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The rare radiative decay b ~sy is studied in SU(2)L X SU(2)~ X U(1) extensions of the standard mod-

el. Matching conditions for coefticients of operators appearing in the low energy effective Hamiltonian
for this process are derived, and QCD corrections to these coefficients are analyzed. The new contribu-
tions to the radiative transition which arise from the right-handed sector are suppressed by a small mix-

ing angle. But this suppression is offset by a large m, /m& helicity flip factor and an enhanced matching
condition coeScient function. We thus find that observable deviations from standard model predictions
for the b ~sy decay rate can occur in SU(2)1 X SU(2)& X U(1) theories for a reasonable range of param-
eter values.

PACS number(s): 13.40.Hq, 12.15.Ji, 12.60.Cn

I. INTRODUCTION

The radiative weak decay b ~sy has been the subject
of significant experimental and theoretical study during
the past several years. This rare transition has recently
been observed for the first time in the exclusive channel
B~E "y at CLEO [1]. The experimental bound on its
inclusive rate has also been improved, and better limits
are expected to be set within the next few years. On the
theoretical side, busy decay is of considerable interest
for several reasons. Firstly, since this process involves
third generation fermions, it is sensitive to the heavy top
quark, and its rate grows with increasing top mass.
Secondly, strong interaction corrections to this weak ra-
diative transition are known to be unusually large [2,3].
Two-loop diagrams that generate the leading QCD
corrections to this decay actually dominate over the
lowest-order one-loop graphs. But the most exciting
feature of this transition is its potential to reveal depar-
tures from the standard model. Since flavor structure
remains poorly understood, careful study of rare neutral
flavor-changing processes offers one of the best prospects
for glimpsing signs of new physics in the near future.
The b ~sy transition thus provides a window onto possi-
ble extensions of the standard model and has been investi-
gated in two-Higgs-doublet models [4], supersymmetric
theories [5], and extended technicolor scenarios [6].
Comparison of results from these theories with experi-
mental measurements places constraints upon new phys-
ics which may lie beyond the standard model.

In this paper, we examine busy decay in another
we11-known extension of the standard model.
Specifically, we consider theories based upon the extend-
ed electroweak gauge group SU(2)L XSU(2)n XU(1).
Such models have been widely studied in the past [7—9],
and a number of phenomena such as E-K mixing and
neutrino masses have been used to constrain their al-
lowed parameter spaces. The b ~sy transition, however,

has received relatively little attention within the context
of SU(2)L XSU(2)a XU(1) theories. We therefore will

analyze this important rare process in these models and
compare the results with those from the SU(2)L XU(1)r
theory.

A previous study of the dominant gauge boson contri-
butions to b ~ ysdecay in SU(2)L X SU(2)z XU(1)
theories has been reported in Ref. [10], while scalar con-
tributions have been discussed in Ref. [11]. Our work
differs from and improves upon these earlier findings in

several important ways. Firstly, we perform our compu-
tations within the effective field theory framework which
has become standard in busy investigations. Compar-
ison of results between the SU(2)L XU(1)r and

SU(2)L XSU(2)a XU(1) models is therefore facilitated.
Use of effective field theory technology also allows us to
systematically incorporate QCD running effects which
have not been consistently treated before. Secondly, we

do not restrict our analysis from the outset to models
with manifest left-right symmetry as previous authors
have done. Rather we allow for the more general case of
asymmetrical left- and right-handed sectors. Finally, our
results differ both qualitatively and quantitatively from
those reported in the literature. %e therefore believe
that our findings provide several new insights into this
problem.

Our paper is organized as follows. In Sec. II, we pro-
vide a general review of SU(2)t X SU(2)n XU(1) theories
and present the particular model which forms the
basis of our busy study. In Sec. III, we derive a low-

energy effective theory starting from the full SU(2)L
XSU(2)n XU(1) model, and we calculate the coefficients
of the leading nonrenormalizable operators in its effective
Hamiltonian which are relevant for b ~sy decay. Strong
interaction corrections are then discussed in Sec. IV. Fi-
nally, we evaluate the radiative decay rate for a range of
reasonable parameter values in the
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SU(2)I XSU(2)a XU(1) theory and compare our results
with those from the standard model.

