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Motivated by the excess events that have recently been found near the end points of the double-P de-

cay spectra of several elements, we reexamine models in which double-P decay can proceed through the

neutrinoless emission of massless Nambu-Goldstone bosons (Majorons). Noting that models proposed to
date for this process must fine-tune either a scalar mass or a VEV to be less than 10 keV, we introduce a
new kind of Majoron which avoids this difhculty by carrying lepton number L = —2. We analyze in de-

tail the requirements that models of both the conventional and our new type must satisfy if they are to
account for the observed excess events. We find (1) the electron sum-energy spectrum can be used to dis-

tinguish the two classes of models from one another, (2) the decay rate for the new models depends on
different nuclear matrix elements than for ordinary Majorons, and (3) all models require a (pseudo) Dirac
neutrino, having a mass of a several hundred MeV, which mixes with v, .

PACS number(s): 14.80.Mz, 12.60.—i, 14.60.Pq, 23.40.Bw

I. INTRODUCTION AND SUMMARY

Only six years ago the first direct observations of
double-P decay were made in the laboratory [1]. The ma-
jor interest of these experiments is in the search for devia-
tions in the shape of the spectrum from that which is pre-
dicted for ordinary neutrino-emitting decays. While
most of the attention has gone toward searches for neu-
trinoless decays that would indicate neutrino masses, a
third decay mode has also been discussed, in which a
massless Goldstone boson, the Majoron, ' is emitted in
lieu of neutrinos. The main purpose of this paper is to
determine whether there is any theoretical hope for the
last decay to occur at observable levels. Our conclusion
is that there may be, but only if the Majoron has rather
diferent properties than have previously been assumed.

Our more immediate motivation for studying this ques-
tion is the recent observation of a mysterious excess of
high-energy electrons in the electron spectrum for the
double-P (PP) decay of several elements. This claim was
first made in 1987 for the decay Ge~ Se +2e by
Avignone et al. [2], although the effect was discounted
when they, as well as other groups, subsequently exclud-
ed a signal having the original strength [3]. The mysteri-

ous events reappeared, however, when the UC Irvine
group found excess numbers of electrons near but below
the end points for ' Mo, Se, and ' oNd, with a statisti-
cal significance of 50 [4]. Such events also persist in the

Ge data [5,6] at approximately one-tenth of the original
rate.

Since these are difftcult experiments, it is possible that
the anomalous events will turn out to be due to systemat-
ic error or to a hitherto unsuspected nuclear physics
effect. But they may also be the fingerprint of the new
fundamental interaction [8,9], of Majorons with neutri-
nos [10,11]. If so, these observations are of vital impor-
tance since they provide us with a glimpse of physics
beyond the standard electroweak theory.

We assume for the sake of argument that any excess
events which might be detected in these experiments are
due to Majoron emission, denoted by ppst. Our goal is to
explore the implications of PPM taken together with the
other known constraints on neutrino physics. In so do-
ing, we have found that the candidate models capable of
describing Majoron emission from nuclei fall into two
broad classes.

In the first class of models for PPst, which to our
knowledge includes everything that has been proposed
until recently [9,12], the Majoron is the Nambu-
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The term "Majoron" was originally used for the Nambu-
Goldstone boson associated with spontaneous breaking of lep-
ton number, since the same lepton number breaking induced a
Majorana mass for the neutrinos. We enlarge the meaning of
the name in this paper by applying it even if the scalar is mas-
sive or if the model in question does not generate Majorana
masses.

2After completing this work, we were informed of evidence
that the anomalous events reported by the UC Irvine group may
be due to resolution problems for the higher-energy electrons
[7]. Even excluding events which can be explained in this way,
however, there remains a smaller set of residual events whose
magnitude is in agreement with observations of the Moscow-
Heidelberg experiment.
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Goldstone boson associated with the spontaneous break-
ing of a U(1) lepton number symmetry. The only way to
get an observable rate in this context is to have either a
scalar mass or vacuum expectation value (VEV) of the or-

der of 10 keV. We refer to these as "ordinary" Majoron
models (OMM's) and denote their associated P decay by

PPoM. We provide here a first comprehensive analysis of
which OMM's can give a large enough rate of PPoM.

In addition, we have recently proposed [13] a second,
qualitatively different, sort of Majoron that does not re-
quire such a small scale. Unlike OM's, this new Majoron
carries a classically unbroken lepton number charge and
is the Nambu-Goldstone boson for a symmetry distinct
from lepton number. We accordingly ca11 such theories
"charged" Majoron models (CMM's) and denote the as-

sociated decay by PPcM.
Our main results, briefly summarized in Ref. [13], are

(1) the two classes of models predict different electron
spectra for Majoron-emitting double-P decay, which may
therefore be used to identify the type of process that is
being observed and (2) if the Majorons are electroweak
singlets and the couplings are renormalizable, then PP~
is observable only if there is a neutrino which mixes ap-
preciably with the electron neutrino and whose mass is at
least -(50—100) MeV. CMM's are further constrained
to have the mass of this neutrino also not much heavier
than a few hundred MeV.

We start, in the following section, with a brief sum-

mary of the experimental situation, parametrizing the
size of the effect in terms of the strength of a hypothetical
Yukawa coupling between the Majoron and electron neu-
trino. There follows a formulation of the naturalness
problem faced by OMM's. This motivates the introduc-
tion and definition of our alternative: the charged Majo-
ron.

Section III proceeds with an analysis of the PP decay
rate for a theory with generic neutrino masses and Yu-
kawa couplings. We derive the shape of the predicted
electron sum energy spectrum for all of the models of in-

terest, as well as a general momentum-space parametriza-
tion of the relevant nuclear matrix elements as a sum of
six form factors. General formulas for the NI decay rates
are presented in terms of these form factors, which we
also translate into nuclear matrix elements in the nonrela-
tivistic impulse approximation for the weak interaction
currents.

Sections IV and V then apply the general expressions
derived in Sec. III to specific models of the ordinary and
charged Majoron type. The properties of the particle
spectrum required for a sufficiently large PP rate are
determined, and the necessity of a neutrino with mass
M ~ 100 MeV is explained. We show that, for CMM's,
M must also not be much heavier than this scale if the

observed anomalous PP rate is to be accounted for. A
similar conclusion follows on less robust grounds from
naturalness considerations for OMM's.

Having established what conditions are necessary for
producing the observed decay rate, we turn in Sec. VI to
a discussion of the constraints these theories must satisfy
to avoid convict with other experiments. Searches for
heavy neutrinos in the decays E~e v and vr ~e v
currently furnish the most restrictive laboratory limits.
Nucleosynthesis is given particular attention in this sec-
tion, since it would rule out the existence of light scalars
that are required in both ordinary and charged theories.
We show how these bounds can be evaded by somewhat
complicating the various models.

II. GENERAL CONSIDERATIONS

We begin by parametrizing the size of the anomalous
effect in the data and expounding the theoretical natural-
ness issue which provides the biggest challenge in ac-
counting for the excess events. For the purposes of mod-
el building, the salient features of the anomalous events
are that they are above where standard PP2„decays con-
tribute appreciably, yet below the end point for the de-

cays. These facts preclude their interpretation as either

PP~, or the neutrinoless PPo„.
Another crucial input comes from e+e annihilation

at the CERN e+e collider LEP. The precise measure-
ment of the Z-boson width for decay into invisible parti-
cles constrains its couplings to putative light scalars.
Any model in which the rate for Z~(light scalars) is ap-
preciable, for example, that of Gelmini and Roncadelli
[9], is ruled out. We therefore focus on scalars that are
electroweak singlets [8]. Although it is possible for Majo-
rons to be an admixture of both singlets and fields carry-
ing electroweak charges, they have no advantages over
purely singlet Majorons with respect to the p decay
anomalies. In fact, these models suffer even more severe-

ly from the naturalness problems outlined later in this
section, and so we will not consider them further.

A. Size of the efFect

There are currently four experiments measuring
double-P decay with sufficient precision to potentially see
the excess events observed by the UC Irvine group. Two
report no excess, with one of these quoting an upper
bound [16] that is marginally in conflict with the Irvine
result.

To compute the effect in various nuclei, we follow the
experimental practice of quantifying the PP~ rate using a
hypothetical direct Yukawa coupling between the elec-
tron neutrino and a massless scalar y. The rate for
Majoron-emitting double-p decay follows from the Feyn-
man graph of Fig. 1, evaluated using the effective interac-
tion

A variation on this theme in which this broken symmetry is

gauged has been discussed in Ref. [14).
4A similar spectrum can arise for OMM's if two Majorons are

emitted simultaneously, as in the models of Ref. [15].

phen geffVe P5Ve g2

Table I lists the coupling strength g,z needed to pro-
duce the observed signals in the various double-P decay
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FIG. 1. Feynman graph which gives rise to double-P decay
accompanied by the emission of a Majoron. The four-fermion

vertices are those of the usual charged-current weak interac-
tions.

experiments. Our analysis used the nuclear matrix ele-
ments (JK= ([o„o' —(gv/gz ) ]h(r) ) ) found in Staudt,
Muto, and Klapdor-Kleingrothaus [17] to estimate the
rates for the two-neutrino and Majoron decay modes.
The details of how these matrix elements arise are ex-

plained more fully in later sections. Here gv and g„are
the axial vector and vector coupling s of the weak
currents to the nucleon and h (r) is a neutrino potential.
To quantify the number of excess events, we choose (by
eye) a threshold energy E,1, above which the anomalous
events begin and the contribution from ordinary pp de-

cay is negligible. The data are taken from Ref. [4] for the
elements Se, ' Mo, and ' Nd and from the published
spectrum of Ge in Ref. [5]. In all of these cases, the
excess events comprise R =2—3% of the total num-

ber observed. Interestingly, g,a lies in the range
8X10 -4X10 s for all elements.

Although the coupling apparently needed for ' Mo
looks disturbingly large compared to the others, this may
be due to uncertainties in the evaluation of the nuclear
matrix elements. As described in Ref. [17],the Ov matrix
element for ' Mo in particular suffers from the near col-
lapse of the random phase approximation that was em-

ployed.
We also quote here, for comparison, the results of the

Heidelberg-Moscow-Gran Sasso group, who claim a 90%
C.L. upper bound for Ge of g,~&1.8X10 4 in [16]. A
similar bound of g,s &2.0X10 is reported for Xe decay

by the Neuchatel-SIN-Caltech Collaboration [18].
In addition to these laboratory experiments in which

the electron energy spectrum is directly measured, there
are also several geochemical and radiochemical experi-
ments. In these, the final abundance of daughter prod-
ucts is measured, and so only the total decay rate can be
determined. Since the energy spectrum is unknown, it is
impossible to directly determine which process is respon-
sible for the decay. For comparison with Table I, we

show in Table II the couplings g,z of Eq. (1) that would

be allowed assuming the total decay rate were due to the
Majoron-emitting process. Since these values are compa-
rable with those in Table I, confirmation of the laborato-
ry excess events would likely imply a significant role for
Majoron emission in the geophysical observations.

