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In previous publications we have analyzed the strong and electromagnetic decays of heavy mesons and

heavy baryons in a formalism which incorporates heavy-quark and chiral symmetries. There are two

possible symmetry-breaking effects on the chiral dynamics of heavy hadrons: the finite-mass effects from

light quarks and the 1/m& corrections from heavy quarks. In the present paper, chiral-symmetry-

breaking effects are studied and applications to various strong and radiative decays of heavy hadrons are
illustrated. SU(3) violations induced by chiral loops in the radiative decays of charmed mesons and

charmed baryons are compared with those predicted by the constituent quark model. In particular,
available data for D decays favor values of the parameters in chiral perturbation theory which give pre-
dictions for D* decays close to the quark model results except for the D, +. Implications are discussed.

PACS number(s): 11.30.Rd, 12.39.Hg, 13.25.Ft, 13.40.Hq

I. INTRODUCTION

The dominant decay modes of many heavy hadrons,
which contain a heavy quark, are strong decays with one
soft pion emission and/or electromagnetic decays. This
is a consequence of the heavy quark symmetry [1,2] of
QCD: Mass differences among the different spin multi-
plets of the ground-state heavy mesons and heavy
baryons are generally small. An ideal framework for
studying the low-energy dynamics of heavy hadrons is
provided by the formalism in which the heavy quark
symmetry and the chiral symmetry are synthesized
[3—10]. However, symmetry considerations alone in gen-
eral do not give any quantitative predictions unless fur-
ther assumptions are made. Fortunately, all the un-
known parameters in the Lagrangian depend only on the
light quarks and are calculable from the nonrelativistic
quark model. In Refs. [3,9,10] (for later convenience,
Refs. [3] and [10] will be denoted as papers I and II, re-
spectively), we have explored in detail the predictions of
this theoretical formalism on strong decays, radiative de-
cays, and heavy-flavor-conserving nonleptonic decays.

In this and a preceding paper, we would like to exam-
ine various symmetry-breaking corrections to the strong
and radiative decays of heavy mesons and baryons.
There are two different kinds of symmetry-breaking
effects on the chiral dynamics of heavy hadrons: the
finite-mass effects from the light quarks and the I/m&
corrections from the heavy quarks. In paper II we have
already incorporated one of the 1/m& effects, namely,
the magnetic moment of the heavy quark, into the for-
malism for describing the electromagnetic (Ml) decay of
heavy hadrons. This is because the charmed quark is not
particularly heavy, and hence the contribution due to its
magnetic moment cannot be safely neglected.

There are two strong motivations, among others, for
promoting a systematic study of both the 1/m& correc-

tions and the effects of chiral symmetry breaking. First,
we have calculated in paper II the decay rates of
D*~Dy. When combined with our prediction for the
strong decays D*~De. given in paper I, we are able to
predict the branching ratios for the D* decays. Agree-
ment is excellent between theory and the most recent ex-
periment of CLEO II [11]. Nevertheless, our predicted
total width for D'+ is' I „,(D '+

) = 150 keV, which is to
be compared with the upper limit I «,(D'+)(131 keV
published by the ACCMOR Collaboration [12]. We thus
urge the experimentalists to perform more precision mea-
surements of the D' total width. Therefore it becomes
urgent to analyze the symmetry-breaking effects on the
strong decays D*~D~ and the radiative decays
D*~Dy. This is particularly so should the aforemen-
tioned upper limit for I'„,(D'+) be confirmed by future
experiments. Second, to the lowest-order chiral Lagrang-
ian, there exist several SU(3) relations among the radia-
tive decay amplitudes of heavy mesons and heavy
baryons, for example, A(D'+~D+y)= A (D,'+
~D,+y ). Therefore observation of different rates for the
decays D'+~D+y and D,"+~D,+y (after taking into
account mass differences between D+" and D,+"') will
clearly signal the SU(3) Savor symmetry breaking due to
the light current quark masses. In paper II, the magnetic
moments of heavy hadrons are related to the magnetic
moments of the constituent quarks in the nonrelativistic
quark model. In this approach, SU(3) violations in radia-
tive (Ml) decays arise from the constituent quark mass
differences. In the present work, we shall follow the
orthodox approach of chira1 perturbation theory to treat

The difference between this number (see Table I) and the re-
sult 141 keV obtained in Ref. [10] is due to the fact that here we
have used a more accurate pion momentum.
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SU(3)-breaking effects: The coupling constants in the La-
grangian are treated to be invariant, and all SU(3) viola-
tions of interest are induced by chiral loops. A compar-
ison of these two different approaches of SU(3) breaking
is given in the end. Existing data for the D* decays,
though limited, favor a set of parameters such that chiral
perturbation theory and the quark model give similar re-
sults for the D* decays, but not for D,'+ ~D,+y. In ad-
dition, even if the upper limit for the total width of D*+
[12] is to be taken seriously, it does not pose a difficulty in
the chiral perturbation theory approach. For the heavy
baryons, lack of any data prevents us from making a
meaningful search for an optimum choice of parameters
in chiral perturbation theory.

Since both symmetry-breaking effects require a careful
and thorough study, we focus on the SU(3) symmetry
breaking in this paper. A detailed investigation of 1/m&
corrections has been carried out in a preceding paper
[13]. Schematically, the general effective chiral Lagrang-
ian in chiral perturbation theory (ChPT) involving heavy
hadrons has the chiral expansion

2 1 A
y E+ln4m+1+ —ln

m
(1.2)

in the dimensional regularization scheme, where @=4—n

and A is an arbitrary renormalization scale. In ChPT, all
divergences from chiral loops induced by X, will be ab-

sorbed into the counterterms which heave the same struc-
ture as that of X~ [15]. Denoting the bare parameters of
Xz by f, , the renormalized parameters f," are then given

2For pure Goldstone-boson fields, the chiral expansion of
chiral Lagrangians has the familiar form X=%2+%4+%6
+ -. . . In this case, higher-order chiral term; - suppressed

by powers of p /A~ or m /A~.
The quadratic divergence, if it exists, usually amounts to re-

normalizing X,. In the dimensional regularization scheme, we

only focus on those logarithmic divergences.

X=X,+X,+X,+

where the subscript denotes the sum of the number of
derivatives acting on the Goldstone fields and the
velocity-dependent heavy hadron fields, and the power of
the Goldstone-boson mass squared in the Lagrangian.
(Recall that the lowest-order chiral-symmetry-breaking
terms are linear in light quark masses and hence quadra-
tic in Goldstone-boson masses. ) The higher-order chiral
Lagrangians are suppressed by powers of p/Ar or
m /Az, where p(rn) is the momentum (mass) of the
Goldstone bosons and A& is a chiral-symmetry-breaking
scale —1 GeV [14]. Therefore perturbation theory makes
sense if p and m are not too large compared to A&. Chiral
corrections of interest usually receive two contributions:
one from the chiral loops generated by L, and the other
from the higher-order tree Lagrangian term Xz. Loop
contributions can be either finite or divergent. The diver-

gent part typically has the form (see Appendix A)

by [16]

+l 2f;"(A)=f;+ ——y~+ln4vr+1 A',
32&

(1.3)

with y; being calculable coeScients. %e see that al-
though the lowest-order chiral Lagrangian L& is scale in-
dependent, renormalized higher-order effective Lagrang-
ians do depend on the choice of A, reflecting the non-
renormalizability nature of ChPT. Of course, physical
amplitudes should be independent of the renormalization
scale; that is, the A dependence from the chiral loop is
exactly compensated by the A dependence of local coun-
terterms in Xz. As the renormalized parameters f," are
unknown and must be determin ~ from experiment, we
will thus concentrate in the present paper on the chiral
corrections due to meson loops. Furthermore, we will
choose A-A to get numerical estimates of chiral-loop
effects.