II. THE SU(2)L XSU(2)g XU(1) MODEL

Theories based upon the electroweak gauge group
SU(2)L XSU(2)z XU(1) represent well-known extensions
of the standard model. Such theories have been widely
investigated both as simple generalizations of the
SU(2)L XU(1)r model and as possible intermediate
stages in grand unified schemes such as SO(10). One of
the principle appeals of these models is that they allow
for parity to be restored as a symmetry of nature at some
energy scale above 250 GeV. A discrete left-right
reflection has therefore commonly been imposed on most
SU(2)L X SU(2)z XU(1) models which restricts their par-
ticle content and coupling constants. The incorporation
of parity represents, however, an additional simplifying
assumption which is not required by the structure of the
extended electroweak gauge group. Moreover,
left-right symmetric theories are known to encounter
difticulties if considered in the context of grand unified
models or cosmology [12,13]. So more recent studies
have focused upon left-right asymmetric models. In this
article, we will work within the framework of a general
SU(2)L X SU(2)& XU(1) model and not impose left-right
symmetry from the outset.

To begin, we combine the color and electroweak sec-
tors and start with the extended gauge group
G =SU(3)c XSU(2)I XSU(2)„XU(1), which cascades
down to the unbroken color and electromagnetic sub-

group II =SU(3}cXU(1)EM through the following sim-

ple symmetry-breaking pattern:

SU(3)c XSU(2)L XSU(2)~ XU(1)
T' TL T~ S
g3 g2L g2R g1

Q

-(3/2/1)' qg
=

1
-(3,1,2)'

R
(2.3)

V V

ll =, -(1,2, 1) ', l~ =, —(1,1,2)

where the primes indicate that these fields are gauge rath-
er than mass eigenstates. The fermions also carry a
suppressed generation index which ranges over three
family values. We introduce the scalar field

0 -(1,2, 2)

which acquires the complex vacuum expectation value
(VEV)

(2.5)

and generates fermion masses in the Yukawa sector.
After diagonalization of the quark mass matrices, the
primed gauge eigenstate quark fields in (2.3) are related to
unprimed mass eigenstate fields as

I
uL =Su~L& Q~ —Tu~ g

dL, =Sddi, dg = Tdda
(2.6)

where S„d and T„d represent 3X3 unitary matrices in
family space.

We need to include additional Higgs fields into our
theory in order to fully implement the symmetry-
breaking pattern specified in (2.1). There are a number of
possibilities for how these scalars may transform under
G. The rate for busy decay in the SU(2)L XSU(2)z
XU(1) model will not sensitively depend, however, upon
the precise structure of its scalar sector. So we make the

simplest choice and introduce two doublet fields,

U(1}r
Y/2= T~+S

U(1)EM

Q =TL+Y/2
e.

SU(3)c XSU(2)L X
Tg Tl

L

g 3 g2L

SU(3)c X
TQ

83

(2.1)
which acquire the real VEV's

XR
0 -(1,1,2)'
R

(2.7)

D„=B„+'g G„'T'+ gal. WL,„TI.

+tg2~ W~pT~ +Ig)BpS . (2.2)

We next display the fermion and scalar content of our
model. ' Quarks and leptons transform under G as

We have listed underneath each of the subgroup factors
in this pattern our nomenclature conventions for their as-
sociated generators and coupling constants. Our covari-
ant derivative with respect to the gauge group G thus ap-
pears as

&Xl. ~=
0

VL
and &y„)=

UR
(2.g)

Although gL is not essential for symmetry-breaking pur-
poses, we incorporate it along with y~ into the scalar sec-
tor so that our model can be rendered left-right sym-
metric if desired.

After the spontaneous symmetry breakdown 6~H,
the kinetic energy terms in the scalar Lagrangian

X „„=Tr(D"4 D„4)+D"yLt D„yl

Throughout the remainder of this section, we adopt notation
which closely follows that established by Langacker and Sankar
in Ref. [13].

+D XRDpXz I (@~XI.~Xz }

generate the charged &boson mass matrix

(2.9)



5896 PETER CHO AND MIKOKAJ MISIAK

M 2
W—

g
2

(vL2+ fkf'+ fk f')

g21 g2g kk

—
g2L g2~ k k

2

(v'+fk '+fk' ')

M
(2.10)

where a represents the phase of k*k'. The eigenvalues

M i
=MI cos (+Ms sin g+ Ml z sin2(,

Mii=M~2sin2(+icos g
—MLs sin2(,

(2.11)

W+
1 cosg

Wz+ —sing

and eigenvectors
+

e ' sing Wc

e ' cosg Wz+
(2.12)

(2.13)

of this mass matrix correspond to the physical charged Wbosons in the SU(2)L X SU(2)s XU(1) theory. The mass M2
of the predominantly right-handed W2 as well as the small WL- W~ mixing angle defined by

2ML~tan2(=—

are restricted by a number of low-energy phenomenological constraints. Numerical estimates for bounds on these quan-
tities in left-right symmetric theories typically lie in the range [13,14]

Mi &1.4 TeV and fgf (0.0025 . (2.14)

However, in some corners of parameter space in particular SU(2)L XSU(2)s XU(1) models, M2 masses as low as 300
GeV or mixing angles as large as

f (f =0.013 are allowed. So we will take the numbers in (2.14) as reasonable estimates
for these two important parameters but consider ranges around these values as well.