The predictions for Te are of particular interest be-
cause of a recent measurement of the ratio of decay rates
(=I'('3 Te)/I (' Te) =(2.41+0.06) X 10 . Taking the
ratio of the lifetimes is useful because some of the uncer-
tainties in their experimental determination are expected
to cancel. As we will explain in more detail in subsequent
sections, the significance of this ratio lies in its strong
dependence on the relative phase space for the two de-

cays [20]. It is therefore sensitive to the integrated elec-
tron spectrum, which can discriminate between the
different possible decay processes.

The allowed coupling for U is included here for
completeness although we have been informed that the
discrepancy between the U observations of Turkevich,
Economou, and Cowan [21] and the calculations of
Staudt, Muto, and Klapdor-Kleingrothaus [17]have now
been resolved by improving the theoretical estimates.

B. Naturalness issue

One of the first puzzles that must be addressed by any
theory of the anomalous events is how ppM could be seen
without evidence for the neutrinoless decay ppc, . If the
emitted scalar is the Nambu-Goldstone boson for spon-
taneous breaking of lepton number, as in OMM's, then
ppo„must exist at some level due to the generation of
Majorana neutrino masses. We argue that OMM's
answer this question by requiring some dimensionful pa-
rameter in the scalar potential to be of order 10 keV.

The small scale arises because the same VEV u that
breaks lepton number in these models typically also gen-
erates a Majorana mass for the electron neutrino whose
size is

mv v =Nca~-
e e

(2)

Element TI/2 (yr ') E gcI

TABLE I. Parameters required for emission of ordinary Ma-
jorons in double-P decay. T,&2 is the inverse half-life of the
anomalous events, and R is the ratio of anomalous to the total
number of events. E,b (MeV) denotes our choice for the thresh-
old value of the sum of the electron energies, above which essen-
tially only excess events appear. g,N. is the phenomenological
coupling [defined in Eq. (1)] required to explain the excess rate.

m„(1 eV .
e e

Together with the inferred coupling strength g,z-10

(3)

The Majorona mass gives rise to PPo„decays which
would have been seen if it exceeded the experimental lim-
it

766,e
82se

Mo

2X 10
2X 10-"
3X10
3X10

0.02
0.03
0.03
0.02

1.5
2.2
1.9
2.2

1X10-'
SX10
4X10-'
2X 10-'

5This result of Bernatowicz et al. [19] was used to constrain

PPoM emission by W. Haxton at Neutrino '92, Granada, Spain
[20].
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this bound implies an upper limit for the lepton-number-
breaking VEV of

u ~10 keV . (4)

One might try to avoid such an artificially small scale
simply by having no breaking at all, u =0. In this case
PPo is completely forbidden by lepton number conserva-
tion. The question then becomes why the emitted scalar
in pp~ should be so light. Since the experiments resolve
events within 100 keV of the end point, the scalar must
be no heavier than 100 keV. Spontaneous breaking of
lepton number naturally satisfies this constraint since the
Majoron is an exactly massless Nambu-Goldstone boson,
but if lepton number is unbroken, the smallness of the
mass would seem to require fine-tuning of parameters in
the Lagrangian.

In either case, by kinematics if lepton number is unbro-
ken or from Eq. (2) if it is broken, we are led to a mass
scale in the scalar sector of the order of 10—100 keV. In-
troducing it by hand is at best repugnant. Naturalness
demands that the smallness of this new scale, relative to
the Higgs VEV, for instance, must be stable under renor-
malization. Otherwise, we have a new hierarchy prob-
lem, which is particularly severe if the light scalars carry
electroweak quantum numbers, as in the triplet Majoron
model [9]. In that case, loops involving the electroweak
gauge bosons generate contributions to the scalar poten-
tial that are of order &a/4~M~ ~ 100 MeV.

It has been claimed in Ref. [12] that a Majoron cou-
pling g,~-10 is small enough to generally allow such a
hierarchy below the weak scale to be stable. But in the
OMM that these authors consider, the effective coupling
measured in PP~ decay is g,s -g9, where the mixing an-

gle 8 is bounded by neutrino oscillation and decay experi-
ments to be very small. This means that the coupling
dominating radiative corrections, g rather than g,&, is not
small: g —1. Therefore the corrections to the small 10
keV scale will tend to be at least four orders of magnitude
bigger than the scale itself and fine-tuning must be in-

voked.
We show in Sec. IV that the scalar hierarchies in these

models can be made stable under renormalization by tak-
ing advantage of the small couplings and masses within
the neutrino sector, but only in some corners of parame-
ter space having potentially troublesome phenomenology.
For example, the OMM of Sec. IV points to heavy neutri-
nos in the mass range of several hundred MeV that mix
appreciably with v, . Even though such models are tech-
nically natural, they suffer from the aesthetic problem of
requiring mysteriously small dimensionless scalar self-
couplings g ~ 10

we assume remains conserved. Thus PPo, is comPletely
forbidden because it is a AI. =2 process. The Majoron-
emitting decay is still permitted, however, provided that
the massless Nambu-Goldstone boson itself carries lepton
charge 1.= —2. We dub such particles "charged Majo-
rons*' and show as one of our main results that they lead
to qualitatively different features for double-p decay, thus
allowing them to be distinguished from ordinary Majo-
rons.

III. GENERAL PROPERTIES
OF THE DOUBLE-P DECAY RATE

Next we derive expressions for the rates of the various
possible double-P decay processes. Although a number of
excellent reviews exist [22,23], detailed formulas are
presented here for several reasons. Our first goal is to
highlight the differences in predictions between OMM's
and CMM's, since the CMM's have not been considered
in earlier work. Second, we want to isolate the depen-
dence of our results on the nuclear matrix elements, since
these are the most uncertain factors. For generality, we
introduce a form-factor parametrization of the decay rate
which relies simply on the symmetries of the problem.
Expressions for these form factors in the familiar nonre-
lativistic impulse approximation are subsequently de-
rived.

There are essentially two properties of double-p decay
that can be measured or computed: the shape of the
spectrum as a function of the energies of the two emitted
electrons and the overall normalization of this spectrum,
which determines the total decay rate. Only the second
of these quantities depends on the size of the nuclear ma-
trix elements.

Consider the differential decay rate for the four pro-
cesses to which the experiments are potentially sensitive:

PPz, PPo„PPoM, and PPcM. The amPlitudes for the first

two depend on the Feynman graphs of Fig. 2 or 3, respec-

tively. Those for the Majoron-emitting processes require
instead the evaluation of Fig. 1 using the appropriate Ma-
joron couplings (more about which later).

It is convenient to write the resulting rates as

(GFcos&c)
d I'(PP )=, ~A (PP) ~

d Q(PP),

where GF is the Fermi constant, Oc the Cabibbo angle,

C. Introducing charged Majoron models

The above comparison suggests a third option in which
the light scalar mass and the absence of the neutrinoless
decay PPo can both be naturally understood. To do so,
we still assume that the emitted scalar is a Nambu-
Goldstone boson in order to ensure its small mass. The
absence of PPo„ is also guaranteed if the spontaneously
broken global symmetry is not a lepton number, which

FIG. 2. Feynman graph which gives rise to ordinary two-
neutrino double-P decay as occurs in the standard model.
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FIG. 3. Feynman graph which gives rise to neutrinoless
double-P decay, with no Majoron emission.

A (PP) a nuclear matrix element, and d Q(PP) the
differential phase space for the particular process. The
observables are taken to be the energies of the two outgo-
ing electrons ek (k =1,2). Deriving explicit formulas for
A(PP) and dQ(PP) is the goal of the remainder of this
section.

Equation (5) shows that the decay rate depends on the
nuclear matrix elements only as an overall multiplicative
constant. The only approximation that must be made to
derive this form from the graphs of Figs. 1 —3 is the
neglect of the dependence of these matrix elements on the
final-state lepton energies and momenta. This is a good
approximation for the neutrinoless modes in which we
are interested because the final leptons (plus Majoron)
can carry at most the end point energy Q —1 —3 MeV,
while the nuclear matrix elements are characterized by
the nucleon Fermi momentum pF-100 MeV. Correc-
tions to this approximation thus introduce a relative er-
ror of order Q/p~- a few percent.

A. Electron energy spectrum

Consider first the electron energy spectrum dQ(PP) in
Eq. (5). This factor is determined solely by the leptonic
part of the appropriate Feynman graph. From Figs. 1-3
it is straightforward to find the following results.

The PPo„decay is essentially two body since the nu-

cleus is too heavy to carry away any appreciable kinetic
energy. The electron phase space is

2

d Q(PPo„)= 5(Q —e, —ez) g pkekF(ek )d e„. (6)
64 k=1

Here pk
=

~pk ~
is the magnitude of the electron three-

momentum and Q is the end point energy for the electron
spectrum, determined by the initial and final nuclear en-
ergy levels M and M' to be Q=M —M' —2m, . F(e) is
the Fermi function, normalized to unity in the limit of
vanishing nuclear charge.

In contrast, the phase space for the other three pro-
cesses can be written in a similar form:

Only the spectral index n; differs between PPz, //3PoM,

and PPcM decays:

2 5 +CM 3 ~0M

For PP2„and PPcM these values of n; simply reflect the
phase space for the corresponding process. But for PPcM
there are two extra powers of (Q —

e&
—ez) due to the pro-

portionality of the leptonic matrix element to the Majo-
ron energy, a distinctive and generic feature of CMM's
that we elucidate in Sec. III E below. We have assumed
that the boson emitted in PPoM or //3PcM was massless; if
it has mass m, one must use [(Q —e, —e2) —m ]'~ in

place of (Q —
e&

—e2) in Eq. (7).
The difference between n2 =5 and noM=1 has long

been recognized as a way for experimenters to discern a
possible admixture of these types of decays; they lead to
differently shaped curves for the differential rate dl /de
as a function of the sum of the electron energies,
6' =6] +E'2. The surprising fact that charged Majorons
have an index ncM=3 intermediate between PP2„and
//3PoM therefore makes it possible, in principle, to deter-
mine whether a distortion in the PPz, spectrum is due to
ordinary or charged Majoron emission. Figure 4 shows
the shape of the sum-energy spectra for the three possible
values of the spectral index.

