2.1)
and performing a spatial integration eventually yields the
following collective Lagrangian:

where the "classical" bound state wave function H, is to
be taken from (3.7). Here A(t) is an SU(3) matrix which

acts on the isospin index of H. A is conventionally con-

sidered as a matrix of angle-type variables; generalized
angular velocities Op are def1ned by

R8=C
for light baryons,

for heavy baryons.
(4 6)

The above numerical difFerence together with the pres-
ence of the heavy quark spin degree of &eedom are the
main difFerences between the present heavy baryon case
and the usual light baryon case. Hence we can make use
of the usual quantization [21] of the SU(3) Skyrme model.
An operator Rs which obeys the canonical commutation
relations can be introduced but we must demand, in the
manner of Dirac, the following constraint on the allowed
states

~ ) of the model:

A
Lz&&u = —M~ —(M + Vp)P + —) O&D~

i=1

2
Rsi ) for light baryons

) for heavy baryons. (4.7)

p2
+—) 00, —' 2=4

~n ~n tP8+ 8+ X (4.3)

(4.4)

cannot appear in the present model, which represents
a substantial difFerence &om the Callan-Klebanov paper
[1]. Notice that the form of L, u is the same regardless
of whether or not the light vector mesons are included.
However, the speci6c values of the numerical parameters
then difFer.

The next step is to quantize (4.3). The canonical mo-
menta (for an implicit parametrization of the matrices
A) may be taken as

(4.5)

For k = 1,2, . . . , 7, (4.5) yields true dynamical momenta.
However, for k = 8 one gets

Here, M, is the classical soliton mass, o is the ordinary
moment of inertia, and P~ is the "strange" moment of
inertia. Expressions for these quantities are given in [19]
for the full model including the vectors and in [20] for
the minimal SU(3) Skyrme model containing the pseu-
doscalars only. The factor P is a projection operator onto
the heavy baryon subspace of the theory and appears in
those terms in the collective Lagrangian which originate
&om terms involving the heavy Gelds. Vo is the classi-
cal binding energy given in (3.8). (Actually the quantum
corrections to Vp discussed in Sec. V of [7] are also im-

portant. ) The last term in (4.3) comes from the heavy
meson kinetic term iV„Tr(HB„H); we have included in
it a factor y y = blah, pertaining to the heavy spin in-
dices which makes manifest the fact that the heavy spin
index in (3.6) has not been summed over in arriving at
this term. Thus the heavy spin represents a dynamical
degree of &eedom of the collective Lagrangian. The fact
that the particular value of the heavy spin is not com-
municated to the soliton variables is a reflection of the
underlying heavy quark symmetry. This means that a
term of the form

Then the R's can be seen to obey an SU(3) algebra

[R;,R~] = if;~ I,Rg—. The spatial components R (i.e.,
for i = 1, 2, 3) can be identified as rotation generators for
the soliton rotator while the quantity —Rs in (4.7) is

a conventionally normalized hypercharge generator. We
also define "left" generators L~ = Dzg(A)RI„where the
adjoint representation matrix D~g(A) can be written as

D~g(A) = —Tr (AiAAgAt) .
1

(4.8)

8
1 . 2 1

+
p2 ) R~ —

p2Rs~
nl=1

(4.9)

which can be written as

I ( I
H.,u = M, +(M+Vp)P+ —

~

———
~

J,(J, + 1)
2 2 P2

C2 [SU(3)L,]
— Rs,

1 1
(4.10)

where J, is the soliton angular momentum and
C2[SU(3)L,] is the SU(3) quadratic Casimir operator. Ir-
reducible representations of SU(3) may be specified by
a traceless tensor with p symmetric quark type indices
(say, upper) and q symmetric antiquark type (say, lower)
indices. Then,

C2[SU(3)] = 3(P + pq+ q ) + (p+ q). (4.11)

It is evident that H, u is SU(3) Savor invariant. For the
light baryon subspace, the space of the "angular" wave
functions is spanned by SU(3) representation matrices
D~"l(A), where p denotes the irreducible representation
under consideration. With conventional [22] normaliza-
tion the light baryon wave functions are