In order to maintain explicit gauge invariance in our Green's functions, we will work in the background field version
of 't Hooft —Feynman gauge [15]. The gauge-fixing Lagrangian in our model schematically appears as

(2.15)

Here Q„' represents a quantum gauge field for the gauge group G, while Q„' stands for a classical background field for
the unbroken subgroup H. As usual, the quadratic W„B P cross terms that arise in the kinetic energy sector of the sca-
lar Lagrangian (2.9) after spontaneous symmetry breaking are canceled by identical terms in the gauge-fixing Lagrang-
ian. The expressions for the charged would-be Goldstone bosons corresponding to the longitudinal components of the
physical W,+2 can simply be read off from these quadratic cross terms:

[( —k" +z, k*)P,++ (k —z, k')$2+ vL y~ z, v~y—„+], —
1

(2.16)

where

2

z&=e ' tang and z2=e' tang .
g 2I.

(2.17)

In addition, the following trilinear interactions between the background photon field, physical W& 2 bosons and would-

be Goldstone fields in the gauge-fixing Lagrangian

+eM& A W&+m.
&

+eM2A W2+~2 +H. c. (2.18)

are also canceled by terms in the Higgs kinetic energy sector. This extra cancellation results from our particular choice
of 't Hooft —Feynman background field gauge and will simplify our b ~sy analysis.

Having identified the Goldstone fields in Eq. (2.16), we can readily derive their charged current interactions. It is im-

portant to note that the form of these interactions is independent of our particular choice of scalar representations in

this model. %e display belo~ the terms in the charged current Lagrangian which are relevant for b ~sy decay:
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+ [(g2L cos(VI MD g—2+e' singM~V~ )P+ (—g2I cos(MU VI. g—2„e' sing V~MD )P ]
Mi

~2+
+ [ (g—2I sin(VI MD+g2„e' cos(MU V„)P+

M2

d

+(gzLsingMUVL +g2„e' cos(V+MD)P ]] s +H.c.+
b

(2.19}

In this expression, P+ =(1+y )/2 represent right- and
left-handed projection operators, MU and MD denote the
diagonalized quark mass matrices

r

m„0 0 md 0 0

MU= 0 m, 0

0 0 m,

MD= 0 m, 0, (2.20}

0 0 mb

and VL =S„Sd and Vz=T„Td are the left- and right-
handed analogs of the Kobayashi-Maskawa (KM) ina-
trices in the SU(2)L X SU(2)x XU(1) model. In left-right
symmetric theories, these KM matrices are related as

~ VI ~

=~ Vx ~
which clearly reduces the number of free pa-

rameters.

III. THE EFFECTIVE THEORY

The rare decay busy is sensitive to new physics
above the electroweak scale vL . In most SU(2)L
XSU(2)z XU(1) extensions of the standard model, the
separation between vL and the scale vR where the gauge
group G spontaneously breaks is quite large. The
difference between the bottom quark and electroweak
scales is also large. Therefore, this low-energy radiative
transition is especially well suited for analysis within an
effective field theory framework which can take advan-
tage of these large scale separations.

The construction of the effective theory begins at
@=vs in the SU(2)I XSU(2)z XU(1) model. Fields with
masses of order this scale are integrated out, but their vir-
tual effects are incorporated into nonrenormalizable
operators whose coefficients are suppressed by powers of
1/vx. Since the lower bound on v~ lies in the multihun-
dred GeV region, the contributions from 8'z and
charged physical scalars, which naturally have O(vz)
masses, to busy mediating operators are very small
compared to those from W& . We therefore ignore such
contributions and jump down to the W& scale where we
simultaneously integrate out the top quark and charged
intermediate boson. Our neglect of the splitting between
the top and W, introduces an error. However, its rnagni-
tude is known to be approximately 10% in the standard

model [16], and we expect its size in the SU(2)L
X SU(2)~ XU(1) theory to be comparable. We therefore
will tolerate this small uncertainty which could be sys-
tematically refined if desired.