The spectral shape can also have implications for the
total decay rate, which, being an integral over the sum-

energy spectrum, depends strongly on n;. Roughly
speaking, each successive power of (Q —e) in dl'/de
suppresses the total rate by an additional power of
Q/(100 MeV). Therefore geophysically determined de-
cay rates, such as the ratio (=I'(' Te)/I (' Te) defined
in the previous section, may ultimately prove useful for
distinguishing between different models. Once the rela-
tive strength of PP2„ to PPM decays is better determined,
a definite prediction for g will become possible. If, for ex-
ample, the decay rate is dominated by the Majoron-
emitting process, then PPoM decay predicts too small a
ratio [20]; we find that g(PPoM)=93. This number in-

cludes a factor of —,
' due to the ratio of nuclear matrix ele-

ments as computed by Ref. 17 and the more significant
factor of (30.4/0. 23) due to the difference in phase space

Electron Spectrum

E = Ei + E2

FIG. 4. Number of decay electrons as a function of the sum
of the two electrons' energy. The solid curve represents the
two-neutrino decay, the dotted curve gives the OMM decay,
and the dashed curve gives the CMM decay. All three curves
have been arbitrarily assigned the same maximum value for the
purposes of comparison.
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TABLE II. Parameters consistent with emission of ordinary
Majorons in double-P decay. T, ~z is the total inverse half-life,
assumed to consist completely of anomalous events. 0 is the to-
tal phase space available for each decay measured in units of
m, . As in Table I, g,& is the required coupling, defined in Eq.
(1). The changes in Te relative to Ref. [13] reflect the new mea-

surements of Ref. [19].

Element

12ST

130Te

238U

T 1 /2 I yr

1X10-"
4X 10
5X 10-"

0.23
30
33

I['ea

3 X10-'
6X 10-'
2X10

for the two decays (see Table II). Because of the small
end point energy for Te compared to that of I30Te, the
same ratio for PPcM decay is much larger, g(PPcM) =770,
and is closer to the experimental value.

B. Nuclear form factors

X dx N'T* J x J&0 S e'~'.

Here J„=uy„(1+@&)dis the weak charged current that
causes transitions from neutrons to protons and ~N ) and
N' ) represent the initial and final 0+ nuclei in the decay.

E and M are the energy and mass of the initial nucleus E,
while E' and M' are the corresponding properties for the
final nucleus N'. The prefactor &EE'/MM' is required
to ensure that 8'

&
transform as a tensor since, as is com-

mon in the literature, we use nuclear states which are not
covariantly normalized: (p~p') =5 (p —p'). The (2m)
is conventional and is required in order to put our matrix
elements into the standard form once the overall center-
of-mass motion of the nucleus is separated out.

A priori the tensor W & is a function of the four-
momenta P„and P„' of the initial and final nuclei, as well
as four-momentum transfer between the two currents, p„.
This dependence can be significantly simplified, however.
For PPc„and PPsr, p„ is of the order of the nuclear Fermi
momentum pF —100 Me V, whereas the difference
(P P')„ is only a few—MeV and may therefore be

The other observable constraining models of Majoron-
emitting double-P decays is the total rate for any given
decay. This requires a knowledge of the matrix element
denoted A(PP) in Eq. (5), forcing us to deal with the un-
certainties in calculating nuclear transition amplitudes.
The latter can be written as a sum of six form factors,
with which we parametrize the dependence on nuclear
physics. The form factors can subsequently be expressed
(as we do below) within the context of a given nuclear
model. We start by defining the form factors and then
use them to specify A(PP) for the various decay process-
es in Secs. III C—III F below.

The nuclear matrix element that appears in the evalua-
tion of Figs. 1 —3 is

' 1/2
I

W p(P, P',p) =—(2m )

+LW6E'~p~pQ P (10)

where the six Lorentz-invariant form factors w,
=w, (u p,p ) are functions of the two independent in-
variants that can be constructed from p„and u„. Under
the reflection p —+ —p, all the w; are even except for w4,
which is odd.

By evaluating the leptonic parts of the PP matrix ele-
ments and contracting with 8'

&, one can show that, to
leading order in lepton energies, only its trace 8' enters
into the rates for PPz„, PPo„and PPoM. In terms of the
Gamow-Teller and Fermi nuclear form factors, which we
define in the nuclear rest frame by wF = Woo and

woT=+; W„, we therefore retrieve the familiar linear
combination

W~ —wF wGT .

For PPz„we may to a good approximation neglect p„.
This permits two important simplifications: (i) We may
drop all but the form factors w, and wz, and (ii) we may
approximate these two form factors by constants,
w;(u p,p ) =w;(0, 0). In this limit there is a direct rela-
tion between w, and w2 with wF and wGT, given by
wt ——

—,'woT and wz -wF+ 3woT. —For PP—c, and PPoM,
however, p„ is large and so w3 and w4 may also contrib-
ute significantly to w~T and wF.

The next step is to express A(PP), and hence the
double-P decay rate d I (PP), in terms of the form factors
w, . Before doing so, we pause to present explicit expres-
sions for these form factors, modeling the nuclear decay
as the independent decay of its constituent nonrelativistic
nucleons. In addition to giving some intuition as to the
potential sizes to be expected for these form factors, these
expressions allow a connection between our form-factor
analysis and the nuclear matrix elements that appear in
the literature.

C. Form factors in the nonrelativistic impulse approximation

The common practice in the literature is to provide ex-
pressions for the double-P decay rates with the nuclear

The reader should be advised that we define our form factors
here diff'erently than in Ref. [13].

neglected compared to p„. Then the dependence of 8'
&

on P„and P„' may be replaced with the single variable

u„, the common four-velocity of the initial and final nu-
clei. For PP2„, the momentum transfer p„ is itself also of
order the energy released in the decay, and so in this case
8'

& may be simplified even further by approximating

p =0.
It is also straightforward to show that the Bose statis-

tics of the weak currents J imply that W p(u, p )

= Wp (u, —p). Using the aforementioned approxima-
tion, the most general possible form for W p is [13]

W p(u, P)=w, r1 p+w2u up+w3P~p

+w4(p~u p+p pu&) +w5( p& up ppu~)
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matrix elements computed using explicit models of the
nucleus. In this section we present expressions for the
form factors using such a model. This gives a point of
contact between the formalism we present here and the
rest of the literature. Besides providing a check on our
calculations, the expressions we obtain give some indica-

I

tion of the size that might be expected for each of the
form factors.

Our evaluation starts by inserting a complete set of
states, IX)(XI, into the matrix element of Eq. (9}.
Working in the nuclear rest frame (where EE'/MM'= 1)
and writing out the time ordering, we have

~.p=(2~)'J d'x ge""[&N'IJ.«)IX&&XIJp(0)IN&6}(xo}+&N'IJp(o)IX&&XIJ.(»IN&()( —xv}]
X

i (2—n )' Jd'x g e
X

& N'I J.(x) IX & &X I
Jp(0) IN )

po+ Ex M'+i c,

&N'I Jp(o) IX & &XIJ.(x) IN &

po EX+M —i c
(12)

Contact with the literature can be made once we perform
the following approximations.

(1) The closure approximation: In this approximation a
sum over intermediate states of the form

QxF(Ex ) IX ) (X I
is simplified by replacing the X-

dependent prefactor F(EX) by F(E} where E is the ener-

gy averaged over the states that contribute to the matrix
element in question. In the present example we may also
use the information that M —M' is much less than M and
E to replace M' with M throughout.

(2) The nonrelativistic impulse approximation: The next
simplification is to model the nuclear decay in terms of
the independent decay of its constituent nucleons, which
are taken to be nonrelativistic. We work in the position
representation, as is conventional in nuclear physics. In
this representation, the weak currents acting on the con-
stituent nucleons takes the form

Jo(x)=+5(x—r„)r„+(gr g„C„)+—0(v /c ),

J(x)=g 5(x—r„)~„+(g„o„—grD„)+0(v Ic ),
(13)

where we have included terms up to 0(v Ic) in the nu-

cleon velocities. The sum here runs over the constituent
nucleons, with the position of the nth nucleon denoted by
r„. The operator cr„similarly denotes the Pauli spin ma-
trices acting on the nth nucleon spin, while ~„ is the iso-
spin raising operator for this nucleon. As in Sec. IIA,
gz-—1 and g„=1.25 represent the usual vector and axial
vector couplings of the nucleon to the weak currents.

The operators C„and D„represent the 0 ( v /c ) contri-
butions to the weak currents and are included here since
some of the form factors vanish in the limit that U =0.
They are defined in terms of the initial and final four-
momenta of the decaying nucleon, (E„,P„) and (E„',P'„},
the Pauli spin matrices o.„,the mass of the pion m„, and
the mass of the proton M, by [22]

C„=(P„+P'„)o„/2M

(E„—E„')(P—„—P'„) cr Im

D„=[(P„+P'„)+ip,tt(P„—P'„)X cr „]/2M

(14)

where the "reduced" coordinates r„are subject to the
constraint g„r„=0.

These approximations give the following results for WF

and wGT.'

WF=
2 2

N' e "r„+V+ N

(16)

WGT
= 2r pg„ nm + +

2 2 +n +mon 0 m
po p +lE,

where p —=E—M is the average excitation energy of the
intermediate nuclear state and r„ is the separation in
position between the two decaying nucleons. We neglect
the 0( v /c ) corrections to this expression.

The only other combination of form factors which
arise for PPz„PPo„PPoM, and PPcM decays are ws and
w6, and these arise only in ppcM. In the impulse approxi-
mation we are using, these expressions vanish at lowest
order in v/c, forcing us to go to the next higher order.
We find that

Here p&= —,'(gz —g„)=4.7 is a combination of the proton
and neutron spin g factors that originates from the con-
tribution of "weak magnetism. "

The final step is to separate the overall motion of the
nucleon center of mass R out of the nuclear wave func-
tion. For a nucleus labeled by its overall momentum P,
as well as its other quantum numbers a, we write

eiP R
(r„.. . , r„ IP, a ):—

3&z (r„.. . , r„ la )), (15)
(2m) i

w5= ~ ((N'le " [gz(C„cr —C o„}+gr(D —D„)]IN)),
p (po —p +is)

(17)

w6=
z 2 z ((N le " [D„Xcr +o„XD ]IN)),

p (po p +lE)
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in which g „r+r„+ are implicit.
We may now complete the calculation by expressing

the various double-P decay amplitudes A(PP;) in terms
of the nuclear form factors m;. For this purpose we must
specify the form for the interactions and neutrino masses
to be used in evaluating Figs. 1 —3. We consider each of
the four decay processes separately in the following sec-
tions.

D. PP2„rate

For completeness we start with the standard two-
neutrino decay PPz„. Evaluating the total rate using the
leptonic part shown in Fig. 2, and comparing with Eq.
(5), we deduce that the nuclear part of the amplitude is
approximately

A(PPO„)=8 2~+ V„m, f (2~) p' —m,'+i E

(20)

Although the range of integration runs over all possible
neutrino four-momenta p„, the nuclear form factors tL),

act to cut the integrals off at the Fermi momentum and
energy pF and EF. The contributions from heavy neutri-
nos thus become suppressed, decoupling as 1/m, as m
starts to exceed this scale.