Chiral-loop corrections to some heavy meson processes
have been discussed by other authors [8,17—20]. In the
heavy baryon sector, the only chiral-loop effects studied
so far are those in Ref. [17] on the semileptonic decays.
In this paper we attempt to make a systematic and com-
plete investigation of chiral-loop corrections to the strong
and electromagnetic decays of heavy hadrons. They arise
from the chiral-symmetry-breaking terms in (1.1) and
hence vanish in the chiral limit. The leading chiral-loop
effects we found are nonanalytic in the forms of m/Az
and (m /Az)ln(A /m ) (or m~ and m inm, with m

being the light quark mass). Furthermore, they amount
to finite-light-quark-mass corrections to the coupling
constant, say g, in L, . Schematically,

g,s=g 1+0 +0 ln +O(m )g'(A)
p2 2

(1.4)

where g'(A) is the relevant renormalized coupling con-
stant in X2; that is, the chiral-loop and X2 contributions
have the same structure as the g term in 2, except that
they vanish in the chiral limit. This point will be ela-
borated on again in Sec. II. In this work we shall only
keep the nonanalytic loop effects.

The present paper is organized as follows. In Sec. II
we calculate chiral corrections to the strong decay
P ~Pm and the radiative decay P*~Py, where P' and
P refer to 1 and 0 ground-state vector and pseudosca-
lar rnesons, respectively. As noted earlier, the l/m&
effect due to the magnetic moment of the heavy quark is
included. Similar chiral-loop calculations are presented
for heavy baryons in Sec. III, except there we adopt
velocity-dependent "superfields" which combine spin- —,

'

and spin- —' sextet baryon fields together [6,17]. Computa-
tion becomes much simplified in this compact notation.
A by-product of our investigation of Secs. II and III is
the confirmation at the one-loop level of an exact QCD
result (see [13], for example) that the coupling constants
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due to heavy quarks in the M1 transitions of both heavy

mesons and baryons are not modified by the light quark
dynamics. In Sec. IV we consider applications of our re-

sults to the strong and electromagnetic decays of
charmed mesons and charmed baryons. SU(3) violation

induced by chiral loops for the radiative decays is com-

pared with that predicted by the nonrelativistic quark
mode1. Section V contains conclusions and outlook.
Two appendixes are devoted to some technical details.

II. SU(3}-SYMMETRY-BREAKING
CORRECTIONS TO THK CHIRAL DYNAMICS

OF HEAVY MESONS

In this section we shall study the chiral-symmetry-
breaking effects on the strong and electromagnetic decays
of heavy mesons. To begin with, we recall the lowest-
order gauge-invariant chiral Lagrangians (I.2.20) and
(II.2.19) for heavy mesons,

(u}v DP (v)+2iM, P'~(v)u DP„' (v)+~M P(
U, PJ'

+fQMpM, [P(v)A"P„' (u)+P„'(v)A "P (v)]+2igMp, e„„ig'"(u)v "A P'" (u) (2.1)

and

X"',=/MpM e„„pv P*~(u)[ ,'d(g 6—(+g6g)+d'6']F"'P (u)+H c.

+id"M F„„P'"(v)[y6' ,'(gt6$—+—$6gt)]P'"(u), (2.2)

with AM =M g
—Mp,

P*t=D P't —D P'~
pv p v v p

P@v DRP v D vPR

(2.3)

where P and P' denote the ground-state 0 and 1

heavy mesons, respectively, which contain a heavy quark

Q and a light antiquark q, V„and A„are the respective
chiral vector and axial fields (see paper II for more de-
tail), 6=diag( —'„——,', —

—,') is the charge matrix for the

light u, d, and s quarks, 6' (or e&) is the charge of the
heavy quark, g =exp(iM /V2 fv ) with the unrenormal-
ized decay constant f0 to be determined later, and M is
the meson matrix of Goldstone-boson fields,

electromagnetic interactions of the Goldstone bosons; ex-
plicitly,

D„(=B„g+ieA„[6,(] . (2.6}

In Eq. (2.2), v is the velocity of heavy mesons and the two

coupling constants d6 and d"6 can be related to the
magnetic moments of light constituent quarks in the
quark model. The universal coupling constants d and d"
are independent of the heavy quark masses and species.
We have also included the d'6' and y6' terms to ac-
count for the corrections due to the heavy quark masses
when m&Koo. The coupling constants f and g in (2.1)
and d and d" in (2.2) are related by heavy quark symme-
try as [3,10]

f =2g, d"= —2d . (2.7)
M=—g

7r 7l

v'2 v'6

Moreover, the couplings d' and d "y are fixed by heavy
quark symmetry to be [10]

(2.4)
e „ed =, d

2mg Nl g
(2.8)

where the A, 's are the Gell-Mann matrices normalized by
tr(VA, )=25' . It should be stressed that the Lagrang-
ians (2.1) and (2.2) are expressed in terms of velocity-
dependent heavy fields.

The covariant derivative D„ in Eqs. (2.1)—(2.3) is
defined by

D„P=d„P +V„'P +ie A„(6'P —P6),
D„P„=B„P„+V„P ieA„(P 6' 6—P ), —

with V„=,' [AD„g+g(D„g )t]. —The covariant derivative
in V„contains the photon field A„ to incorporate the

We shall see that from the lowest-order Lagrangians
given by (2.1) and (2.2) there is an SU(3) prediction:
A (D '+ ~D+ y ) = A (D,'+ ~D,+y ). Therefore observa-
tion of different rates for the radiative decays of D'+ and
D,*+ (after taking into account the mass difference of
D+"' and D, "') will evidently signal the SU(3)-
breaking efFects induced by the light quark masses. In
chiral perturbation theory, the masses of light quarks are
treated as a small perturbation and SU(3) violation in ra-
diative decays is induced by chiral loops. In paper II, the
unknown coupling constants d and d" in (2.2}are derived
from the nonrelativistic quark model and they are related
to the masses of the constituent u, d, and s quarks. As a
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consequence, SU(3) violation is already incorporated into
the "effective" couplings d and d" in paper II. In this pa-
per we shall adopt the orthodox approach of chiral per-
turbation theory for treating SU(3)-breaking effects. As
will be shown, leading chiral corrections have nonanalyt-

ic dependence on m of the form mq or mqlIlmq In
Sec. IV the above two different approaches for SU(3)
violation in radiative decays of heavy hadrons will be
compared.

The chiral-symmetry-breaking terms are given by

Botr(Af X+X JN)+a, IMPP(u)((JN, g+gtfkg )P (u)+a2M, P„*(v)((JN g+g JR/ )P*"(u)f2

+a&M/P(v)Pt(u)tr(AtX+Xt&)+a&M, P""(u)P„* (u)tr(JNX+, X JN), , (2.9)

where X=(, BII= —4(qq ) /fo characterizes the spon-
taneous breaking of chiral symmetry, and JK is a light
quark mass matrix:

m„0 0

0 m„0
0 0 m,

(2.10)

/I [P,'~P, 7r'(q)]„„= QMpM, (lt, ');, (s" q) .tree

(2.11)

p

I

I

P, P

p
I 7r
I

I

I

+ I +
P I P

\ /

7r
p

/'

P P P

The unknown dimensionless parameters a; are expected
to be of order unity (see Sec. IV for more discussion).
Each symmetry-breaking term in (2.9) transforms either
as (3,3) or (3,3) under SU(3)L XSU(3)II. As the
symmetry-breaking effect is purely induced by the light
quark masses, XcsB should be independent of the heavy

quark mass and spin. By comparing (2.9) with (2.1), this
immediately gives a, = —a2 and a3= —a4. As one can
see from (2.9), Xcsa does not break the heavy quark sym-

metry (HQS) relations given by Eq. (2.7). In fact, chiral
symmetry breaking should preserve HQS as light meson
interactions have nothing to do with the heavy quarks.