The dominant one-loop contributions to b —+syin the
SU(2)L X SU(2)x XU( 1) model come from the diagrams
displayed in Fig. 1. We evaluate these graphs with their
external propagators placed on shell. After performing
an operator product expansion, we extract the leading
terms which match onto local magnetic moment opera-
tors. Such terms are generated only by the four one-
particle irreducible (1PI) diagrams shown in the figure.
Other one-particle reducible (1PR) graphs which arise at
one-loop order do not match onto magnetic moment
operators and may therefore be ignored.

It is sensible to make some simplifications at this stage.
First, since g is known to be quite small compared to uni-
ty, we work only to 0(g) and set cosg~l and sing~(.
Moreover, since g will always appear in combination with

g2x/gal, we define gg=gzz/g2L(. We also neglect the
mass of the strange quark relative to the bottom quark
mass. The busy amplitude is then given at the 8'&
scale by the tree level matrix element of the effective
Hamiltonian

Wt

FIG. 1. One-loop 1PI intermediate gauge and would-be
Goldstone boson graphs which contribute to the b ~sy match-
ing condition at the Wl scale. The circles at the ends of wavy
external propagators represent background photon fields.
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46F em b
H, ir

= — —
2 g VI'* VI F(x; )srr"'P+ bF„,+g

m;
F(x; )scr"

gib VlS

(3.1)

where x; = (m; /M~ ) and

x (7—5x —8x ) x (2 —3x)F(x)= — lnx,
24(x —1) 4(x —1)

—20+ 31x —5x x (2—3x)F(x)= +
3

lnX
12(x —1) 2(x —1)

(3.2)

The first term inside the curly brackets in (3.1) is pre-
cisely the same as in the standard model to which the
SU(2)L XSU(2)s XU(1) theory reduces in the limit
U~~~. Its coefficient function F is identical to the
analogous standard model function which was first calcu-
lated by Inami and Lim [17]. On the other hand, the
second term proportional to F represents a qualitatively
new contribution to H,z. Since the physical 8'& boson in
the SU(2)L X SU(2)it XU(1) theory couples to both left-
and right-handed quarks, the one-loop diagrams in Fig. 1

can directly match onto odd dimension operators if the
intermediate charge —', quarks in these graphs under-

go a helicity flip. The new terms arising from the
SU(2)L X SU(2}it XU(1) theory are therefore proportion-
al to m; „,, rather than mb. Of course, the contribu-
tion coming from the virtual top quark is the most im-

portant, since it enhances the second term in Eq. (3.1)
relative to the first by m, /mb This c.ontribution is fur-

ther enlarged by the ratio r =F(x, )/F(x, ), which ranges
over the interval 7.7 r 3.5 for 100 GeV~m, ~200
GeV. So these two effects offset the suppression of the
second term in (3.1) by the small mixing angle gs. It is

important to note that no such enhancement occurs in
the leading terms of diagrams such as those in Fig. 1 with

W, replaced by W2. So although Wr-Ws mixing and

W2 exchange are both 0 ( I/vit ) effects, the impact of the

C= g VL' VI F(x;)+ps F(x, ) . e'

(3.4)

Vis Vib
g

' F(x ) e
—ia

It is common practice to normalize this radiative partial
width to the semileptonic rate

2 5

1.(b «&,)=, lV; I g(m, /mb) (3»GFmb

192m

former upon b —+sy decay in the SU(2)I X SU(2)ii
X U(1) model is much more important than the latter.

Our matching results differ from those reported previ-
ously by Cocolicchio et al. in Ref. [10]. In order to
compare, we have calculated all the necessary one-loop
diagrams in ordinary as well as background field
't Hooft —Feynman gauge. The expressions we have ob-

tained for the one-loop W& boson graphs in the ordinary
gauge are equivalent to the functions Fz, (x) and

Fzrb(x} in Eq. (17) of Ref. [10]. However, the contribu-
tions from the would-be Goldstone diagrams, which we
have explicitly calculated, disagree with the F2",(x) re-
sults of Cocoltcchio er aI. Thetr sum F2r +F2rs+F
differs qualitatively and quantitatively from our function
F(x).

Having found the effective Hamiltonian expression in
(3.1), we can easily take its tree level matrix element and

compute the b ~sy decay rate:

sy)=, trEM(mb)(lcl'+ c'l'), (3.3)
32 4 EM b

where

0.008 I I l I I I I I I I ! 1 1 I I I I I I I

0.006
l~

lm

0.004

]m

0.002

FIG. 2. Inclusive B~X,y decay rate nor-

malized to the semileptonic B~X,ev, rate
plotted as a function of the mixing angle g with

m, =150 GeV and a=0. The solid and dashed
curves depict the QCD uncorrected results in

SU(2)L XSU(2)„XU(1) theory and the stan-
dard model, respectively.