Using the approximations of Sec. IIIC for the form
factors in 8' leads to the familiar Gramow-Teller and
Fermi expressions

r

W

(2n. ) pz —m,~+i E

A(PPz )= —[W ]
15

[4w
&
(0,0)—w2(0, 0) ]

2
~v'15

2—[wF(0, 0)—wor(0, 0)] .
~v'15 (18)

((N'~h(r„;m, )(gv —g„o„o )
~ )), (21)

where h (r„;m; ) is the neutrino potential function
defined by

, exp( ip —r~)h(r„;m)= f d p
2m L0 ~+iM

For simplicity, all final lepton energies and masses have
been ignored. Thus only the form factors evaluated at
zero argument appear because, for N)2, decay, conserva-
tion of momentum and energy determines the nucleon
recoil four-momentum p„ in terms of the energy and
momentum of the final-state leptons.

E. PPo„rate

To evaluate Fig. 3 for the PPO, decay rate, one must
know the neutrino mass spectrum. We consider a general
mass matrix for an arbitrary set of Majorana neutrinos:

+mass 2 vi ( ij XL ™ijXR )vJ

where m; =m; is the left-handed neutrino mass matrix
and yL (ya) are the usual projectors onto left-handed
(right-handed) spinors. The physical masses m, are given
by the square roots of the eigenvalues of the matrix m m,
not necessarily by the eigenvalues of m itself, which may
be complex. The electron-flavor row of the associated
"Kobayashi-Maskawa-type" matrix for the weak
charged-current interactions is denoted by V„.

With this choice the PPo„decay matrix element be-
comes

co = (p +m )
' (22)

Again, g „&+r„+ is implicit in these expressions.
An important special case is that in which the neutrino

masses are negligible compared to the nuclear scale pF.
Then one can use the massless propagator in Eq. (20) and
make the replacement g; V„m;=m„, , since the in-

c e

tegral is to a good approximation independent of i. Thus
the rate vanishes in the absence of a direct Majorana
mass for the electron neutrino, as it should.

F. Rate for ordinary Majoron emission

X „,= —
—,'V, (a„yL+b; yR)v y'+c. c. (23)

If the scalar field is real, then (23) still applies, but with
the restriction that b; =a;~. For example, the phenome-
nological interaction of Eq. (1) represents the case of a
single neutrino with h „' „=a,, = ig, ff /2—

e e e e

Evaluating Fig. 1 using this interaction and neglecting,
as before, the final-state lepton energies and momenta
leads to the amplitude

For Majoron-emitting decays, we wish to evaluate Fig.
1, and this requires a knowledge of the neutrino-Majoron
coupling. For generality's sake we take the form

For neutrino masses that are much smaller than pF, this
expression simplifies to the form

a(PP, )= 4&v yv„v„b„ —f "P,
(2') p +iE

if I'24)
(2~) (p m, +—iE)(p m, +—ie)

I

which involves the same combination of nuclear matrix
elements as appears in Eq. (20) for A(PPO, ) with hght
neutrinos, a result first pointed out in Ref. [11]. The sum
over mass eigenstates simply gives the coupling in the
flavor basis b, which must vanish in a renormalizable

e e

(25) theory if the Majoron comes from an electroweak singlet
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field. Thus, in renormalizable singlet Majoron models, it
is necessary for at least one neutrino to have a mass
m pz-50-100 MeV. Such a neutrino can generate an
effective, nonrenormalizable b„comparing upon being

V~ Ve

integrated out. Note that this observation rules out the
simplest singlet Majoron model [8] (in which the stan-
dard model is supplemented by a singlet scalar field
without additional intermediate mass neutrino species) as
an explanation for the anomalous PP events.

G. Rate for charged Majoron emission

For charged Majorons the interaction (23) must be fur-
ther constrained to reflect the fact that y now carries lep-
ton number. Suppose that the global symmetry for which

p is the Nambu-Goldstone boson acts on the neutrino
fields in the following way: 5v=i(qyL —

q y„)v, with
the generator represented by the matrix q. Then, as
shown in Appendix A, the Majoron coupling matrix to
neutrinos may be written as

la= ——(q m+mq),
(26)

b =+—(qm '+m *q ),

where f is the decay constant, proportional to the
symmetry-breaking scale. Note that Nambu-Goldstone
bosons carrying an unbroken charge are associated with
non-Hermitian generators (for example, the longitudinal

component of the W* bosons), so that q Aq* in what
follows.

Equations (26) are equivalent to the statement that it is
possible to redefine the neutrino fields in such a way as to
ensure that the neutrino-boson coupling has the deriva-
tive form

&q = vp (qual. q 'Yz)v~pf'+c cIPw 2f
(27)

The equivalence of this interaction with the Yukawa for-
mulation is demonstrated explicitly for double-P decay in
Appendix B.

The big surprise now comes when Eqs. (26) are substi-
tuted into the result (24) for the PPoM decay rate A. s is
shown by brute force using the Yukawa couplings in Ap-
pendix C, the result vanishes identically. This is a
reflection of the general statement that the amplitude
A(ppcM) vanishes as the energy of the emitted Majoron
goes to zero [recall that we ignored all final-state momen-
ta in deriving (24)], a fact which is most easily seen using
the variables for which the neutrino-Majoron coupling
takes its derivative form as in Eq. (27).

This result depends crucially on having the emitted
Nambu-Goldstone boson carry an unbroken quantum
number, in this case lepton number. The same result
does not apply to ordinary Majorons, even if they are
true Nambu-Goldstone bosons rather than being massive.
This statement may be puzzling on reflection, since in
this case also one can put the Majoron-neutrino coupling
into the derivative form of Eq. (27). The resolution of the
paradox is that for OMM's the rest of the amplitude is
singular in the limit of vanishing Majoron energy, leaving
a nonzero result. For the details of this argument, we
refer the reader to Appendix D.

The upshot is that in CMM's one must work to next
higher order in the final lepton energies than was done to
get Eq. (24). The extra factors of the Majoron momen-
tum can be put into dQ(PPcM), and account for the
difference between ncM and noM in Eq. (8). In the rest
frame of the decaying nucleus, the nuclear matrix ele-
ment turns out to be

2 +
A(ppcM) =8&2g V„V, b,,I (2m. ) (p m; +is—)(p m+ie—)

(28)

Whereas previously it was the trace of W
&

that
arose in the decay rate, here it is the skew-symmetric
part, parametrized by the form factors w5 and w6,
that appears. In the nuclear rest frame these form
factors are given by ws =p;( Wo;

—W, o)/(21p1 ) and
Ws =

Eg)kp( Wjk l(21p I'}.
Using the approximations of Sec. III C for these form

factors leads to the formulas of Ref. [13]. We note that

We thank C. Carone for pointing out an error (corrected
here) in this equation as it appeared in Ref. [13].

These two matrix elements correspond to what was called A l

in Ref. [13]. We have corrected the erroneous coefficient of-
which multiplies A

&
there. There is a p-wave contribution to

the amplitude which we called A2, omitted here because it is ex-
pected to be much smaller. The amplitude A3 is also omitted
here because it can be seen to vanish identically.

I

the neutrino potential that results from doing the
momentum integral in Eq. (28) does not give the usual ex-
pression, Eq. (22), because of the different momentum
dependence of the form factors (17}.

In fact, there are a number of important differences be-
tween the charged Majoron amplitude (28) and the corre-
sponding result for ordinary Majorons, Eq. (24).

(1}Equation (28) depends on completely different form
factors than the corresponding expression for any other
kind of Majoron-emitting double-p decay. In fact, we
know of no variety of PP which depends on w5, and this
matrix element therefore appears not to have been com-
puted by anyone yet. On the other hand, w6 would ap-

Except for highly subdominant Coulomb or recoil corrections
to PPO„ that would give an S—P, ~2 final state for the
electrons —see Eq. (C.2.12b) of Ref. [22].
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IV. ORDINARY MAJORON MODELS

We now construct a viable alternative to the original
singlet and triplet Majoron models, since these are not
able to yield an observable rate of double-P decay while
still satisfying all other experimental constraints. In this
section we focus on ordinary Majorons, reminding the
reader that here "Majoron" means any light scalar with
couplings to neutrinos, regardless of whether it is a
Nambu-Goldstone boson. It will be shown that if PPoM
occurs at the rate suggested by present experiments, one
can infer that the masses and mixing angles of the neutri-
nos are in a range where they are potentially observable
by other kinds of experiments.

A. Minimal model

It is easy to invent a minimal ordinary Majoron theory
encompassing the low-energy effects of more complicated
physics at the electroweak scale. Let cp be a complex
electroweak singlet scalar carrying —2 units of lepton
number. The lowest-dimensional operator coupling y to
leptons, while respecting the gauge symmetries and glo-
bal lepton symmetry, is

(LH)(H L')g+c. c.
2M

(29)

Here L =(,')I and H are the usual left-handed lepton
and Higgs doublets. This interaction can be derived from
a more fundamental theory, such as the one given in the
next section, by integrating out heavy particles of mass
M. ~ is a dimensionless number that depends on the cou-
pling constants of the underlying theory.

Once the Higgs doublet is replaced by its expectation
value, (H ) =U =174 GeV, Eq. (29) reduces to a coupling
of the form of Eq. (23), with strength

2

b
KV

M
430)

pear in PPo if there were right-handed currents, and it
has been calculated in Ref. [24]. An interesting feature of
this computation is that the value of w6 does not appear
to be suppressed by the nucleon velocity v/c, as would
have naively been expected, but is instead rather large.

(2) In the limit where all neutrinos are much lighter
than pF, the Aavor dependence of the amplitude becomes
proportional to the same combination of couplings as ap-
peared for OMM's: g;~ V„V, b;J =b„, . This direct

e e

coupling to the electron neutrino must vanish in any re-
normalizable CMM's, because we have assumed the
Nambu-Goldstone bosons to all be electroweak singlets.
Analogously to OMM's, it follows that in any CMM at
least one of the neutrinos must have an appreciable mass:
m, pF —50—100 MeV.

(3) As may be seen from Eq. (28), if either of the neutri-
no masses in the graph is large compared to pF, then the
result becomes suppressed by at least two powers of the
heavy neutrino mass: 1/m . Note that this is a stronger
suppression than the 1/m behavior that follows from Eq.
(24) for OMM's.

The imaginary part of y therefore couples axially as in
Eq. (1), with g,it=su /&2M . Because of the require-
ment g,s -—10, it follows that M/&tr = 10 TeV, con-
sistent with the assumption that the particles of mass M
can be integrated out when analyzing double-P decay.

If the light scalar y should also develop a VEV, then
the effective coupling of Eq. (29) also induces a Majorana
electron-neutrino mass m„=gdr(y), which is consistent

with the present upper bound only if (p) (10 keV. The
simplest assumption is that (y) =0. This illustrates the
general arguments of Sec. II B in the present example.

The electron spectrum for PPoM that would be predict-
ed by this effective coupling can be consistent with the
excess events that are seen, provided that at least one sca-
lar mass eigenstate is lighter than 100 keV. This con-
clusion holds regardless of whether ( y ) is strictly zero or
not, since the decay rate found using the scalar couplings
of Eq. (29) in the general expression of Eq. (24) is
sufficiently large even for massless neutrinos, as would be
implied by a vanishing VEV.