They obey a separate SU(3) algebra [L;,L~] = if;z ~LI,
and can be identified as SU(3) Savor generators. Note

that g z L L = P„zR„R„.The collective Hamil-
tonian is

1(1 I)
H„u = M, + (M + Vp)P + —

~

———
~

R
2 qo2 P2)
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4&;sh, (p, YII&r JJs, A)

= (—1) '/dim p D~"i I v q ~ (A). (4.12)

described above which has n;=the number of ith-type
quark indices minus the number of ith-type antiquark
indices, where i = u, d, 8. Such a state is labeled by

The composite indices were labeled in accordance with
the fact that the flavor generators LI, act on the left com-
posite index while the generators AI„which include the
space rotation ones, act on the right composite index. It
is crucial to note that the constraint (4.7) implies that the
index Y~ in (4.12) must be set equal to 1. In turn, this
implies that only those irreducible representations {y,j
are allowed which contain a state with Y = +1. Such
states, as we will see below, have half odd-integral spin
and so must represent fermions. The rotational spin of
the wave function (4.12) equals the isospin of the desired
state belonging to {p,j which has Y = 1.

The heavy baryon wave functions may be constructed
analogously. Because of the constraint (4.7), now the an-

gular wave function must have Yg = s. In this case, the

allowed D~"l(A) s must have integral spin, since SU(3)
states with Y =

3 necessarily have integral isospin.
To see this, let us consider a (p, q) tensor component

1
Y = —(n„+ ng —2n, ).

3
(4.i3)

I3 ——1+n, —nd,
——integer. (4.14)

[If we had substituted Y = 1 into (4.13) we would have
obtained Is ——

2 + (n, —n~) =
2 odd integer. ] The fact

that D~" i(A) has integral spin meshes perfectly with the
need to include in the overall heavy baryon wave func-
tion the Pauli spinor yi„which remains in the collective
Lagrangian (4.3) (even though it decouples in accordance
with the heavy quark symmetry). Now, we can write the
heavy baryon wave function as

Substituting Y =
3 into the last equation above gives

n + ns ——2(1+ n, ). Subtracting 2ng from both sides
finally yields

2

4'h«vr({p}, YIIs, J Js, J„A) = +CM '& 1 (—1) ' ' /dim pygD&"I I, & M (A),
h=1

(4.i5)

wherein J, and M, are the soliton spin and its z com-
ponent while the first factor on the right-hand side is an
ordinary SU(2) Clebsch-Gordan coefficient. Notice that
for a given J, there are two possible values of the total
spin J = J, 6 2 which yield degenerate states of 0, ~~.

These two states comprise a heavy quark spin symmetry
multiplet. This symmetry is essentially manifest in the
present treatment.

It is interesting to observe that, even though the start-
ing model describes the interactions of heavy and light
mesons, at the collective level a picture more like the
quark model emerges; namely, a heavy quark spinor is
compounded with a light diquark wave function D~"l (A).
This picture is not a matter of choice but is forced upon
us by the constraint in (4.7). This constraint results
from the presence of both the three flavor Wess-Zumino-
Witten term [which gives the next to last term in (4.3)]
and the heavy field kinetic term with the "classical"
ansatz (3.7) [which gives the last term in (4.3)].

Now let us apply this approach to the low lying
baryons. The simplest SU(3) multiplet with a Y =
member is the {3}with (p, q) = (0, 1)]. Its (Y, I) con-
tent is {(s,0), (—s, 2)j. Since the Y = s state has I = 0
we conclude that the soliton spin J, = 0. Combining this
with the heavy quark spinor in (4.15) yields net spin 2

baryons, which are denoted {Aq, -g(3)j. The subscript
Q indicates that one s quark in the ordinary hyperon has
been replaced by the heavy quark Q.

The next simplest SU(3) multiplet with a Y = s mem-
ber is the {6}[with (p, q) = (2, 0)]. Its (Y, I) content
is {(&,1), (—&, 2), (—s, 0)j. Since the Y = — state has

m(6, -') = m(6, -), (4.16)

since

Equation (4.16) is just the expression of heavy quark
symmetry. In addition, using C2(3) = s and C2(6) =
&om (4.11), we find

1
m(6) —m(3) = —. (4.i7)

Similarly treating the light baryons using (4.10) we find

(4.is)

where 4 and % stand for the usual decuplet and octet

I = 1, we conclude that the soliton spin J, = 1. Com-
bining this with the heavy quark spinor in (4.15) yields
degenerate multiplets with net spins J =

2 and 2. These
are denoted as {Zq,=q(B), Aqj and {E&,=&(6),0&j,
respectively.