0.000 1 i I I I i I I I I I I i I

0.002 0.004 0.006
I I I I I l.

0.008 0.01
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where g(e) =1 —8e —24e lne+8e e represents a
phase-space factor [18]. The sensitive dependence of Eqs.
(3.3) and (3.5) upon the bottom quark mass and the KM
angles then cancels in their ratio

06=(s y„P bP) g (qpy"P+q ),
q

07=
2 mbs o""P+b'F„„,

16m.

R= r(b sy) r(S X y )

I (b~cev, ) I (8~X,ev, )
(3.6) Os= qmqs o""P+(T')Ib G„'„.

16m

This ratio is plotted in Fig. 2 as a function of the mix-
ing angle g with the top mass m, =150 GeV and phase
angle a=0 held fixed, g2L set equal to g», and all ratios
of left- and right-handed KM angles set equal to unity.
In this left-right symmetric limit, the up and charm
quark contributions to the coefficients in (3.4} are com-
pletely negligible. As can be seen in the figure, the QCD
uncorrected busy rate in the SU(2}L XSU(2)a XU(1)
model is twice that in the standard model for the canoni-
cal value (=0.0025. The rate is of course even larger for
greater values of g. We therefore see that the new contri-
butions to the low-energy effective Hamiltonian from the
SU(2)I XSU(2)„XU(1) theory can lead to significant de-
viations from the busy predictions of the standard
model.

IV. STRONG INTERACTION CORRECTIONS

46~
H, fr= — — VI". VL, g CJ(P)OJ(P, ) .

2
(4.1)

We adopt the following conventional choice for the set of
operators appearing in the effective Hamiltonian:

0, =(s y„P cP)(cpy"P b ),
Oz=(s y„P c )(cpy"P bP),

03 =(s y„P b ) g (qpy"P q ),
q

QCD corrections to busy decay have received con-
siderable attention during the past several years and are
known to be very large in the standard model [2,3]. The
analysis of strong interaction effects upon the rare radia-
tive transition is most sensibly conducted within the five-

quark effective theory where large logarithms can be
summed using the renormalization group. Since the
structure of the low-energy effective theory does not sen-
sitively depend upon the precise nature of physics beyond
the electroweak scale, the computation of strong interac-
tion corrections is similar in both the SU(2)L
XSU(2)a XU(1) and SU(2)L XU(1)r models. We can
therefore take over many well-known results from prior
b ~sy studies.

We start by generalizing the effective Hamiltonian in
(3.1) to include operators that mix with the photon mag-
netic moment terms under the action of QCD renormal-
ization:

Here a and P represent color indices, while the summa-
tion over q ranges over the five active quark flavors. This
list constitutes a complete operator basis if the underlying
full theory is the standard, two-Higgs doublet or minimal
supersymmetric model.

In the SU(2)L XSU(2)a XU(1) effective theory, how-
ever, new operators with different chirality structures can
arise. In particular, we need to include the four-quark
terms

09=

Oio=

mb
(s y„P cP)(cpy"P+b'),

m,

mb
(s,y„P c )(cpy"P+bP),

mc

(4.3)

which are left-right analogues of 0, and Oz. The ratios
of the bottom and charm quark masses are incorporated
into their definitions to facilitate later mixing computa-
tions involving these operators. We also need to intro-
duce the flipped chirality partners O&-O&0 of 0&-O&o
obtained by setting P+~P+ in Eqs. (4.2) and (4.3).
Most of these new operators will fortunately play no
significant role in our b ~sy analysis. So the total num-
ber of operators that we will actually need to consider is
much smaller than 20.

After performing a straightforward matching compu-
tation, we find the following W& scale coefficient values in
the limit of vanishing up quark mass:

C~(Ms, )=1, Cq(M~ )=0,

C~(Ms ) =F(x, )+ A ' F(x, )+ A '",

C7(Ms )=(A")'F(x, )+(A")'

Cs(Ma )=G(x, )+A' G(x, ),
C,'(M~ ) = ( A ")"G(x, ),
C&0(Ms )=A', C&o(Ms, )=(A")',

(4.4)

where

m VU R
A UD ' m GAUD

e' for U=u, c, t and D =d, s, b .
b L

(4.5)

04=(s y„P bP}g(qpy"P q ),
q

05 =(s y„P b ) g (qpy"P+ qP),
q

(4.2)
We retain the charm quark contributions to (4.4) even though

they are suppressed relative to the top quark terms by m, /m, .
This small factor could in principle be offset by the ratio of KM
angles in (4.5) in an asymmetric left-right model.
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The functions F and F in the coefficients of the photon
magnetic moment operators 07' were previously
specified in (3.2}. The analogous functions for the gluon
magnetic moment operators 08' are given by