The alert reader may wonder how the above model can
lead to observable scalar emission even when the neutri-
nos are massless, since this is in apparent contradiction to
the general result for PPoM decay that was stated in Sec.
III E above. There we claimed that PPoM is suppressed if
all neutrinos are much lighter than the scale pF of the nu-

clear matrix elements. The contradiction is only ap-
parent, however, because the argument of Sec. IIIE
presupposed only dimension-4 (i.e., renormalizable) Yu-
kawa couplings, and so does not include those of Eq. (29).
In fact, this effective coupling can be obtained by in-

tegrating out the heavy neutrino that is required by the
general arguments in a renormalizable theory, as we
demonstrate shortly.

An imperative question in this scenario is why the po-
tential for g should contain such a small scalar mass or
vacuum expectation value, But somewhat surprisingly,
the hierarchy between this small scale and the weak scale
is technically natural in the sense of being stable against
renormalization, at least within the low-energy effective
theory below the heavy scale M. Qualitatively, there are
two types of dangerous terms within the scalar potential
of the effective theory,

(31)

whose coefficients must be extremely small, p(10 keV
and (( 10 ', if m is to be kept ( 10 keV. If we choose
to define the running of these couplings within the
decoupling-subtraction renormalization scheme, ' then
both couplings run logarithmically, except for the discon-
tinuous quadratic contributions when a particle is in-

tegrated out at its threshold. The initial conditions for
the renormalization group (RG) equations in this scheme

This scheme consists of the usual modified minimal subtrac-
tion (MS} scheme, supplemented by the explicit integrating out
of any heavy particles as the renormalization point is reduced
below the corresponding thresholds [25].
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are given by the values of the couplings, e.g. , p(M) and

g(M), at the heavy-physics scale p =M, where the
effective theory is matched onto the underlying theory.
Provided that these initial values are small, the logarith-
mic RG evolution through the scales LM&M in the
effective theory keeps them small. The same is true for
the nonlogarithmic contributions that arise when the W
and Z bosons are integrated out, since these particles
couple only very weakly to y. Furthermore, even though
the coupling g,z to light neutrinos is not particularly
small, the effects of the operator (29} in loop diagrams are
suppressed within the effective theory by the small (or
vanishing) v, mass.

Although the small scalar mass is stable within the
effective theory below the scale p =M, the dificult issue is
whether there exists a model for the physics at p=M,
which can produce the effective coupling, Eq. (29), and
still not generate large scalar self-couplings. Such a ques-
tion can only be addressed within the context of the un-

derlying renormalizable interactions, which are the sub-

ject of the next section.

B. Renormalizable model

—g+s+ VRs+ f —g s VRs p +c C. (32)

It is useful to look for a "fundamental" theory whose
low-energy limit is the phenomenological model in the
previous section. One would like to know whether such a
theory exists, whether it has any additional observable
consequences, and how much fine-tuning it requires.
Naturally, we seek a candidate with the smallest number
of new particles. With hindsight, the simplest choice ap-
pears to be the addition of a Dirac neutrino, whose mass
will turn out to be in the range ofpF-50-100 MeV. Of
course, we also must include the singlet scalar that is
emitted in PP decay. The Dirac neutrino can be de-
scribed as two singlet left-handed neutrinos s+, whose
lepton number charges are +1, and the singlet scalar field
must have lepton charge —2. The most general renor-
malizable couplings of the new particles, consistent with
the assumed symmetries, are

A,LHy~s Ms+ y
—Jts—

For simplicity, we assume that lepton number is not
spontaneously broken: (y) =0. The spectrum then con-
tains three massless neutrinos v,', v„, and v„ together
with a massive Dirac neutrino vz. The relation between

the left-handed weak-interaction eigenstates and the left-
handed mass eigenstates is

v, =v,'cosO+ v& sinO,

s =vg (33)

s+ = —v,'sinO+ v& cos8,

where tanH=AU /M and vz is the charge conjugate of vz.
For v& masses MI, in the range of present interest, the
universality of leptonic weak interactions requires that
8 & 0. l„very conservativelv; thus we have the hierarchy
M/A, v~10 and Mh=+M +A. v =M If v.h is very
heavy compared to pF, it may be integrated out, resulting
in an effective coupling of the form of Eq. (29), with
x/M =A, g+/Mh.

There are two light scalars which can be emitted in
double-P decay in this model, corresponding to the real
and imaginary parts of the complex field y. The total
rate for ppoM decay is given by Eq. (25), where the Yu-
kawa couplings of the scalar to the light neutrino are

a, , =0, b, , =sin Hg+ .2 (34)

This latter coupling is also equal to g,z, and so the experi-
mentally suggested value of g,&=10 may be obtained
by varying the parameters of the renormalizable model in
the range 0.015g+ 51, and 0.01&sinH=Av/M%0. 1.
Setting A, =1, we get an upper limit of M& -10 TeV for
the heavy neutrino mass. But if A, =10, for example,
then M& —100 MeV, which is the smallest it can be be-
fore the amplitude starts to become suppressed by powers
of Mh /p~. In that case we must use the more exact ex-
pression for the leptonic part of the matrix element. This
is accomplished by making the replacement

g V„V,Jb,j
g+ cos O sin O

P +lE
1 2 MA

p +iE p —Mz+ie (p —Ml, —iE) (p Mh+ie)—2 ~ 2 2 ~ 2 2 ~ 2 ~ 2 2 2
(35)

in Eq. (25}, which agrees with b, , cos H in the limit of
Ve Ve

large Mz.

C. Naturalness

Having specified the particle content at the intermedi-
ate mass scale, we can now return to the question of how
natural is the smallness of the scalar masses. We saw in
the previous section that if the initial values g'(M) and

p (M) are small, then g(p) and p(p) remain small as p

runs to lower energies, for which the effective Lagrangian
(32) is valid. But this by itself is not enough; in addition,
we must establish whether the matching conditions at the
heavy neutrino threshold p=M are consistent with small
values for g(p) and p(p) at scales p) M. We regard the
parameters as being naturally small only if no delicate
cancellation is needed between their values above p=M
and the quadratic contribution arising when vI, is re-
moved from the effective theory.

The contribution to p(M) and g'(M) due to integrating
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out the heavy neutrino is easily estimated from the
graphs of Fig. 5, in which vt, is the virtual particle:

5 (M)- M
16

g
2 g2

g(M)-
16~

(36)

Contrary to the prejudice that a p = 10 keV scalar mass
requires extreme fine-tuning, we see that it is possible to
keep 5pSp=10 keV and yet have g,a=10 using plau-
sible values of the underlying couplings. For example,
g+ ——10,g =X=10,and sin0=0. 1 imply Mh ——100
MeV, which then implies, from Eqs. (36), 5p (M)=(10
keV) and 5((M)=10

In the above scenario we have v, mixing strongly with
a neutrino in the mass range of several hundred MeV, a
choice with potentially strong phenomenological conse-
quences (see Sec. VI). However, Mz can be pushed to
much higher values by letting g become smaller, since
this has no effect on the effective Majoron coupling, Eq.
(34), that is relevant to pp decay. While it might seem
less pleasing aesthetically to have g «g+, there are no
logical grounds for excluding this possibility. In this case
the model is safe from any of the constraints to be dis-
cussed in Sec. VI that follow from a MeV-scale neutrino.

V. CHARGED MAJORON MODELS

We now repeat the above exercise for charged Majoron
models, i.e., to construct the simplest example both as a
low-energy effective theory and a renormalizable one. It
will be seen that our CMM has some close similarities to
the OMM just constructed. In contrast, however, we will
find that a heavy neutrino in the 100 MeV mass range is
not merely suggested, but required, in order to achieve a
high enough PPCM rate.

To motivate the specific example, we start with some
general considerations. Consider the spontaneous break-
ing of a global symmetry group G down to a subgroup H.
The resulting Nambu-Goldstone bosons can carry quan-
tum numbers with respect to unbroken charges in H only

if the original group G is non-Abelian and the unbroken
charges do not all commute with the broken generators
of G. In the standard model itself, a global non-Abelian
symmetry acting upon the leptons is precluded by their
Yukawa couplings to the standard Higgs boson, or
equivalently by the charged-lepton masses. We must ex-
tend the low-energy particle content in order to devise
such a symmetry. In so doing, it is prudent to let the new
particles be electroweak singlets lest dangerous couplings
arise between the massless Nambu-Goldstone bosons and
charged leptons or electroweak bosons.

If the new electroweak singlet neutrinos are integrated
out, we obtain a low-energy effective coupling of the
charged Majoron to light neutrinos. It is instructive to
write down the lowest-dimension such interaction that is
possible since this reveals many of the features that are
common to all underlying models. For CM's the general
result that the pp amplitude must be proportional to the
CM momentum (see Appendix B) suggests using field

variables for which the derivative couplings are explicit.
Because the CM carries lepton number L = —2, the usual
interaction of the form v, y&y„v, B„qr is not allowed; the
current has L =0. Rather, we need an even number of y
matrices:

M LH(a~gy„+any„B)H L'd"y . (37)

g,s(CMM)-g8 PF

M
(38)

These are the lowest-dimension operators that are possi-
ble; note that they are suppressed by two more powers of
the heavy neutrino mass M than are the OMM effective
couplings. It follows that A(ppcM) is suppressed by at
least the factor 8 qp/M relative to the corresponding
OMM result, where q and p are, respectively, the average
momenta of the Majoron and virtual neutrino.

This estimate gives us constraints on the parameters
needed if the underlying heavy-neutrino model is to
reproduce the observed anomalous PP events. Recall the
OMM result g,s(OMM)-g8, where g and 8, respective-

ly, measure the couplings between the heavy neutrino and
Majoron and its mixing with v, . Roughly, the corre-
sponding CMM result is

(aj Using Q —1 MeV, p~ —100 MeV, and 8 (0.1, we see that

g,&-10 ", as required, only if (i) g —1 and (ii) pF/M —l.

A. Renormalizable model

(b)

h
I

H

FIG. 5. Two most dangerous Feynman graphs contributing
to the light scalar couplings when the heavy neutrino is in-
tegrated out.