The 15 states mentioned are all the low-lying (s wave)
baryon states in the quark model containing a single
heavy quark. In the limit of exact fiavor SU(3) sym-
metry it is easy to evaluate the mass splittings by acting
with H, ii given in (4.10) on the wave function (4.15).
For example, one can readily see that
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2
m(6) —m($) = —[m(6) —m(N)].

3
(4.19)

Not surprisingly, (4.19) agrees with the SU(2) relation
given, e.g. , in [5,7], where it was noted to be reasonably
well satisfied experimentally for m(Z, ) —m(A, ).

V. SU(3) SYMMETRY BREAKING

baryons. From the last two formulas we get the structural
relation

& sB e = ~M tr (HfM(H) + H.c. (5.6)

The parameter e may be obtained in terms of the mass
difference between the strange heavy meson and the non-
strange heavy meson:

where Dss(A) is defined in (4.8). Conventionally [10],
the term with the overall factor of 3 is included in M, .

It is reasonable to expect that the effective symmetry
breaking terms for the heavy meson multiplet H [in (2.3)]
should also infiuence the heavy baryon mass splittings.
The leading term of this type has the form [24]

~mass = mf~g~ (5.1)

where q is the column vector of u, d, 8 quark fields, m =
"+2 ' and M is a dimensionless, diagonal matrix which

can be expanded as follows:

Ay, +T + Sz, (5.2)

with As ——diag (1, —1,0), T = diag (1, 1,0), and S =
diag (0, 0, 1). z and y are the quark mass ratios:

In this section we will use perturbation theory to dis-
cuss the mass splittings within the heavy baryon SU(3)
multiplets mentioned in the last section. We restrict our-
selves to the limit of degenerate heavy quark spin multi-
plets. Of course, the spin splittings (between states of the
same flavor) should vanish as M ~ oo. In contrast, the
fiavor splittings within a multiplet of given spin should
not vanish as M ~ oo and thus are a characteristic fea-
ture of the present model.

At the level of the fundamental /CD Lagrangian the
fiavor splittings are induced by the light quark mass
terms,

M, —M
2(z —1)

' (5.7)

which is accurate up to 2%. Evidently, the heavy quark
spin prediction, implicit in (5.6), works quite well. The
contribution of (5.6) to the collective Lagrangian is ob-
tained with the substitutions (3.1) and (3.7) followed by
a spatial integration:

L,",g = —[(2+ z) + (1 —z)Dss(A)] P+ (5.9)

where the projector P maps into the heavy baryon sub-
space as usual.

We shall take the sum of terms proportional to Dss(A),
&om (5.5) and (5.9), as our perturbation operator, H'
(which transforms like As in the flavor space):

The charmed meson case yields [25]

m(D+') —m(D+') = m(D+) —m(D+) = 100 MeV

(5.S)

ms

m
m+ mQu=

2m
(5.3)

L' = H' = —rDss—(A),
T = Tlight + Theavy) (5.10)

It will be assumed as usual that all the effective symme-
try breaking terms are proportional to M. In Ref. [23]
it was shown that a rather detailed fit to both the light
pseudoscalar and light vector systems required six differ-
ent terms —three quark-line rule conserving terms for the
pseudoscalars and three analogous terms for the vectors.
For simplicity, we shall keep here just the dominant term
involving only the pseudoscalars:

ZsB = h' Tr[JH(U+ U —2)]+.. . , (5 4)

SB
~coll

16mb'
[3+ ( - 1)(1-D-(A))]