We shall first calculate the chiral-loop contributions to
the strong decay P,' P +m' as depicted in Fig. 1,
where P; denotes (Qu, Qd, Qs ) and likewise for P . The
tree amplitude can be read out from (2.1) to be

As discussed in the Introduction, the loop-induced loga-
rithmic divergence is absorbed into the chiral-symmetry-
breaking counterterms

aP (u)(gAtt(+(tlat(t)A "P„*t(v)

+bP(v)A"(/JR (+g Af( )P„' (u)+H c (2.. 12. )

Obviously, in the above expression, we should take (=1
in (gM g+ g Mg ) in order to describe the decay
P*~Pm.. As a consequence, the higher-order contribu-
tion due to (2.12) has the same structure as that of (2.11)
except that the former vanishes in the chiral limit. As
stressed in the Introduction, we will not consider higher-
order Lagrangian effects in the present paper because of
the unknown parameters a and b in (2.12). The sum of all
chiral-loop contributions shown in Fig. 1 gives rise to the
effective coupling constant

I//Z (P)Z (P*)Z (m')
geff g Z

1

(2.13)

where Z& and Z2 are the vertex and wave-function renor-
malization constants, respectively, and the HQS relation
Z2(P '

) =Z2(P) has been applied. For simplicity, wave-

function renormalization and mass counterterms of the
heavy meson and Goldstone boson are not explicitly
shown in Fig. 1, but the usual mass renormalization pro-
cedure is to be understood. To evaluate the Z2 renormal-
ization constant, we note that the self-energy amplitude
of, for example, P, has the expression

(a)

p
7r

/
/

P,' P ~„P

a
7r

I

I

I

I

I

j IL

I
I

/

(e)

(c)

X g (A, "A,"),,
b

fX
(g„„—u„v, )l"l

4 7

(2m. ) (l m, +i@)[u—.(l +k )+i@]

FIG. 1. Chiral-loop diagrams contributing to the strong de-

cay P ~P~'. For simplicity, the wave-function renormaliza-

tion and mass counterterms are not shown in Figs. 1 —8, but the

necessary mass renormalization is to be understood.

(2.14)

where k is the residual momentum de6ned by
P„=m& v„+k„and m b is the mass of the Goldstone bo-
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II(k ) =5m —2(Z2 ' —1)(u k )Mp,

we obtain

(2.15)

son ~ in the loop. (For notation consistency we will fol-
low papers I and II to denote the momenta of the Gold-
stone boson and photon by q and k, respectively. } With
the help of Eq. (A4) and the relation

with

1

32~2

1

327T2

P7l

2
ln

fo m

mz A
2

ln
fo mx

(2.22)

and

2 m b

5m'(P. ) = —g
16m

ll f2 P
b 0

3 2

Z (P)=1+ g(A A );; ln
64m. b fo m b

(2.17)

P7l ~
E "ln

32m f m

As to the Feynman diagrams Figs. 1(a)—1(e), the ampli-
tude of the vertex diagrams Figs. 1(a) and 1(b) reads

3

A(1(a)+1(b})= QMpMp,
64

where A is an arbitrary renormalization scale. As dis-
cussed in the Introduction, divergences from chiral loops
are absorbed into the unrenormalized parameters of
higher-derivative chiral Lagrangians, which are not writ-
ten down here. It is straightforward to check that the
HQS relation Z2(P )=Z2(P;) holds. Note that the
SU(3)-invariant masses Mp and M s in Eq. (2.11) are un-

renormalized masses; they are connected to the physical
masses through the relations

m b ~2
2

Xg(A, bA, 'A, ); ln (e* q),

(2.23)

where we have applied Eq. (A3). To evaluate the seagull
graphs of Figs. 1(c) and 1(d), we note that the Feynman
rules for the vertices PPm'm. and P'P'~'m are obtained
from the kinematic terms in Eq. (2.1} together with Eqs.
(2.3)—(2.6) and

Mph&s (P& ) =MP 2aiMPJR"

—2a3Mp

track+

5m (P; ),
V„= (MB„M—B„MM)+

1

0
(2.24)

M h„,(P )=M —2a1M JR;;
(2.18) where M is the meson matrix given by Eq. (2.4). The

relevant Feynman rules are
—2a3M, trAt+5m (P,') .

It follows from Eqs. (2.9), (2.16), and (2.18) that the mass
splitting of, say, P3 =(Qs }and P, =(Qu } is given by

Mp(VA, "—Abk, ')u (q, qb)—
0

for the vertex PP~'m and

(2.25)

Mg""' —Mg""' = —a, (m, —m„)

2 l?l

3277 y [(A, A, '), —(A, 'A, ) )33 11
b 0

(2.19a)
Likewise, for heavy vector mesons,

Mphis MphYs —Mphis Mghys
P3 P)*

Consequently, a measurement of the heavy meson mass
differences will provide information on the parameter a, .
We will come back to this in Sec. IV.

From the strong-interaction chiral Lagrangian for the
Goldstone bosons,

(2.19b)

tr(B X s)"X)+ tr(Ai X+IIX ),f2 fo
4 P 4

with A =diag(m, m, 2m& —m ), the wave-function
renormalization constants for the light pseudo scalar
mesons are found to be

Mp(A, 'A, —
A, I,')u (q —

q )(s' s")
0

(2.26)

(A, 'Ab —A. A, ')Mp[(q, —
qb) s'"(v.s'}

0

—(q, —
qb }.e'(v. e")]

for P'P'm'mb. Therefore both vertices are proportional
to v (q, qb). As a con—sequence, seagull diagrams Figs.
1(c) and 1(d) vanish since the required s' q expression
cannot be generated from the seagull amplitudes in which
the linear q dependence is always in the U q form.
Beyond the heavy quark limit, seagull graphs do contrib-
ute, but they are suppressed by factors of 1/M, relative

to the tree amplitude. For example, to order 1/M +, the
P*P*~'~ vertex

QZ2(sr) = 1 ,'(2E„+ex ), ——

QZ2(K) =1 ,'( ,'e + ', E—lc—+——,'&„),—

QZ, (i))=1—
—,'(3ex ),

(2.21}
is no longer vanishing as u e %0 and v s %0.

The five-point vertex in Fig. 1(e) is generated from the
Lagrangian (2.1) by expanding A„ to the third power of
M:
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a„M
1

P 2f P

+ [(8 M)M —2M(B„M)M
12''Zf,'

should be [16]. Using the empirical values

L~(A=m )=(0+0.5) X 10

L ", ( A =m „)= ( 2.2+0.5 ) X 10
(2.32)

+M'B„M]+ (2.27)
obtained in Ref. [16],and the experimental value f =93
MeV [21] we find

A straightforward calculation shows that the contribu-
tion due to the five-point vertex diagram Fig. 1(e) is ex-
actly compensated by the wave-function renormalization
of the Goldstone bosons. As a consequence, we have
effectively

with

Z2(P)

Z, (1(a)+1(b) )
(2.28)

(A, "A,'A, )
Z, (1(a)+1(b) ) = 1—

(gQ) 77
(2.29)

It follows from Eq. (2.17) that the individual wave-
function renormalization constants for heavy mesons are
given by

Z2(P, ) =Zz(P2 ) = 1+g ( ,'e„+—3ex+ —,'e„),

Z2(P, )=1+2g (3ex+e„) .
(2.30)

In Sec. IV the above results will be applied to the strong
decay D*~D +m. There we shall see that Z2 plays an
essential role and the pion contribution is not negligible
in spite of its small mass.