The above considerations may be simply illustrated
within a renormalizable model. We must first choose the
global symmetry group 6 that will break to give a Majo-
ron carrying a U(1) charge. The standard model itself
provides us with an example, since if SUL(2) XU&(l)
were a global rather than a gauged symmetry, the
Nambu-Goldstone bosons absorbed by W+ and W
would each carry a unit of electric charge. We are there-
fore led to try an analogous global symmetry
SU~(2) XUI.(1), which is to be broken down to ordinary
lepton (electron) number UI (1) by scalar fields P, . These
are like the two components of the standard model Higgs
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boson in being a doublet under the new SUF(2) symme-

try; however, they are gauge singlets. In further analogy,

p; carries a unit of the UL. charge, just as the standard
model Higgs boson carries weak hypercharge. Our field
content is completed by adding an SUF(2) doublet of
right-handed gauge-singlet neutrinos N+ and two sterile
SUF(2)-singlet neutrinos s+ carrying only the new UL
quantum number, namely, L'=+1. The UL.(1}factor is

required to permit lepton number to be embedded into
the Aavor group through the mixing of v, and the new

singlets. Explicitly, the transformation properties of the
new fields under SUF(2) XUL (1) are

N
yRN= —

N
-(2 o» yRs* (I-+1»

+
(39)

-(2, —1),

A, vtanO=
g Q

2M+A, v +g u
tan2a =

M —i1. v +(g+ —g )u

(44)

lg+
1J 2

sgs~ sgc~

sgs —cgsin2a cgcos2a
—sgc~ cgcos2a cgsin2a

(45)

We are interested in the couplings b, controlling the

PPcM decay. Strictly speaking, this is a 5 X 5 matrix since
there are five left-handed neutrinos, but because lepton
number conservation only permits the b; coupling
among L=+1 neutrinos, the result can be simply ex-
pressed in terms of v,

' and g+. In the basis (v'„$,1(i+ }
we have

where the subscripts denote the corresponding charges
under the ultimately unbroken lepton number
L = —2T3+L'.

We construct the most general renormalizable La-
grangian respecting all the symmetries. The usual stan-
dard model particles are taken to be singlets under
SUF(2), and their UL (1) quantum numbers are chosen to
coincide with their lepton (or electron) number. The new
mass terms and Yukawa couplings are

EJC)

+3vv 2
vi VLvjq 3+C.C. (46)

This expression has the property that the PPCM amplitude
is zero if either of the couplings g+ or g vanishes.

In addition to the charged Majorons, there is also a
neutral one y3 corresponding to the diagonal generator of
SUF(2). Its Yukawa couplings to neutrinos can be read
directly from the Lagrangian once this is expressed in
terms of neutrino mass eigenstates. The coupling is

ALHVRs ——Ms+ yRs

—g+(NyLs+ )iP —g (Nyis )4+c.c. (40)

where c; is a 3 X2 matrix whose rows are labeled by the
L =+1 states (v,', t(i+, f ) and whose columns are la-

beled by the L = —1 states (f'+, g' ). We find

[A direct mass term for N is forbidden by the SUF(2)
symmetry. ] Here @=ir2Ci' is the conjugate SUF(2) dou-

blet, with ~z the second Pauli matrix acting on Qavor in-

dices. The scalar potential is chosen to ensure that 4
gets a VEV, which we assume has been rotated to the
form

1
Ij

g Sgsp g SgCp

(47)

g cgc~sp g+s~cp g cgc~cp g+s~sp

g cgs~sp+g+ c~cp g cgs~cp+g+ cusp

(~)= 0
Q

(41) P here denotes the mixing angle among the L = —1 fields
and is given in terms of the model parameters by

This breaks SUF(2) XUL,(1) down to UL(1), with the un-

broken electron-type lepton number symmetry generated
by L.

The mass matrix resulting from Eqs. (40) and (41)
yields a massless neutrino v,

' and two heavy Dirac neutri-
nos g+, whose masses can be written as

2g+ uM
tan2P =

M +A, v +(g —g )u
(48)

We should remark that the mass terms in the fz, f+
field variables have the form —2'M+ p+g++ H.c., leading to
matrix propagators

1 IM 2++M 2 4g2 u2($2v2+g2 u 2))1/2

with

M =M +A, v +(g +g )u

(42)

i gf M

p' —M' M gf
(49)

In terms of left-handed neutrino fields, v,', f+, and f
carry L =+ 1, while iti'+ and g' carry L = —1. Only the
L =+1 fields mix with the electroweak eigenstate v„
with a mixing matrix given by

The usual Dirac mass terms M+g+g+ and propagators
(g+g+) =il(P M+) ca—n be recovered by making the
transformation

v, =v,'cs+ (g+s +g c }s&, (43}
yR VL

VL yR
(50)

with sg=sin8, cg=cos8, etc., denoting mixing angles
which are given in terms of model parameters by where g' denotes the usual charge conjugate field. In
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these more conventional variables, only the chirality pro-
jections of g+ have definite lepton numbers.

B. Naturalness

The naturalness issues are much less severe in this
model than they are for OMM's. This is because the un-
broken lepton number permits the scale u of SUF(2)
breaking to be much higher than —10 keV without in-
cluding unacceptably large PPo„decay. The first step is
to determine how large this scale can be. We saw earlier
in this section that the conditions for achieving an ac-
ceptable PPcM rate require heavy neutrino masses
M+-pF —100 MeV, with comparatively large heavy-
neutrino —scalar couplings g+ —1. We also found that
gu -M if the neutrino-scalar coupling is not to be
suppressed by additional mixing angles, such as e of our
explicit example. Taken together, these conditions imply
an SUF(2) symmetry-breaking scale u -p~ —100 MeV.

Besides being four orders of magnitude larger than the
symmetry-breaking scale that is permitted for OMM's,
the CMM scalar sector is also more natural for another
reason. In both cases the largest contribution to the sca-
lar potential comes from loops which involve the heavy
neutrino, of mass M. This contribution is dangerous for
OMM's because this neutrino is itself much heavier than
the lepton symmetry-breaking scale. The same is not true
of CMM's, however, because for these models both u and
M are of the same size. As a result, even though these
particles couple with non-negligible strength, g —1, the
contributions of heavy neutrino loops are

Mg
16'

g
2$2

16'

(51)

6p is clearly acceptably small, since all that is required is

6p SM . The Majoron —Higgs-boson coupling, on the
other hand, must satisfy 5( ~ 10, which is also easily
satisfied given the phenomenological constraint that
V„-A, U /M-0. 1, which implies k-10

VI. OTHER BOUNDS

The couplings of Majorons to matter are seen most
directly in the PP processes which have been the main
subject of this work, but there are other constraints
which must also be considered. The most serious of these
are laboratory searches for the mixing of v, with a heavy
neutrino, which is one of the generic predictions of the
models we have discussed above. In addition, one must
take care that Majoron emission from stars or supernovas
does not cause them to burn out prematurely or that Ma-
jorons make so large a contribution to the energy density
of the Universe that they cause too much helium syn-
thesis or cause the Hubble expansion to slow too much.
In the following sections we discuss the models proposed
above with regard to these issues.

A. Laboratory bounds

(GF ),. =cos0= 0.9970+0.0023 .
(GF )„

(52)

Taking the 1o lower deviation, we get a bound on the
mixing angle of

0(0.10, (53)

which is marginally consistent with having observable

PPM in our models. Note that a real deviation of (52)
from unity would be indirect evidence for the sort of neu-
trino mixing we need.

A further constraint on the Majoron coupling to neu-
trinos comes from searches for the decay ~~eve [29].
These yield a comparatively weak limit of g,& & 9 X 10

It was argued that in order to get an observable rate of
PPQM or PPcM events, it is necessary to have a neutrino

v& in the 100 MeV range which mixes with v, . Such a
neutrino could be inferred from a "spike" it implies for
the positron spectra of the decays m. +, E+~e+v„ if it is

lighter than the decaying meson. A survey of the Particle
Data Group book [26] shows that pion decay experi-
ments limit the mixing angle to values 0 & 10 for a neu-
trino with mass Mz —100 MeV. On the other hand, the
above analysis indicates that the minimum angle needed
for observable PPM is approximately 0.1 for charged Ma-

jorons and 0.01 for ordinary Majorons.
The bound on the mixing angle from the pion decays is

easily evaded by taking MI, & m so that the decay is
kinematically forbidden. Note that experimental con-
straints on mixing coming from searches for the decays of
v& do not apply to our models. These constraints assume
the visible decay channel vt, ~e+e v, due to weak in-

teractions, but in the present situation the weak process
is completely subdominant to decays into Majorons,
v& ~v, y, which would be undetectable.

One must therefore look to the decays E~evz for lim-

its on the mixing angle when Mz & 140 MeV. The Parti-
cle Data Group book lists such constraints only up to a
mass of 160 MeV, and so one might be misled into think-
ing that a modest increase in M& above m would render
large mixing angles safe from being ruled out. Actually,
there exist stringent results from KEK [27] that do not
appear in Ref. [26]. This experiment also restricts
8» 10 for masses up to M& =350 MeV. Such a large
mass leads to a large suppression of the amplitude for
ppcM, although not necessarily for ppQM.

An indirect limit on the coupling of v, to heavy neutri-
nos also comes from tests for universality of the weak in-

teractions of leptons in different families. The most re-
strictive test comes from the comparison of electron and
muon charged current couplings in pion decays [28].
Suppose that v,, had mixing angle 0 to a neutrino with

mass M & m, so that its weak couplings were suppressed
relative to those of v„by cos8 (assuming for simplicity
that v„does not mix with anything. ) The comparison of
theory with experiment shows that the ratio of electron
to muon couplings measured in meson decays is
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B. Cosmology and astrophysics

Because of the weak coupling of the Majoron to
matter, one might worry that it could have deleterious
cosmological effects, such as contributing too much ener-

gy density if it is massive, interfering with the formation
of large scale structure due to its decays. Emission of
Majorons from stars or supernovas might also shorten
the lifetimes of either.

In fact, the effective coupling g,s-10 of a massive
Majoron to neutrinos is sufficient for avoiding the cosmo-
logical problems. The Majoron lifetime due to the decay
+~veve 1s

7+=167Tg eff m (54}

which is 10 ' s for m —10 keV, far less than is required
by consideration of the density of the Universe or galaxy
formation.

In contrast, the Majoron coupling to ordinary matter
such as found in stars is too weak to do any harm. Since
the thermal background of neutrinos in a star is negligi-
ble, Majorons are emitted primarily as bremsstrahlung
from electrons. But for the OMM considered above, lep-
ton number conservation prevents a single Majoron from
being emitted; rather, they must appear in pairs with zero
net lepton number. The effective coupling of two Majo-
rons to electrons is generated by a loop diagram in which
a W boson is exchanged (Fig. 6). The resulting effective
interaction with electrons can be estimated as

(55)

where 8 is the mixing angle between v, and the heavy
neutrino, whose mass does not appear because we have
assumed it to be much less than G~ '~ . The amplitude
for y emission proves to be some eight orders of magni-
tude below the observational limit. We expect similar re-
sults for charged Majorons, which must also be emitted
in pairs. But in addition we need to check the rate of
neutral Majoron (y3) emission in the CMM. The cou-
pling of q3 to electrons arises at one loop from 8'- and
Z-boson exchange. To make an estimate we have com-
puted only the latter contribution (the two are numerical-
ly equal in the singlet Majoron model [8]). It is shown in
Fig. 7. Using the couplings of Eq. (47},one can eventual-
ly find that the effective interaction has the form

~ me f(8,a,P)[(1+2m)ln(1+@) 2]ye@&—e,
16 2m u

e= (M+ —M )/M, (56)

FIG. 6. Feynman graph through which the effective
electron-Majoron interaction is induced.