X Tdf' cos E T —1

where h' = 4.04 x 10 5 GeV4, z = 31.5 and y = —0.42
[23]. We shall also neglect the small isospin violation
by assuming y = 0. Equation (5.4) may alternatively
be regarded as an appropriate symmetry breaking term
for the minimal SU(3) Skyrme model with pseudoscalars
only, as given in Eq. (2.9). The contribution of (5.4)
to the collective Lagrangian is obtained by substituting
Eq. (4.1) and the result is

where ri,«v„——s(M, —M) = 0.034 GeV. r~;si,q depends
on the soliton profile F(r), as can be seen from (5.5),
and is sensitive in its details to the parameters of the
light efFective Lagrangian [e.g. , the value of the Skyrme
parameter e in (2.9)]. Typical values for r~;spy are in the
—0.6 + 0.2 GeV range [10,19,20], which shows that the
effect of (5.6) involving the heavy fields on the heavy
baryon mass splittings is in fact rather small.

Before going further, we remark that the earliest treat-
ments [9] of the SU(3) Skyrme model for the light baryons
gave predictions which did not compare well with exper-
irnent. There were several reasons for this. The first is
that perturbation theory was carried out only to the first
order. Later, Yabu and Ando [10] showed that the collec-
tive Hamiltonian with the symmetry breaker (5.10) can
be diagonalized exactly, by numerical means, and the re-
sults were considerably improved. It was then noted [11]
that an adequate approximation to the exact solution can
be obtained by using perturbation theory to the second
order. The results could be further improved by tak-
ing a kind of "strangeness cranking" [20,19] into account
which had the effect of increasing the strange moment
of inertia P . With these improvements, quite reason-
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=H )- ~H-'-~'

mn mQn

+ o ~ ~ (5.11)

The possible intermediate states n which can con-
tribute to the sum in (5.11) are determined from the
SU(3) decompositions,

able predictions for the many baryon octet and decuplet
mass splittings were obtained. Still, it was necessary to
accept a rather large overall baryon mass (assuming that
the well-known quantities such as I" take on their experi-
mental values). More recently, it has been noted [26] that
O(N, ) corrections are likely to lower the overall baryon
mass drastically, without modifying the mass splittings.
Keeping these lessons in mind, we will carry out pertur-
bation theory to second order and focus our attention on
mass splittings rather than overall masses. In fact we will

see that the structural relations for the mass splittings
require going beyond first-order perturbation theory.

Denoting the matrix elements of (5.10) between the
heavy baryon states in (4.15) by H'» we compute the
mass corrections as

TABLE i. Matrix elements in (5.11).

Ag
T
4

3T
4~5

:-q(3)
8

Ke,e
I

16,e
I

Kz4, e

ZQ
T
10
T

~io

5

=-q(6)
T
20

&6~
10

Am(Aq) = —— ~ P,
4 160

7 2722Am(:-q(3)) = ——— ~ P,
8 640

29 2 2 1
Am(Zq) = —— ~ p10 250

123 2 2 1
b, m(:-q(6)) = ——— ~ p

20 2000 o,2'

322 1
Am(Aq) = ——— 7- p

5 125 o.2'

10

(s.is)
3g 8 = 3@6@15,

68S = 3@6@15@24. (s.i2)

Now, as we see from (4.15), because of the conservation
of heavy spin in the effective theory, the heavy baryon
states are also labeled by the soliton spin, J, (which can
be called the spin of the light degree of freedom). The
(15} has Y =

z states with both I = 0 and I = 1,
so there are two difFerent eigenstates of (4.10), namely

(15,0) and (15,1). Because H' does not alter the soli-

ton spin, B 6
——0 and also H' will have a vanishing

matrix element between 3 and (15, 1). However, H' has
a nonvanishing matrix element between 3 and (15,0).
The required matrix elements can be expressed in terms
of the SU(3) isoscalar factors by the formula [27]

where the (6}-(3}splitting of 1/n discussed in Sec. IV
is also included. There is one additional prediction of
the model. Generally, one would expect the states =q(3)
and:-q(6) to mix under a As type perturbation. How-

ever, because our states also conserve the soliton spin J„
this mixing cannot occur to any order in 0'. To obtain
the =(6)-=(3) mixing one must include additional terms
which take account of the "hyperfine interactions. "

How well do the predictions (5.15) agree with experi-
ments? Considering that we have worked throughout to
the leading order in M, it would be best to test them for
the b baryons. However, at present, sufBcient data exists

only for the c baryons. The J =
2 states will be takenP 1+

to have the masses (all in GeV)