Thus far we have expressed all the results in terms of
the unrenormalized decay constant fo. It can be related
to the physical decay constants through the relations [16]

fo=86 MeV . (2.33)

%'e make a digression here to comment on the 1/m&
eff'ects. In the heavy quark eff'ective theory, 1/m &
corrections can be systematically studied by including the
following higher-dimensional operators

0 = h'~'(iD) h'~',1
1 2 u

m&

0 = h '~'( ——'g o G"')h '~',1
2 2m U 2 s Pv v

mg

(2.34)

where h„'~' is a velocity-dependent heavy quark field. For
the case of P*~Pvr decays, there are two different kinds
of 1/m& corrections. One arises from the consideration
of the subleading decay amplitude induced by the opera-
tors 0, and 02. As shown in the preceding paper [13],
the coupling constant g receives a correction of order
AQCD /m &, that is,

g,~=g 1+0 ~QCD
(2.35)

This I/m& effect in the chiral limit is elaborated on in
more details in Ref. [13]. The other kind of 1/m&
correction comes from the combination of chiral symme-
try and heavy flavor symmetry breakings, e.g., the seagull
diagrams. Schematically, it is expected to be the order of

2mK+m m
f„=fo 1+2e +eK+4 L4+4 Lqf2 f2

2m b m b

(4~) f o mg
(2.36)

2mK+m L"
4

m2 m, +m
+2 f2

f =f 1+—e+ —e +—e+43 3 3
K 0 4 7I.

2 K 4

L~, (2.31}
m

2mK+m 4 m 2m +m
f„=fo 1+3ex+4 L4+-

fo 3 fo m

where m =(m„+md )/2 and the counterterm contribu-
tions denoted by the renormalized coupling constants L 4

and L~ (see Ref. [16] for notation) are included in Eq.
(2.31}. Note that the one-loop logarithmic corrections to
the decay constants, the pion wave-function renormaliza-
tion, and the five-point vertex diagram all share the same
structure as they come from the same chiral-loop dia-
gram. The couplings L4 and L~ of the four-derivative
chiral Lagrangian are dependent on the renormalization
scale A. However, physical decay constants can be
verified to be independent of the choice of A, as they

A [P,*( , u}~EP, +y(k, e)]=p,e„pk"E u E*~,

with

(2.37)

p; = —2+MpM (e;d +e&d')

=e+MpM, (e,g+egP') (2.38)

where the factor 1/(4n) is associated with the loop-
momentum integration and m b is the mass of the loop

meson ~. As this SU(3)-violating I/m& effect is very
small, we wil1 not pursue it further.

%e next turn to the electromagnetic decay of heavy
mesons. One-loop contributions to P*~P +y are shown
in Fig. 2. The Feynman diagrams with a photon coupled
to the external P* or P line via charge coupling are van-
ishing, as expected since the reaction under consideration
involves a magnetic M1 transition. Therefore they are
not displayed in Fig. 2. Although chira1-loop effects in
the radiative decays have been recently discussed by
Amundson et al. [8], only Fig. 2(e) was analyzed by
them. Before proceeding to compute loop corrections,
we note that the tree amplitude obtained from (2.2) is
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P ~ P P,~ P P P P P

Cb) (e) P P P
I

P

P P P P P r P x P

(e)

f
P P P

K

l

P P

FIG. 2. Chiral-loop diagrams contributing to the radiative
decay I' ~I'y.

FIG. 3. Amplification of Fig. 2(e) with all charged meson
loops specified.

and e; =Q, , Though the unknown parameter p= —21 /e
is not fixed by heavy quark symmetry, the other parame-
ter p' = —2d'/e is determined in the heavy quark
effective theory by the dimension-5 operator

5P, (2(e) ) =
e&

g2 Nl g2 ply

8m fo~ 8m f~o

explicitly shown in Fig. 3. By virtue of Eq. (A2), we find

with the result [7,8,10]

(2.39)
FPl

5P,(2(e))=
e2 8n fo2

m
5P,{2(e)}=

e3 8n f~o

(2.43)

(2.40)

It should be stressed that it is important to include this
I/rn& effect due to the magnetic moment of the heavy

quark. As we have seen in paper II, the charmed quark
contribution is significant and largely destructive in the
radiative decays of D' and D,'+. In the nonrelativistic
quark model, p is related to the constituent quark mass,
namely, P= 1/M [10]. Since in the spirit of chiral per-
turbation theory SU(3) violation is induced by chiral-
symmetry-breaking terms, it is interesting to compare the
quark model results with those of the chiral Lagrangian
approach. To the lowest order, it is evident that p2 p3
or

which are in agreement with Ref. [8]. As for the seagull
diagrams Figs. 2(a} and 2(b), we note that the electromag-
netic four-point interactions of heavy mesons are de-
scribed by

e"" 'A„u„Pf (u)[6,M]P„'t(u}

P p*i+M—M* A&

X [P(u)[6,M]P„' (v)+P„'(v)[6,M]P (v)],
(2.44}

where use has been made of

A(Pq ~Pty)=A(P3 ~P3y) . (2.41)
A„=A„' ' —

—,'eA„(gteg —gagt)

B„M— — A„[O,M]+ (2.45}
2fo " 2fo

Zp(P;)
(P;),e=P +5P;{2(a)+2(b)+2(e)),

! i

Z2{P, )

I

(2.42)

As will be seen, this SU(3) relation is badly broken by
chiral-loop effects.

Referring to Fig. 2 the effective couplings become

in (2.1) and (2.2). It is clear that the P Pm'y vertex is in-
dependent of the photon's momentum k. As a conse-
quence, Fig. 2(b) with a photon emitted from the vertex
on the right-hand side (RHS) does not contribute since no
linear k-dependent terms can be constructed from the
numerator or the denominator after the loop mornenta of
the mand P' are as.signed to be I and P +I, respectively.
Since the vertex P*P*m'y is proportional to

"v„c c.&c,„'* in the heavy quark limit, it is easily seen
that the other seagull diagram Fig. 2(a) also vanishes. Its

where the subscript i refers to the process P;*+P,.y and
Z& accounts for the vertex renorrnalization due to Figs.
2(c), 2{d), and 2(fl. We begin with Fig. 2(e). In order to
evaluate its amplitude, all the charged meson loops are

4In Ref. [8], fo is replaced by the physical decay constant f
for the pion loop and fz for the kaon loop. We will not make

such a replacement in our calculation.
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subleading contribution is of order (g /fo)(1/M, ) and

hence negligible.
We next focus on vertex corrections. With the magnet-

ic P'Py and P'P*y vertices determined from (2.2), Figs.
2(c) and 2(d) lead to

g2 (A, QA, )

Z, (P,*~P,. y;2(c)+2(d)) =1— g e &

(2.46)

and

2 Z2(P1)
p, =e M~M,

Z, (P*, P, y)

eQ

mQ

g2 m g2 mK

8m f02 8m. f20

Q ge m

mg 8m. f 20

Z2(Pi)
p~=e+MpM ~

——P
P2y)

(2.51)

Z', (P,"~P,y;2(c)+2(d) ) =Zi(P; ), (2.47)

, QMpM, e„„pk"s'v s'~[M, [6,M]]
2f0

(2.48)

It is easily seen that only charged meson loops contribute;
the result is

Zi(P;*~P;y;2(f)}=1+—,'Q [&,[6,& ]];;
b EI

(2.49)

where we have applied (2.17) and the relations (2.7) and
(2.8). The contribution of Fig. 2(c) due to charge P'P*y
coupling is of order (g /32m )(m &/fo)(m 6/Mp) and

hence negligible. Note that because Zi(P;"~P;y) is ex-

actly compensated by Z2(P; ), the parameter P' of (2.42)
does not get renormalized; this is a realization in chiral
perturbation theory of the exact QCD result discussed in
Ref. [13].