FIG. 7. Feynman graph which mixes the Z boson with the
"neutral" Goldstone boson. Once the Z is attached to a fer-
mion line, this induces an effective electron-Goldstone-boson
interaction.

where f(8,a, p) is a function of the three mixing angles
of the model (see Sec. V A for their definitions} and which
we here conservatively take to be of order 1. Recall that
A, U -8;M; —10 MeV from the requirement of getting ob-
servable ppcM. Using the fact that M, -u, we get a
coefficient of order 10 ' . Comparing with the analysis
of Ref. [11],one sees that this is somewhat below the lim-

it from red giant lifetimes of 10 times the electron Yu-
kawa coupling or 3 X 10

Because of the higher temperatures in supernovas,
weak interactions are in equilibrium and there is a
thermal population of neutrinos. A coupling of order

g,fr=10 between neutrinos and Majorons is sufficient
for bringing the latter into equilibrium as well [30].
Therefore, in contrast with the situation for stars, in su-

pernovas Majorons are so strongly coupled that they are
trapped in the core and do not significantly deplete the
normal energy Aux, in this case due to neutrinos. This
will be made more quantitative in the next section, where
we examine the equilibration of Majorons when the
Universe was at a temperature of 1 —100 MeV: condi-
tions similar to those in a supernova.

If Majorons are trapped in supernovas, they can have
an adverse effect on the bounce and subsequent explosion
[31]. This has only been studied for triplet Majorons, us-

ing restrictive assumptions about the energy dependence
of the cross section for vv~yq, so that no direct con-
clusions on the models studied here can be drawn.

C. Nucleosynthesis

I -10 2g'~2/T (57)

which comes into equilibrium before a temperature of 1

A difficulty not so easily surmounted is that the Majo-
rons in our models generally change the expansion rate of
the Universe enough to have increased the predicted
abundance of primordial helium [32]. We will show how
this comes about and suggest some possibilities for evad-
ing the problem.

Every scalar degree of freedom in equilibrium at MeV
temperatures in the early Universe is equivalent to —', of a
neutrino species in its contribution to the energy density
and hence the expansion rate. A complex scalar, as in
the OMM we have discussed, would thus count as —'„and
the CMM would give —", because it has a total of three
Nambu-Goldstone bosons. The current limit on the
number of additional neutrino species beyond those of
the standard model is 0.4 [33].

In the OMM's, the dominant means for equilibrating
massive Majorons is the decay y —+vv and its inverse pro-
cess. The thermally averaged rate is roughly
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MeV for all scalar masses greater than a few eV, assum-

ing g,~=10 . Since it becomes increasingly unnatural
to have scalars lighter than the 10 keV allowed by the PP
experimental anomaly, we expect the decays to be in
equilibrium for massive Majorons.

Charged Majorons will suffer fast decays only if they
develop a large enough thermal mass. Rather than com-
pute this, we focus on the annihilation process vv~yy*.
Using the interactions of Eq. (45), we estimate the
thermally averaged annihilation rate to be of order

(58)

0 m6

m& m2 m3 0 M) 0

(
0 0 0 M, 0 M2

l

Im4 m~ m6 0 M2 0

(59)

in the limit that T ((M. This is some ten orders of mag-
nitude faster than the expansion rate at temperatures
near 1 MeV, assuming masses and mixing angles of
0-0. 1 and M-100 MeV. In addition, using the neutral
Majoron interactions of Eq. (47), we find that the rate for
vv~qrp& can be suppressed relative to (58) only by a fac-
tor of (T/M) . Thus all three kinds of Majorons will be
in equilibrium at T-1 MeV, in contradiction to the nu-

cleosynthesis bound.
We would like to point out two ways in which the nu-

cleosynthesis may proceed as usual, despite the presence
of two or three Majoron species. One possibility is that
the ~-neutrino mass is close to its experimental upper
bound, in the region of 5 —30 MeV. If it decays or annihi-
lates into Majorons on time scales faster than 1 s, the
time when neutrinos decouple, there will be one less
species of neutrinos, making room for two species of Ma-
jorons or three with a weak violation of the bound.

A second possibility is that some neutrino decays into

v, plus q in such a way as to heat the electron neutrinos
relative to the other species. It was shown that this
occurs if v„or v, has the desired decay with a lifetime in

the range 6X10 s&r&2X10 s [34]. The overpopu-
lation of v, results in prolonged equilibrium between neu-

trinos and protons, which compensates for the extra den-

sity of the Universe in its effect on helium synthesis. This
idea can be generalized to the annihilations of sterile neu-

trinos in the mass range of a few MeV as well. In fact, it
is not necessary that the decaying or annihilating particle
go directly into v, 's; as long as it produces particles that
are in equilibrium with v„after the decoupling of neutri-

nos from electrons, it will accomplish the same thing.
As an existence proof for these mechanisms, we show

how the ordinary Majoron model of Sec. IV B can be gen-
eralized to include a heavy ~ neutrino. Let there be one
additional sterile neutrino s3 whose lepton number is the
same as that of s . When we include the other two gen-
erations, the straightforward extension of the Lagrangian
(32}yields a mass matrix of the form

m) 0 m4

m& 0 m5

in the basis (v„v„,v„s,s+, s3 }. It is easy to see that the

spectrum consists of two massless states which are mostly

v, and v„, a Dirac neutrino of mass -m, consisting

mostly of v, and s, and a Dirac neutrino of mass -M,
which is mostly s+ and s3. Supposing that the intermedi-

ate Dirac mass is of order 10 MeV, for example, we see

that the constraints on mixing angles can be satisfied:

Oe~
—(cpl i spl4)l(ct713 spl6) 0 01 (60)

VII. CONCLUSIONS

Motivated by experiments suggestive of Majoron emis-
sion in double-P decay, we have proposed two kinds of
models that are able to account for this effect without
lepton number violation. In the first proposal, the boson
is not of the Nambu-Goldstone variety, but rather has a
small mass, which can nevertheless be natural in a techni-
cal sense discussed above. The second proposal is to let
the Majoron be truly massless, but carry lepton number
charge. Coincidentally, both of these schemes suggest
the existence of heavy isosinglet neutrinos in the mass
range of severa1 hundred MeV with significant mixing to
the electron neutrino. These heavy neutrinos could mani-
fest themselves in the decays E~ve or by nonuniversali-

ty in the weak interactions of electrons versus other lep-
tons. The models can be consistent with nucleosynthesis
constraints if the w neutrino is in the 10—30 MeV mass
range or there exist additional sterile neutrinos with a
mass of a few MeV. The anomaly in the double-P decay
spectra, if confirmed, would thus be the precursor to
several new phenomenon in neutrino physics.

from searches for peaks in the m ~e v spectrum [28] and

8„=[(cm4+sm, ) 8„—(crn6+ sm 3 )/M-0. 01 (61)

from the requirement that g,s-10 in PPoM. Here

s/c =Mi /M2 is the tangent of the mixing angle in the

sterile neutrino sector, M=(Mi+M2)' is approxi-

mately the mass of the heaviest state, and O„denotes the

mixing angle between v, and the mass eigenstates that
are mostly v, or the heavy sterile neutrino.

It turns out that the tree level couplings that would

cause the decay v,~v, y vanish; nevertheless, the annihi-

lation process v v,~pq' goes at a rate comparable to
(58), however without the mixing angle suppression. The
annihilations are therefore very efficient in depleting the

v, population, as long as the heavy neutrino mass scale M
is significantly smaller than 100 GeV. Moreover, the re-

sulting Majorons are still in equilibrium with the light
neutrinos, and so we have the v, -heating mechanism in

addition to the elimination of v, . We note that a ~ neutri-

no in this mass range would not necessarily have mani-

fested itself in supernova 1987A through the delayed sig-

nal of its decay products. Because it interacts so strongly
with Majorons, its neutrinosphere will be farther out in

the core where the temperature is lower and the
Boltzmann suppression is greater, contrary to the usual

case where v, is emitted at a higher temperature. Thus

the Aux of v, 's, would be greatly reduced relative to the

electron neutrinos.
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APPENDIX A: YUKAWA FORMULATION
OF NAMBU-GOLDSTONE BOSON COUPLINGS

In this appendix we derive the general form for the Yu-
kawa coupling of a Nambu-Goldstone boson: Eq. (26).

To this end consider an arbitrary set of Yukawa cou-
plings between a collection of spin- —, and spin-0 particles.
Such particles may always be cast as Majorana fermions
f' and real scalar fields 4, . The most general form for
their mutual couplings is

l/f P; yL—tip~@~ +c.c. (Al}

Suppose also that this Lagrangian is invariant with
respect to the following global symmetry transforma-
tions:

50'=to [(q.)', yt. (q. )', '—ytt jW

54, =i8 (aa), 4~,
(A2)

in which both sets of matrices q, and 6, are Hermitian
and 6 must also be imaginary. Invariance of the Yu-
kawa couplings is expressed by the identity

(q, ) I"+I"q +I' (6 )b'—=0 .

Any explicit left-handed fermion mass matrix (mo},"
must similarly satisfy the relation q me+ moq —=0.

This symmetry is spontaneously broken when the sca-
lar fields acquire their VEV's v, = (4, ), and the result-
ing Nambu-Goldstone boson directions in scalar-field
space, q&„are given by the action of the symmetry on v, :

(5os@),=i(a,v)—,(F ') Pyp . (A4)

The real, symmetric normalization matrix F is chosen
to ensure that the scalar kinetic terms remain properly
normalized. That is, B„@,B"4,=B„qr B&y +, pro-
vided that

(F I )ar[v Ta 6 v ](F 1)AP—5aP
r

The Yukawa coupling for y therefore becomes

(A5)

Xv„„=— PI'yL P(6 v },(F—') yp+c. c.
2

=+ f(q I'+I'q }y—L fv, (F ') Ppp+c. c. ,2
(A6)

where Eq. (A3} was used in writing the last line. The ex-
pression for the right-handed coupling follows simply
from taking the complex conjugate of this expression.

Equation (A6) gives the most general form for
Nambu-Goldstone boson couplings. It can be recast into
the form of Eq. (26) using some additional simplifying
features of the models which we consider. Suppose first

Note added in proof. Since completion of this work,
Ref. [35] appeared relating to the effect of a heavy r neu-
trino on nucleosynthesis.
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Next, we suppose that the Nambu-Goldstone bosons
carry an unbroken U(1) charge, as is the case for CMM's.
It is then convenient to work with complex combinations
of the y 's. If, for example, y& and yz form a multiplet
under the unbroken U(1), then the symmetry transforma-
tions become diagonal when expressed in terms of
y=(y, +iq&2)/~2 Th. e same steps as before once more
lead to Eq. (A6), with the proviso that the corresponding
broken charge q =(q, iq~—)/~2 need no longer be Her-
mitian.

The simplest case is if there is only one Nambu-
Goldstone boson with a nonzero charge, as in the models
we consider. Then the normalization matrix F ' cannot
mix y with any of the uncharged Nambu-Goldstone bo-
sons and must be proportional to the unit matrix in the
charged scalar sector. Denoting the proportionality con-
stant by 1/f =(F ')"=(F '), we obtain Eqs. (26), as
required.