3x2x(2+5x —x )

8(x —1)

4+x +x 3x

4(x —1) 2(x —1)

lnx
4(x —1)

G(x)=—
(4.6)

All other operator coefficients vanish at the 8'l scale.
The renormalization-group mixing of the operators in

our basis set is governed by a 20X20 anomalous dimen-
sion matrix y. Since the strong interactions preserve
chirality, the unprimed operators in Eqs. (4.2) and (4.3)
cannot mix with their primed counterparts under the ac-
tion of QCD. Moreover, renormalization-group mixing
within the two separate operator sectors is precisely the
same. Therefore, y decomposes into two identical
10X10 blocks. The leading order structure of these
blocks breaks up into an 8X8 submatrix ys«and a par-
tially overlapping 4X4 submatrix y4„4. The 8 X 8 matrix
describes the mixing among 0", —0's' and has been cal-
culated by a number of groups [2,3]. At this time, com-
plete consensus regarding the exact values for all the en-
tries in y«8 has not been achieved. While this lack of
agreement is disturbing, it is of relatively little practical
importance, since all competing claims for y8x8 yield
nearly identical numerical results for the busy decay
rates in the SU(2)L XU(1) and SU(2)I XSU(2)s XU(l)
models, We will use the recent results of Ciuchini et al.
for this matrix. The remaining 4X4 matrix overlaps with

y8~8 and controls the mixing of the two new four-quark
operators in (4.3) into the dimension-five photon and
gluon magnetic moment operators. Its entries can be ex-
tracted from the computations of analogous mixings
within y»8 and are exhibited below:

g(&)
7

0(~) 0(~) 0(~)
8 9 10

(I )r4X4=O8
0(&)

9

(~)
OlO

16/3 0 0 0
—16/9 14/3 0 0

80/3 —2 —8 0

32/9 4/3 —3 1

8m
(4.7)

All other entries in the 10X10 anomalous dimension
blocks vanish.

Once the anomalous dimension matrix is determined, it
is straightforward to solve the renormalization group
equation which relates coefficient values at tu=M@, to

1

those at p =mb. The solution appears as

C, (mb)= g(S '),, (vI ' )S,„ck™w)

jsk

(4.8)

where the A, 's in the exponent of 3)=a, (Mii )/a, (mb)
1

are the eigenvalues of y=y/(g3/8m. ) and the rows of
matrix S contain the corresponding eigenvectors.

Assembling together the bottom scale coefficients and
matrix elements of all the operators in our basis set, we
finally obtain the QCD corrected b usy decay rate in the
SU(2)L XSU(2}s XU(1) model:

I (h ~sy) =
4 aEM(m, )

I v,"*v,"I'(
I c„,(m, ) I'+ I

c'„,(m, ) I') .
32+4

The effective magnetic moment operator coefficients are given by

4

+ p tb[ )16723/F( X)+ s(~14/23 ~16/23)G(x )]+p cb p h,

4

(m )
—

( g &s)»[~16/23F(x )+ s(i)14/23 ~16/23)G(x )]+(g cs)» g h'7)&i

(4.9)

(4.10)

where

8

( m )
—~16/23F(x ) + s (~14/23 r116/23 )G (x ) + (4.1 1)

denotes the corresponding standard model result. The coefficients h,. and powers p; entering into the last term have
been discussed and tabulated in the Appendix of Ref. [19]. We simply quote them here

(h, , h2, h3, h4, h„hb, h7, hs)=(2. 2996, —1.0880, —0.4286, —0.0714, —0.6494, —0.0380, —0.0186, —0.0057),

(p „p2,p3,p4, ps, pb, p7,ps ) =(0.6087,0.6957,0.2609, —0.5217,0.4086, —0.4230, —0.8994,0. 1456), (4.12)

along with the h,-' and p values

(h ', , h 2, h 3, h4 ) =(—0.6615, 1.3142,0.0070, 1.0070),

(pi,p2, p3,p4) =(0.6957,0.6087, —1.0435,0. 1304) .
(4.13)
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FIG. 3. Inclusive B~X,y decay rate nor-
malized to the semileptonic B~X,ev, rate
plotted as a function of the mixing angle g with

m, =150 Ge and a=0. The solid and dashed
curves depict the QCD corrected results in