It remains to coinpute the amplitude of Fig. 2(f). The
relevant electromagnetic five-point vertex obtained from
(2.2) is

pi=e+MpM g
1 Z2(P3)

P——
3 Z, (Pi ~Piy)

+ +eQ g2 mK

mq 8m fo

III. SU(3)-SYMMETRY-BREAKING
CORRECTIONS TO THE CHIRAL DYNAMICS

OF HEAVY BARYONS

In this section we discuss the corrections to the strong
and radiative decays of heavy baryons containing a heavy
quark Q and two light quarks. The two light quarks form
either a symmetric sextet 6 or an antisymmetric antitrip-
let 3 in fiavor SU(3) space. We will denote these spin- —,

'

baryons as B6 and B3, respectively, and the spin- —,
'

baryon by B6. Explicitly, the baryon matrices read as in

paper I:

In the SU(3) limit, the light quark contributions to p are
in the ratio 2:—1:—1 for the electromagnetic decays of
P*, , P2, and P3. Evidently, this relation is violated by
the wave-function and vertex renormalizations.

Working out (2.46) and (2.49) explicitly, we find the total
vertex corrections to be

B-=
3

AQ

0

1/2
~Q

(3.1)

Zi(Pi ~Piy;2(c)+2(d)+2(f))

=1+ 1

e,

Z, (P2 ~P2y;2(c)+2(d)+2(f))
& 1/2

i/2 -Q
—.-i/2

Q

(3.2)

=1+ 6 + ——6 +6' +—E
1 g 3 1

K

Z, (P3 ~P3y;2(c)+2{d)+2(f))

(2.50)

and a matrix for B6 similar to B6. The superscript in
(3.1) and (3.2) refers to the value of the isospin quantum
number I3.

To perform chiral-loop calculations, we find that for
sextet heavy baryons it is very convenient to work with
the "superfields" which combine spin- —,

' and spin- —,
' sextet

baryon fields into a single field [6,17],

=1+ 1

e3
g 2

&K+ ~K+
—{y"+v")y5B61

6

(3.3)
Putting everything together, we obtain the following
effec'ive couplings for P,.*~P, y:

S~=B'~+ B y (y"+v"),6 ~3 6 5
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where B6„ is the Rarita-Schwinger vector-spinor field as
appropriate for spin- —', particles. Feynman rules in terms
of superfields become much simpler, and there are fewer
Feynman diagrams to evaluate. The most general
gauge-invariant chiral Lagrangian for heavy baryons
given by Eq. (II.3.8) reads

i t—r(S"u DS )+—tr(Tv DT)+/s. m tr(S"S )
2 P

+i—,'gi ff„&,tr(S"v A~S")

—&3g2tr(S&A&T) +H. c. (3.4)

in superfield notation, where T =—B3 and hm is the mass
splitting between the sextet and antitriplet baryon multi-
plets (for simplicity we will drop the unknown hm term
in ensuing loop calculations). We wish to stress that the
Lagrangian (3.4} is expressed in terms of velocity-
dependent baryon fields. Because of heavy quark symme-
try, there are only two independent coupling constants in
the low-energy interactions between the Goldstone bo-
sons and heavy baryons. Moreover, the nonrelativistic
quark model predicts that [3]

(3.5)

with g being the axial-vector coupling constant of a con-
stituent quark, which is also the coupling constant ap-
pearing in the meson Lagrangian (2.1). Feynman rules
can be easily derived from (3.4). Especially, the S and T
propagators are siinply given by i ( —g„„+v„u„)/
( v k —b, m ) and i /v k, respectively, where k is the resid-
ual momentum of the heavy hadron. The lowest-order
chiral-symmetry-breaking terms now have the form

=J(,,tr[S"((At g+gtAtg )S„]
+A,2tr(S"S„}tr(At X+X At)

+Atrs[T((, Attg+g Atilt)T]

+Aztr(TT)tr(At X+X At) . (3.6)

%e begin by first examining the chiral-loop effects on
the strong decays B&~B&+m'. The tree amplitudes of
S; ~S;,+n'and S; ~T; +m'derived from (3.4) are

I 0
7r

I

I

I
I
I

S» / S

0' m.

/
»/ \

(o)

/ 0
7r

/
/

/
I V

(b)

I p
7r

I

I

I

I
I

/I
/

A [(B6); ~(Bs); ir'(q)] (3.8)

u-, hays(V,
—

X;, )u6 (i(j) .
2&2fo

One-loop contributions are shown in Figs. 4 and 5, re-
spectively, for S~Sm. and S~ Tm. . The resultant
effective couplings are given by

and

z, (s)gz, (~')
(g 1 }eff gl Z 1

(3.9}

QZ2(S)Z2( T)Z2(m')
(3.10)

Z ]

where Z2(T) and Z2(S) are, respectively, the wave-
function renormalization constants for T and S baryon
fields and Z& and Z', account for vertex renormalization
effects from Figs. 4(a) —4(d) and 5(a) —5(d), respectively.

To evaluate the renormalization constant Z2, we note
that the self-energy amplitudes can be written as —i X( k )

and i X(k )g„„for T and S heavy baryon fields, respective-
ly. Since

(g2} ff g2

X(k)=5m —(Z2 ' —1)v.k,
we find

(3.11)

(c) (d)

FIG. 4. Chiral-loop diagrams contributing to the strong de-

cay S~Sm'. In (a), the external pion may originate from an
SSm. or ST~ vertex.