APPENDIX B: EQUIVALKNCK OF DERIVATIVE
AND YUKAWA FORMULATIONS

A famous property of Nambu-Goldstone bosons is that
they only couple derivatively. Here we make this proper-
ty explicit for the couplings of the Nambu-Goldstone bo-
sons that are considered in Eq. (26) by showing the
equivalence of these two formulations for the double-P
decay rate.

Nambu-Goldstone bosons can only couple derivatively,
because if these fields are taken to be constants, they
completely drop out of the Lagrangian density. This is
because the Nambu-Goldstone directions in field space
are defined by performing a field-dependent symmetry
transformations on the vacuum, as in Eq. (A4). For con-
stant fields these transformations are really symmetries
and so produce no effect at all in the Lagrangian. y only
appears to the extent that it varies in spacetime, and so it
must couple only through its derivatives.

To see this in the present case, consider the following
field-dependent redefinition of the fermion fields:

5$= i(q y —
q
—y„)P(F ') Ppp.

The fermion mass term changes by

5X „,= if(q m+m—q )yLQ(F ') yp+c. c. ,

(B1)

(B2)

where m =I'u, . Note that this is exactly what is re-
quired to cancel the Yukawa coupling of Eq. (A6). A
similar cance11ation occurs for a11 of the nonderivative in-
teractions of y . It is important to note in this regard
that if the broken symmetry should transform other par-
ticles such as the electron, in addition to neutrinos, then
these other particles must also participate in the field
redefinition, Eq. (Bl}, in order to remove all nonderiva-
tive y dependence.

The y dependence is not completely eliminated, how-

that no symmetry-invariant fermion mass terms exist,
ms=0. Then the Yukawa coupling matrices I' which
appear in Eq. (A6) can be traded for a dependence on the
fermion mass matrix using

(A7)
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Z«, q'y (V,, +——A„y, )ga„q,
( V&& + A yg )gW +c.c.

(B3)

where, on general grounds, A and A are both symmetric
matrices, while V and V are antisymmetric. For the
charged-current weak interactions, we take A = V ~ T

ever, since the fermion kinetic terms are not invariant un-
der a spacetime-dependent transformation such as that of
Eq. (Bl). It is a simple exercise to show that, under the
assumptions leading to Eq. (26), the variation of the
kinetic term is given by Eq. (27). The latter has been ex-
pressed in a way that holds even if the generators q are
not Hermitian, as is appropriate for charged Nambu-
Goldstone bosons. Since these two forms for the
Nambu-Goldstone boson interaction are related by a field
redefinition, they must give equivalent scattering ampli-
tudes.

To concretely verify the equivalence of these two ex-
pressions for the Nambu-Goldstone boson couplings, we
compute the double-P decay rate using both Eqs. (26) and
(27). Although the graph in which the Nambu-Goldstone
boson is emitted by the neutrino line, as in Fig. 1, is not
equivalent by itself, we will show that the result becomes
equivalent once Fig. 1 is added to the remaining graphs
of Fig. 8. We denote the leptonic part of the amplitude
computed from Figs. 1 and 8 using derivative couplings
by M$" and the same amplitude using Yukawa couplings
by M"'.

First, consider the evaluation of these graphs using
derivative couplings. For generality, we work with an ar-
bitrary set of Majorana fermions and real scalar fields,
and assume the following form for scalar and charged-
current interactions which appear in the Feynman rules
for Figs. 1 and 8:

FIG. 8. Remaining Feynrnan graphs which contribute to
double-P decay accompanied by Majoron emission. These

graphs only arise if direct electron-Majoron couplings exist, as
is the case for OMM's in the variables for which the Majoron is
derivatively coupled.

where T is the SUL(2) lowering operator. For the
Nambu-Goldstone boson associated with the charge q,
we have A= —,'(q+q ) and V= —,'(q —

q ). The corre-

sponding Yukawa couplings will be denoted by the ma-
trix A ~ ayL + by+, with a and b given by Eq. (26).

Up to a common overall normalization, the leptonic
part of the integrands for the three graphs become (in an
obvious matrix notation)

M$'( I) = u(p, )y"( V+i A ys)S(p, —k, )g(V+iAy, )S(k2 —
pz )y'( V+i Ay, )u'(pz),

M~s'(8a ) =u(p& )g(V+iAy&)S(p, +q)y"( V+i A y~)S(k2 —p2)y'( V'+i A 'y5)u'(pz),

M~& (8b ) =u(p, )y"( V+i Ay, )S(p, —k, )y'( V'+i A 'y, )S( —
pz

—q)g(V+iAy, )u'(p2),

(B4)

where S(p) = [if +m yL +m yR ] is the fermion propagator, thought of as a matrix in Dirac and fiavor space, while
u ( u ') is the (conjugate) electron spinor.

These expressions can be related to the Yukawa expressions by applying the easily proven identities

S(p, —k, )ig(V+iAy~)S(k~ —
p~ ) =S(p, —k, )A(V+iA y~)S(k~ p~)—

+S(p, —k, )(V+iAy~) (V+iA—y5)S(k2 —p2),

u(p, )ig(V+iAy&)S(p, +q)=u(p, )[(V—iAy~l+AS(p, +q)],
S( —

p~
—q)ig(V+iAy, )u'(p2)=[ —(V+iAy, )+S(—

pz
—q)A]u'(p2) .

The last two of these identities rely on using the Dirac equation for the initial and final spinors u(p, ) and u (p2 ).

Using these identities in Eqs. (B4) relates the derivative-coupling and Yukawa-coupling results for each graph:

Mg (1)=M""(1)+u(p, )y"( V+i A y, )S(p, —k, )(V+iAy, )y "(V*+iA 'y, )u'(p2)

—u (p, )y"( V+i A y, )(V+iAy, )S(k~ —
p2 )y'( V'+i A *y, )u'(p2),

M~q (8a)=M" (8a)+u(p, )(V i Ay, )y"—(V+iAy, )S(k2 —p2)y (V*+iA*y, )u'(p~),

M~g (8b)=M" (8b)+u(p, )y"(V+i Ay, )S(p, —k, )y'(V*+i A *y, )( V+iAy, )u'(p~—) .

(B6)
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We see that although the result using the two formulations of the Nambu-Goldstone boson couplings do not agree

graph by graph, their sum is the same provided that the scalar- and charged-current coupling matrices satisfy the con-

ditions

[V,V']+[A, A']=[V',A]+[V, A']=[V, V]+[A,A]=[V, A ]+[A,V]=0 .

These are trivially satisied if the charged-current genera-
tors commute with the charge that is associated with the
Nambu-Goldstone boson, as is required by the invariance
of the charged-current interactions under the spontane-

ously broken global symmetry. The equivalence of the
two formulations for double-P decay is thus established.

APPENDIX C: CHARGED MAJORON
ELECTRON SPECTRUM

It is argued in the text that the vanishing of the
double-p decay matrix element A(ppc~} as the Majoron
momentum goes to zero is a key feature of charged Majo-
ron models. Here we demonstrate this property in some
detail.

The vanishing of the amplitude is straightforward
when the Majoron couplings are expressed in derivative
form, as in Eq. (27). In this case the conservation of elec-

I

I

tric charge and lepton number precludes any derivative
coupling between the electron and charged Majoron, in
the absence of exotic, electrically charged fermions. As a
result, neither of the graphs of Fig. 8 contribute to the
CMM double-P decay rate. The remaining graph, Fig. 1,
manifestly vanishes for zero Majoron momentum because
of the derivative coupling.

It is more complicated to see this result in the
Yukawa-coupling language. Lepton number conserva-
tion forbids a direct coupling between the charged Majo-
ron and the electron, and so the only graph to be con-
sidered is again that of Fig. 1. As might be expected
from Appendix B, however, the result for this graph need
not vanish for zero Majoron momenta until the contribu-
tions from all of the relevant intermediate neutrinos have
been summed.

At zero Majoron energy, the pp~ decay amplitude is
given by Eq. (24), whose integrand is proportional to the
v, -v, element of the following matrix in fiavor space:

integrand ~ (m'am*+p b}
p —m'm p —mm* V V

b V V

p
2

(m'm)"+'b+ g (m'm) (bmm' —m'am")(mm')" (Cl)

As in previous expressions, m =m denotes the complex left-handed neutrino mass matrix, while a and b are the Yu-
kawa coupling matrices of Eq. (23).

The last expression simplifies drastically once Eq. (26) is used, which contains the information that the Majoron is a
Nambu-Goldstone boson. After a pairwise cancellation of all but one of the terms in the sum over k, we find that

qm+m q
"

1
integrand ~ —g [q(m 'm )"+'m '+(m 'm )"+'m 'q ] (C2)

The significance of this final result lies in the fact that
each term in it is proportional to a v, matrix element q„jV~ J

of the Nambu-Goldstone boson charge. The Snal point
to be established is that, for CMM's, all such matrix ele-
ments are zero. We are therefore forced to work to next
order in the Majoron momentum, Eq. (28), in order to get
a nonvanishing contribution.

In order to see why q must vanish in CMM's, con-
V~J

sider the symmetry transformations in the basis of weak-
interaction eigenstates. Then the invariance of the gauge
interactions under the global symmetry implies that q can

only transform the entire doublet (,')I into other dou-
blets having the same hypercharge. But since the
Nambu-Goldstone boson charge q has embedded in it
two units of the unbroken lepton number, such a trans-
formation cannot be made without introducing exotic
isodoublet fermions.

APPENDIX D: ORDINARY MAJORON
ELECTRON SPECTRUM

Here we wish to show that the OMM double-P decay
amplitude, unlike that for CMM s, is nonvanishing even
at zero Majoron momentum. This is particularly easy to
see using the Yukawa form for the Nambu-Goldstone bo-
son couplings, which can be directly read o6'from the La-
grangian of a given model. In this form the Majoron typ-
ically couples only to neutrinos and not to electrons.
Thus only the graph of Fig. 1 contributes. In contrast
with CMM's, it is possible to have q, &0 in OMM's (see

V~ J
Appendix C), and so the decay rate at zero Majoron
momentum need not vanish.

The puzzle is to understand this result when the ampli-
tude is expressed in terms of the derivative couplings,
since in this formulation all of the graphs of Figs. 1 and 8
are explicitly proportional to the Majoron momentum k.
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The resolution turns out to come from the contributions
of Fig. 8. For these graphs, in which the Majoron is
emitted from the electron lines, the internal electron goes
on shell in the limit as k ~0, causing a singularity in the
propagator. The coelcient of this singularity is propor-
tional to the vector part of the electron-Majoron cou-

pling. (The same singularity leads to the familiar infrared
divergence of the analogous photon bremsstrahlung
graphs in quantum electrodynamics. ) Consequently, the
electron propagator behaves as 1/k for small k, which
cancels the explicit k dependence due to the Majoron's
derivative coupling.
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