((p } YII3' JM JB~Dss(A) ~(p},YIIs, JMJ, ) m(A, ) = 2.285, m(:-, (3)) = 2.470,

m(Z, ) = 2.453, m(B, ) = 2.706. (s.i6)' ' " " " 'ii" " ~' 'i (5»)
dim pl (00 YI YI ) (00 s~ J~ s J~ )

15
m(24, 1) —m(6) = (5.14)

Putting things together gives the mass corrections for the
low lying baryons containing a single heavy quark:

The states here correspond to the heavy baryons in

(4.15). Note that, due to the heavy spin conservation,
the SU(2) Clebsch-Gordan coefficients in (4.15) do not
show up in the final result. The needed SU(3) isoscalar
factors are given in Ref. [28]. We then find the matrix
elements in Table I. Last, the "energy denominators" in
(5.11) can be read ofF from (4.10) to be

2
m(15, 0) —m(3) = —„

1
m(15, 1) —m(6) =

The first three masses (averaging over members of the
isomultiplets where necessary ) were taken from the par-
ticle data tables [25], while the 0, mass was taken from

[29]. Only one =, state has apparently been confirmed;
we have assigned it to the (3} rather than (6}. The
reason is that the observed state lies very far from the
average of the E, and the 0, masses. Since the (6} is
a "triangular" representation of SU(3), the Gell-Mann-
Okubo mass formula (which approximately holds in the
light SU(3) Skyrme model even though the second-order
terms are important [11]) does predict equal spacing of
the levels, which would be badly contradicted by the (6}
assignment of:- (2470).

For orientation, let us erst examine the predictions of
(5.15) when second-order w P terms are excluded. We
would then have the relation between the (6}and (3}
splittings:

m(O ) —m(E, ) = —[m(:-,(3)) — (A, )],
4
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7 = —0.542 GeV) n = 6.08 GeV

P = 4.43 GeV (5.18)

We also predict the mass of the other =, state, belonging
to (6):

m(:-, (6)) = m(Z, ) — ~+ 7 P = %603 GeV,
20 2000

(5.19)
which is not too far &om the equal spacing prediction of
2.580 GeV. It is in fact of great interest to compare the
parameters given in (5.18) to those obtained (see Table I
of [20]) by using a nearly minimal SU(3) Skyrme model
for the light baryons including both Yabu-Ando [10] and
"K-cranking" improvements:

7. = ——+ 0.034 = —0.635 GeV,
2

a = 6.74 GeV P = 5.23 GeV (5.20)

which reads numerically as 0.253 = -(0.185). Clearly,
Grst-order perturbation theory is inadequate. At the sec-
ond order, we have three known mass diH'erences given
in terms of three parameters whose range of values are
known &om the study of the light SU(3) Skyrme model:

m(:-.(3)) —m(A. ) = ——~+ ~ P,3 9
640

3 2322
m(O. ) —m(E.) = ——~+ ~ P,10 250

3 239 2 2 1
m(Z. ) —m(A. ) = 7-——— 7'/3'+ —.(5.17)

20 4000 a2

From these three equations we extract the parameters of
the collective Hamiltonian:

(We have indicated the connection between our parame-
ter 7 and the parameter p given in [20].) Considering the
fact that we are working in the leading M limit and the
general accuracy of the Skyrme approach, the agreement
between (5.18) and (5.20) is quite encouraging. Note es-

pecially that the value of P2 in (5.18) is larger than that
which can be gotten without K cranking. We are per-
suaded to believe that further improvement of the present
model will be able to provide another useful window on
nonperturbative /CD.

The relatively simple form of the present model should
facilitate the investigation of other issues including the
relaxation of the pointlike treatment of the heavy mesons,
fine-tuning of the SU(3) symmetry breaking and the in-

clusion of the "hyperfine " interactions. It would be inter-
esting to study the electromagnetic and weak properties
of the heavy baryons and to examine the other channels

like J =
2 in more detail.

Note added. After this paper was submitted we learned
of recent interesting papers [30] which discuss other
approaches to the quantization rules for heavy quark
baryons.
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