A [(Bz&),"~(B6),"n'(q)]= u6q„(A.;;+HAJJ)u",
&3 gi6' 86', a

A [SI'(u)~S,"m'(q) ]

8 vQis/l tl JJ

A [SI'(v)~T, m'(q)]

u-, q ( J(,;.; A,J'J )'ti" (i (j—),3 P &' JJ

(3.7)

0
I

I

I

I

I

\ IS» T

I p
/ 7r

/
/

/
»/

0
7r

(b)
I

I 7r
I

I

I

I

1

I
\ /

with Q„=u„—( I /»/3)(y„+ v„)y,u. It is a simple
matter to project out from (3.7) the strong decay ampli-
tudes expressed in terms of component fields B6,B6,B3.
For example, Eq. (3.7) leads to

(c) (d)

FIG. 5. Chiral-loop diagrams contributing to the strong de-
cay S~Tm'. In (a), the external pion may originate from an
SS~ or ST~ vertex.

sQur results for Z2(T) and Z, (S) [see also Eq. (3.15)] disagree

with Eq. (3.3) of Ref. [17].
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3

5m(T,J)= —
g2 g —,'[(A, A, );;+(A. A, ), +2J(,;, A,,; —2A, ,";A,,-, ]

b 0

Z2(T,, )=1+—,'g2 g —,'[(A,"A, ),, +(k A, ),, +2J(, ,A, ,
—2A, ",, A,, ]e, (iWj),

b

for the antitriplet baryon B3 with the e b's being defined in (2.22). Likewise, we get

1 m b

5m (S,, )= — g (6g, g, +4g2@)

Z~(S,, }=1+—', g (6g f p)+4g~@)e b,

(3.12)

(3.13)

for the sextet baryons B6 and B6, where

g~= —,'[(k A, );;+(A, A, ) +2k, ;, A, ";+2k,;;A, (1—5; )],
gs —1 [(gbgb) +(gbJL b) 2gb gb 2gb gb (1 5 )]

It follows from Eqs. (3.12) and (3.13) that

Zz(A&)=1+9g~(3e +ez),
Z2(:-g)=1+—9gz(3E +10ex+3E„),

Zz(X& ) = 1+—,'g, (4e +2ex +—', e„)+3g 2 (e„+ez ),
Zz(:-&)=1+—,'g, (23m +5m„+ ,'E„)+3g, (—3e +2@x.+3e„),

Z2(Qg ) =1+—', g, (4ex + —',e'„)+6g, e~ .

(3.14)

(3.15)

As for the vertex diagram Fig. 4(a) for S,, ~S,, +n. (since mass differences are generally small among different spin
multiplets of heavy baryons, we will thus only consider pion emission due to the small phase space), the general expres-
sion is

Z, (4(a))=1++ ( —94g, g;
—6ggJ)' " x,', +x,',

' (3.16)

with [see Appendix B for a derivation of the SU(3) group factors]

g; =
—,'[(1, k A, ) +A, ;;(1, A, ) +A, ;(k k );, +(A. A, );A,;, +[A,; (A, "A,");+(A, A, ) "1,";;+A,"(1, A, );;](1—5; )+(i j)I,

(3.17)
g,

=
—,'[(A, "A, A, ) —k, ;(J(, I, ) —

A, ; (A, A, );(1—5; )+(i~j)I .

Note that Z& in Eq. (3.16) is worked out for vr emission, but due to SU(2) symmetry it should be also valid for charged
pion emission. We next express the vertex corrections explicitly for S(X& '~S(X& )m and S(:-& ')~S(:-&)n".

Z, (4(a) )= 1+( —', g, + 6g 2 }(e + —,
' ez ) + ,

' g,e—
for S(X& '~S(X&)m and

Z, {4{a)}=1+—', g, ( —
—,'e +2ez+ —,', e„)+6gz(—,'e +@~+—,'e„)

for S(:-&*')~S(:-&)n.Similarly, for S,J~T,"+m, Fig. 5(a) leads to

(3.18)

(3.19)

ZI(5(a))=1++

with

9 p, 3

ll JJ

(3.20)

g,'J = [(A.bk. 3i,b), , +A,,J( A. A, ),, + A, ,J(A, A."),, + ( A."A. );,k,; —(i j)I ,
1

4&2

[(XbX'Xb)„—X,', (XbXb)„+X,', (X'Xb),, —(XbX')„X,",—(I j) I .
1

2&2

(3.21)
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S T

(b)

jr
/

(c)

S i / SI s / ' s
J

(b) (c)

(e)
(e)

FIG. 6. Chiral-loop diagrams contributing to the radiative
decay S~Sy. In (a), the photon may originate from an SSy,
STy, or TTy vertex with a coupling constant a» a 2, or a &. In
(c), (d), and (e), the intermediate state can be an S or T baryon.
A diagram similar to (b) but with a photon attached to the light
meson does not contribute to the M1 transition of S~Sy.

FIG. 7. Chiral-loop diagrams contributing to the radiative
decay S~Ty. In (a), the photon may originate from an SSy or
STy vertex with a coupling constant a& or a2. In (c), (d), and

(e), the intermediate state is an Sbaryon.

Explicitly,

Zi(5(a)) =1+ ,'g, (E„—+,'ex )+—3g2(e„+—,'Ex }

for S ( X(&")~T (A& )n and

Z', (5(a))=1+ ,'g, ( —,'e„+—ex+,'e„)+3g2—( 4e„+—e—x+ 4e„)—

(3.22)

(3.23)

for S(:-&"—+ T(:-&)rr.
The cancellation between the wave-function renormal-

ization of the Goldstone bosons and the five-point vertex
diagram for heavy meson strong decays also persists in
the baryon sector. This can be understood from the fact
that the five-point vertex in both cases arises from ex-
panding the chiral field A„ to the third power in M and
hence has the same structure. Therefore Z, (4(d) )
=Z', (5(d))=QZ2(n'). Just like their counterparts in
the meson sector, all the seagull diagrams in Figs. 4 and 5
also do not contribute to the strong decays S~Sm. and
S~Tm to the lowest order in heavy quark expansion.
We thus conclude that

Z2(S)
gi .~=gi z (4(,}} (3.24}

and

uzi(S)Z2( T)
g2 eff g2 (3.25)

We now switch to the electromagnetic (Ml) decays
S~S +y and S~T +y. The most general gauge-
invariant Lagrangian for magnetic transitions of heavy
baryons given in paper II IEq. 11.3.9)] can be recast in
terms of superfields

where o"F=cr„g—"" and we have applied Eqs. (II.3.47)
and (II.3.61). The Lagrangian X(s2' is also the most gen-
eral chiral-invariant one, provided that one makes the re-
placement

6~—,'((t6(+$6(t), 6'~6' . (3.27)

Note that contrary to Eq. (II.3.9), the Dirac magnetic
moment terms do not appear in (3.26) because the La-
grangian Xs" is expressed in terms of velocity-dependent
fields and hence does not contain Dirac magnetic mo-
ments to the lowest order. In the quark model, the mag-
netic moments a, and a2 are simply related to the Dirac
magnetic moments of the light quarks, whereas a

&
is con-

nected to those of heavy quarks. Explicitly, a
&

is fixed by
heavy quark symmetry to be —,'(e/2m&) and this is the
only I/m& effect included for heavy baryon decays. In
contrast, the couplings a, and a2 are independent of the
heavy quark mass and spin.

It follows from (3.26) that the tree amplitudes of heavy
baryon radiative decays are given by

Xs '= i 3a, tr(S"6F„„S—')

+&3a3E„„&tr(S"6v"F ~T)+Hc.
+3a', tr(S"6'o"FS„)——', a', tr(T6'o FT), (3.26)

T S S T

6The sign of the last two terms in Eq. (3.26} is opposite to those
of the corresponding terms in Eq. (18}of Ref. [7].

FIG. 8. Chiral-loop diagram contributing to the radiative de-
cay T~Ty. This is the only loop diagram contributing to the
M1 transition T~ Ty. All other possible diagrams do not con-
tribute; see the footnote after Eq. (3.35) for discussion.
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A [S,i,'(U)~S,'+y(c, k)]=i ,'—a,Vl (6,, +6,,-)(k c„—k„c,)$" —i6aI 6'Q"kill„,

A [Sp~(v)~ T, +y(c, k)]= —2( —,
')' azc„&u-U'k c~(6,, —6,, )Vl" (i (j) .