SU(2)L XSU(2)z XU(1) theory and the stan-
dard model, respectively.
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The radiative partial width in (4.9) is regularization and renormalization scheme independent as must be the case for
any physical observable. We normalize it to the QCD corrected generalization of the semileptonic rate in (3.5),

2 5

I'(b ~cev, )=
I
I I, I g(re, ~mb) 1 — &,(mb)f(irtc ~mb )cb Z

192m
(4.14)

and form the ratio

I (b sy) I'(B X,y ) 6 aaM(mb ) I C7(mb ),sl +
I C7 (mb ),sl

ceV~) I'(~ X ev ) ir g(rri ~mt, )
(4.15)

The function f appearing in these expressions encodes
sizable next-to-leading-order strong interaction effects,
which we choose to include and is numerically tabulated
in Ref. [18]. In order to restrict the parameter depen-
dence of R so that it can be simply displayed, we will spe-
cialize to the left-right symmetric limit and set gzL =gzz
and

l VL l

=
l Vs l. R then depends only upon the three pa-

rameters g, m„and a.
In Fig. 3, we plot R as a function of the mixing angle g

in both the SU(2)~ X SU(2)z XU(1) and SU(2)L XU(1)„
models with m, =150 GeV and a=0 held fixed. Com-
paring these curves with their QCD uncorrected counter-
parts in Fig. 2, we see that the strong interactions triple
the busy rate for very small values of g. The strong in-
teraction enhancement at larger values of g is less pro-
nounced. The reason behind this trend can be seen in the
expressions for the effective photon magnetic moment
coefficients C'7'eIr(mi, ) and C7,s(mb)sM. Recall that the
disparity between these coefficients stems mainly from

I

the terms proportional to I'(x, ) in (4.10). This discrepan-
cy is suppressed, however, by the QCD factor

=0.67. The last term in (4.11)
overcomes this suppression factor and leads to a net
QCD enhancement of the busy rate in both the
SU(2)L X SU(2)a XU(1) and SU(2)~ XU(1)y models.
But the strong interactions tend to diminish the
difference between these two theories' rates.

The dependence of R upon m, for /=0. 0025 and a =0
is illustrated in Fig. 4. Both the SU(2)L XSU(2)„XU(1)
theory and standard model results grow with increasing
top mass. For all I, above the present experimental
lower bound of 131 GeV [20], we see that the former is
greater than the latter by at least 30%%uo for this choice of
parameters. Such a variation is potentially large enough
to differentiate between these two models given current
theoretical and future experimental uncertainties. Other
regions in parameter space can of course yield larger or
smaller discrepancies. We believe, however, that the re-

We should point out that the coefficients C7' and Cs' in Eq. (4.4), the nonvanishing off-diagonal 2X2 block in the anomalous di-
mension submatrix y4&« in Eq. (4.7), and the one-loop matrix elements of 09' and OIO' are regularization scheme dependent. These
quantities were all calculated in the fully anticommuting y dimensional regularization scheme.

The graph in Fig. 3 may be interpreted in the context of an asymmetric left-right model by rescaling (~(~ i Va /VL l provided
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FIG. 4. Inclusive B~X,y decay rate nor-
malized to the semileptonic B~X,ev, rate
plotted as a function of the top quark mass m,
with (=0.0025 and a=0. The solid and
dashed curves depict the QCD corrected re-
sults in SU(2)L XSU(2)& XU(1) theory and
the standard model, respectively.
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suits in Fig. 4 are representative for most left-right sym-
metric models.

Finally, we plot R as a function of the phase angle a
with (=0.0025 and m, =150 GeV held fixed in Fig. 5.
As can be seen in the graph, maximum constructive and
destructive interference between the standard model and
SU(2)L XSU(2)II XU(1) contributions to the busy
effective Hamiltonian occur for a=0 and m. , respectively.
Distinguishing between the two theories is consequently
easiest for values of a near these two end points. Such
values are fortunately favored in the SU(2)L
XSU(2)II XU(1) model to avoid excessive CP violation
[13].

In conclusion, w have analyzed the rare busy decay
mode in SU(2)L XSU(2)II XU(1) extensions of the stan-
dard model. We have found that mixing between left and
right W bosons in such models can lead to sizable new

contributions to the effective Hamiltonian for this radia-
tive process even though the mixing angle g is con-
strained to be quite small. QCD corrections diminish the
disparity between the busy rates in the SU(2)L
XSU(2)x X U(1) and SU(2)L XU(1)r theories. Howev-
er, for reasonable ranges of parameter values, the decay
rates can be distinguished and used to probe for new
physics beyond the standard model.