(3.28)

For the radiative decay S~T+y, the two light quarks in the heavy hadron must undergo a spin-flip transition. Conse-
quently, such decays will not receive any contributions from the magnetic moment of the heavy quark. As we will see
later, this property persists at the one-loop level. To the lowest order, we have the following predictions from (3.28}:

A (:-g ~=g y)= A (Xg~Agy)= &—2azua„, k"c'u,
~ —1/2 —1/2

) A (
'e —1/2, —1/2

) 0~Q +~Q p ~Q +~Q

A (:-g '/ ~=g y)=A(Xg ~Agy)= —i&6azu(k„i/ —c„k)y,u",
A (:-g* ' ~=g ' y)= A(Xg '~Xg'y)= A (Qg~Agy)

(3.29)

—(a, —SaI )u(k„g —c„k)y~u",
3

A (=-Q*'/'-=-Q/'y) = A (XQ'-Xgy ) = '- (a, +16a', )u(k„~—c„k)y,u
2 3

where the superscript denotes the isospin quantum num-
ber. The above SU(3) relations will be violated in the
presence of chira1-loop contributions as depicted in Figs.
6 and 7. Chiral corrections will modify the coupling con-
stants a„a&, and a2 to

A [S(-~—1/2(e)) T(-—1/2) ]

= —2( 3 )1/2(g } uc U
"k~ci g& (3 31)

with

Z2(s)
(a, ),a=a, +5a, (6(c)+6(d)+6(e)},

Z]

zz(s)
(a', ),s(S)=a', =a', ,

Zi(SSy)

Z2( T)
(a', ),it(T)=a', ,

=a', ,
Z', (TTy )

(3.30)

gzz(S)zz( T)
(az),s=az „+5az(7(c)+7(d)+7(e)),

1

(az),&=5az(7(a)+7(b)+7(c)+7(d)+7(e)) . (3.32)

Having calculated the renormalization constants Zz(S}
and Zz(T) earlier, we now proceed to evaluate Figs. 6(a),
6(b), 7(a), 7(b), and 8 for the vertex renormalization con-
stants Z, , Z'„and Z'&'. Note that charge couplings for
the vertices SSy and TTy in Fig. 6(a) and SSy in Fig.
7(a) are proportional to (U c) and consequently cannot in-

duce magnetic transitions. The contributions to Z, due

to the magnetic SSy and STy couplings can be summa-

rized as follows:

where Zi [Z'1(SSy)], Zi', and Zi(TTy ) are the vertex
renormalization constants induced by Figs. 6(a), 6(b),
7(a), 7(b), and S, respectively. In (3.30) we have anticipat-
ed the results [see (3.33) and (3.35) below]
Zz(S) =Z 1 (SSy ) and Zz( T)=Z', ( TTy ). We remark
that since =& ' '*'~=& '

y is prohibited at the tree
level, its effective coupling (az),1r is defined in a similar

y as I~2[+] ~~2y ~

Z (SSy;6(a))

Z', (SSy;6(a) ) =Z, (S},
with

(3.33b)

E= I++ —g i (;J
—6 gigzg~. , (3.33a)

4 " a, " „+

{3.34)

for S, ~S,- +y,
Z', ( TTy; 8 ) = Zz( T) (3.35)
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for T;J ~T;J.+g, and

Z", (STy;7{a))=1+g
b

with

9&2 u i Fi~ 3

Q —Q +v' g'Q —Q2 ll JJ 2 ll JJ
(3.36}

[(A, QA, };;+(i(,A, );;Q"+2k, ; 1,;Q" (—i~j)],
4 2

[(A,bQA, ~);; —(it,~A, );;Q,J+A,;;A,J(QJ —Q;;)—(i j)]
2&2

(3.37}

Q2
Z&(X& "*'~X& 'y;6(a) )= 1+ ', g, ( ,'e +—,'ex—+,'ez—)+—,'gjg—2 (e„+ex),

a)

Q2
Zi(X& "~X&y;6(a))= 1+ ,'g i (e—,'ex—+——,'ez)+9gig& (e„),

Q)

Q2Zi{Xg"*'~X(i'y;6(a))=1+—', gi( —,'e +ex+ —,'eq}+9gig2 (e ),
a&

(3.38)
Q2

Z, (:-g "'~=g y;6(a) )=1+—",,g, ( ——,'e~+ —', ex + —,', e„)+—',g, g2 ( @~+2@—x+e„),a,

Q2
Z, (:-g ' '*'~-g ' y;6(a))=1+ ,', g, (7—ex+,'e„)+ ,'g—,g2 (—e„+ex),

a,

Q2
(&x),Zi(Q& '~Q&y;6(a))=1+ —,'gi( —', ex+2ez)+9gigz

a&

for S, ~T,"+y. . Equations (3.33b) and (3.35} imply that the parameter a i in (3.30) is not renormalized. This confirms
an exact QCD result that a', does not get renormalized [13] in chiral perturbation theory. Note that when Q, , =Q",
the tree amplitude for S~T+y vanishes [see Eq. (3.28)] and Z"

, is undefined. In this case, one should apply Eqs.
(3.31) and (3.32}. The explicit expressions of the vertex renormalization constant Z, for each radiative decay mode are
then given by

and

a&
Z", (Xg"~Any;7(a))=1+ —,'g, g2 (e + ,'ex )+3g2(—e„+,'ex), —

a2 4

a&
Z", (:-& "'~"& y;7(a))=1+—', g, g2 ( —,'e + —A+3+ 6E„)+4gz—(e +2—Ex+36„),

Q2

&~2(:-'q '""'~=&'"y;7(a))=-',gig2~i( —e&+e„)+2g2a, ( ~.+-ex), —

(3.39)

for S~T +y. Recall that the heavy quark magnetic moment a ', does not contribute to the S~Ty transitions at the
tree level. Here we see that this consequence of the heavy quark symmetry is preserved at the loop level.

The electromagnetic five-point vertices in Figs. 6(b) and 7{b) are generated by the Lagrangian (3.26) with the replace-
ment Q ~(1/4f o )[M, [Q,M)], which comes from (3.27}. The results are

Zi(S~i ~S;.+y;6(b))=1+—,
' g [[A, , [Q,A, )],, +(i ~j)]

b ii

Zi'(Si —+T; +y;7(b)=1+—'g t[A, , [Q,A, ]],, (ij)]-
b

(i&j).
(3.40)

7Since the magnetic TTy coupling vanishes in heavy quark limit and chiral corrections preserve heavy quark symmetry, we can be
sure that no other diagrams such as the seagull diagrams and the diagram such as Fig. 8 but with a photon attached to the light

meson can contribute to ZI( T~Ty ). We have checked this explicitly.
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Explicit expressions for Z, (6(b)) and Z", (7(b) ) for individual decay modes read

Z, (XQ"*'~XQ'y;6(b))=z, (:-Q ' '*'~=Q ' y;6(b))=1 —
—,'(e +ex. ),

Z, (Q1Q*'—+QQy;6(b) ) =Z, (XQ*'—+XQy;6(b) ) = 1 —3ex,
Z (X 1(e) X ly. 6(b)) —Z (

'1/2( ) '1/2 .6(b))

and

(3.41)

ZI'(XQ*'~AQy;7(b)) =1 (2e—+ex ),
ZI'(:-Q1/"'~=Q/ y;7(b) ) =1—(e +2ex ),
5a2(:-Q Q y;7(b)) =( e—+e& )a2 .

(3.42)

Figures 6(c) and 7(c) are the Feynman diagrams in which a photon couples to light pseudoscalar mesons. By applying
Eqs. (A3) and (A5), we arrive at

2
9(S;6(c))=i 5"(k„c,„—k„E,)Q& .