Note added. After this paper was submitted for publi-
cation, we learned that work on a similar topic was
simultaneously reported by Fujikawa and Yamada in Ref.
[21]. The basic results of these authors are consistent
with the findings presented here.

ACKNOWLEDGMENTS

We thank Andrzej Buras and Mark Wise for helpful
discussions. P.C. thanks the Aspen Center for Physics

0 ~ 0040

/=0. 0025

0.0035

T'

~m

0.0030

0.0025

FICz. 5. Inclusive B~X,y decay rate nor-
malized to the semileptonic B~X,ev, rate
plotted as a function of the phase angle a with
/=0. 0025 and m, =150 GeV. The solid and

dashed curves depict the QCD corrected re-

sults in SU(2)L XSU(2)~ XU(1) theory and

the standard model, respectively.

0.0020 I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8

a/Tr



49 busy DECAY IN SU(2)L XSU(2)s XU(1) EXTENSIONS OF. . . 5903

and the high-energy theory group at Technische
Universitat Miinchen, where work on this paper was per-
formed, for their warm hospitality. The work of P.C. was
supported in part by the U.S. Dept. of Energy under
DOE Grant No. PDE-FG03-92ER40701, the CEC Sci-

ence Project SC1-CT91-0729, and the SSC Laboratory.
The work of M.M. was supported in part by the German
Bundesministerium fur Forschung und Technologie un-
der Contract No. 06 TM 732 and by the Polish Commit-
tee for Scientific Research.

[1]CLEO Collaboration, R. Ammar et al. , Phys. Rev. Lett.
71, 674 (1993).

[2] B. Grinstein, R. Springer, and M. B. Wise, Nucl. Phys.
B339, 269 (1990); M. Misiak, ibid. B393, 23 (1993); R.
Grigjanis, P. J. O'Donnell, M. Sutherland, and H.
Navelet, Phys. Rep. 228, 93 (1993),and references therein.

[3] M. Ciuchini, E. Franco, G. Martinelli, L. Reina, and L.
Silvestrini, Phys. Lett. B 316, 127 (1993).

[4] B. Grinstein and M. B. Wise, Phys. Lett. B 201, 274
(1988); W.-S. Hou and R. Willey, ibid. 202, 591 (1988); A.
J. Buras, P. Krawczyk, M. E. Lautenbacher, and C. Sala-
zar, Nucl. Phys. B337, 284 (1990); J. L. Hewett, Phys.
Rev. Lett. 70, 1045 (1993).

[5] S. Bertolini, F. Borzumati, A. Masiero, and G. Ridolfi,
Nucl. Phys. B353, 591 (1991);R. Barbieri and G. F. Guid-
ice, Phys. Lett. B 309, 86 (1993);J. L. Lopez, D. V. Nano-
poulos, and G. T. Park, Phys. Rev. D 48, 974 (1993).

[6] L. Randall and R. Sundrum, Phys. Lett. B 312, 148 (1993).
[7] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566

(1975); 11, 2558 (1975); R. N. Mohapatra and G. Senjano-
vic, ibid. 12, 1502 (1975).

[8] G. Senjanoic, Nucl. Phys. B153, 334 (1979).

[9] W. Grimus, Report No. UWTHPh-1993-10 (unpublished),
and references therein.

[10]D. Cocolicchio, G. Costa, G. L. Fogli, J. H. Kim, and A.
Masiero, Phys. Rev. D 40; 1477 (1989).

[11]G. M. Asatryan and A. N. Ioannisyan, Yad. Fiz. 51, 1350
(1990) [Sov. J. Nucl. Phys. 51, 858 (1990)].

[12] P. Langacker, in CP Violation, edited by C. Jarlskog
(World Scientific, Singapore, 1989),p. 552.

[13]P. Langacker and S. U. Sankar, Phys. Rev. D 40, 1569
(1989).

[14] G. Beall, M. Bander, and A. Soni, Phys. Rev. Lett. 4$, 848
(1982).

[15]L. Abott, Nucl. Phys. B1$5, 189 (1981).
[16] P. Cho and B.Grinstein, Nucl. Phys. B365, 279 (1991).
[17]T. Inami and C. S. Lim, Frog. Theor. Phys. 65, 297 (1981);

65, 1772(E) (1981).
[18] N. Cabibbo and L. Maiani, Phys. Lett. 79B, 109 (1978).
[19]M. Misiak, Phys. Lett. B 321, 113 (1994).
[20] DO Collaboration, S. Abachi et al. , Phys. Rev. Lett. 72,

2138 (1994).
[21] K. Fujikawa and A. Yamada, Phys. Rev. D 49, 5890

(1994).