256
(3.43)

Likewise, the amplitude for the charged pion loop with antitriplet baryon intermediate state reads

2m g2
W (T;6(c))=i,0"(k„e„k„E„)+"—.

o

(3.44)

Therefore the radiative decay amplitude due to the sextet or antitriplet intermediate baryon state is separately gauge in-

variant, as it should be. Projecting out the spin- —, final state from Eqs. (3.43) and (3.44) gives

3 me.
( X+Q'~ XQ' y6(c))=i

2
—g1+g2 u(k g —e„k')y&u" . (3.45)

Comparing this with the tree amplitude

A (XQ+'~XQ 'y ),„„=i —(a1+6a1eQ )u (k„a—E„k)y~u"
3

leads to

(3.46)

8 3 2
m

(3.47)

for charged pion loops. The general results including all charged meson loops are [see Appendix B for a derivation of
the SU(3) group factors]

Pl
6a1(6(c))=g —g1(; +g2(;

(3.48)
3e I

5a2(7(c))=g g,g,64+2 1l' f 11 jj jj

with

gj = —
—,
'

[ ( [A, , 6]A,"),, + (i~j)],
P;,

= —
—,
' [([A.",6]A, ),, +{i~j)},

(i &j),

(3.49)

g, = — —I ([&",6]k");;+[A,",6],,Ab, —(i~j)] .
2&2

Working out the above general expressions we obtain
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(y+1(e) y+1 .6( )) 5 (
—1/2(e) ~ —1/2y. 6( )) g2+g23e 3

64m 8

m m&+
fo fo

e 3 25a, (Q1& ' Q&y;6(c))=5at(X&"~X&y;6(c))= —g1+g2
32m 8

mg

f2 (3.50)

y; 6(c))=5121(=II *
=II y', 6(c))= —g1+g

3e 3

32m 8

m

f2

r

m 1m+

m~ mg(-~1/2(e) -1/2 7(c))— — +
32 1T fQ fQ

(3.51)

(-~ —1/2(e) —1/2 .7(c))—g g ~' 128

m„ m&+
fo fo

Note that 5a2 for the decay =& '/ '"'~=&' is defined
in Eqs. (3.31) and (3.32) and it does not contain the factor
of 1/(6;; —

6JJ ). In the SU(3) limit, all the above results
(3.38)—(3.51) do satisfy the SU(3) relations given by (3.29).

As in the meson case, the seagull diagrams depicted in
Figs. 6(d), 6(e), 7(d), and 7(e) do not contribute. The ar-
guments are similar to those given in Sec. II and will not
be repeated here. Hence

5a, (6(d)+6(e)) =5a2(7(d)+7(e)) =0 . (3.52)

Finally, we note that the vertices SSm' and ST~' in the
Lagrangian (3.4} may suggest that there is a possibility of
mixing between the sextet and antitriplet baryons
through loop effects. However, this is not the case. An
explicit calculation shows that such loop diagrams van-
ish. The only possible mixing between S and T requires
an e„, & tensor, but there are not enough variables to con-
struct a Lorentz invariant.

In summary, taking into account the mass differences
among the Goldstone bosons, we found that SU(3) rela-
tions are generally broken in the strong and radiative de-
cays of heavy hadrons. The leading chiral-loop correc-
tions have nonanalytic dependence on m of the form

mq or m lnm

lations (2.41} and (3.29) for radiative decays. There are
nonanalytic m' and m lnm chiral corrections which
are responsible for SU(3) violation in chiral perturbation
theory. In paper II, the relevant couplings are obtained
from the quark model and they are related to the constit-
uent quark masses. Hence SU(3) violation is already in-
corporated there. In this section, a comparison between
the two diff'erent approaches for SU(3) violation is made.

We begin with the D' +De deca—y. When chiral-loop
corrections are included, we recall from Sec. II that its
decay amplitude is given by

ND'~Der+) = D

f11
(M1'"P )D

g MDM ~r(D' D~o) = ' q' .
24m f (M»» }2

(4.2)

A(D,'~D n')= QMDM „(iF};(e' q), (4.1)
fo

where g,s has been defined in Eq. (2.28) and q is the pion
momentum. The decay widths implied by the amplitude
(4.1) are

IV. APPLICATIONS

In Secs. II and III we have presented a general analysis
of SU(3)-breaking eff'ects in chiral perturbation theory for
the strong and Ml radiative decays of heavy mesons and
heavy baryons. In this section we will apply the results
obtained so far to some selected decay modes of charmed
mesons and baryons. Specifically, we choose the radia-
tive decays D*~Dy, X,~A, y, =,'~=,y, =',*~=,'y,
X,*~X,y, Q,*~A,y and the strong decays D*~D~,
X,~A, ~ as examples of applications. The decay rates of
many of these modes have been explicitly calculated in
papers I and II. Special attention is paid to the SU(3) re-

Note that D,*+~D,+m is prohibited by isospin symme-
try and D* ~D+m. is kinematically forbidden. The
unrenormalized masses M~ and M, appearing in (2.1),
(2.2), (4.1), and (4.2) can be inferred from the experimen-
tal measurement of heavy meson mass differences. First,

schiral logarithmic corrections to the decay D*+~D m. + are
also calculated in Ref. [19] with the up and down quark masses
being neglected. We agree with the results of Ref. [19) if the
same approximation is made.
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and

2 3 3 3

g m m~ 1 m
ulmd 3 2+2 2

+—
232m f20 f0~ 3 fo
(4.3a)

5 5

= —e&m, —
32~

3 3
m& 4 m„

4 +-
fo 3 fo,

(4.3b)

Equation (4.3) implies the mass difference

M phys M phys M phys M phys
D D D D

5 5

the SU(3)-invariant a3 term in Eq. (2. 18) can be absorbed
into a redefinition of M and M +. Then (2.16) and (2.18)

yield

which has recently received a lot of attention [24]. Obvi-
ously, AD vanishes in either the heavy quark or chiral
limit. Beyond these limits, hD received two types of con-
tributions. The first type is from the tree contribution in-
duced by the 1/m, corrections to the relation o. , = —e2.
The second type comes from the self-energy one-loop dia-
grams with an insertion of lowest-order mass splitting
bM P(v)P"(U) and the ones without the above insertion
but taking into account the splitting of g and f /2. This
was discussed in detail in our earlier paper [13] on heavy
quark symmetry-breaking effects.

For the radiative decays D*~Dy, we see from Eq.
(2.51) that the leading chiral corrections are dominated
by Fig. 2(e) and the wave-function and vertex renormal-
izations. Before making concrete estimates on the pa-
rameter p; [cf. Eq. (2.37)], recall that in paper II we have
considered the constituent quark model and incorporated
SU(3) breaking into the light quark charge matrix

= —a&(m, —md )
1 M„0~0= 0
3 Md

(4.7)

32+ fo2 f2o fo2

Note that formula (4.4) is different from that of Ref. [20]
by a factor of —', for the second term on the RHS. The pa-
rameter a& can be determined from the measured value
M "P' —M ~+ =99.5+0.6 MeV [21], the current quark

5

masses m, =199 MeV, md =9.9 MeV [22], and the value
of g chosen. The unrenormalized masses MD and M +

can then be solved from (4.3).'

We digress here to comment on the quantity

—(Mphys Mphys ) (Mphgs Mphgs )
5 5

0 0
1 M„
3 M,

QM M hysMphys 2 1

M 3 m
q,- C

(4.8)

To avoid any confusion with the current quark mass m,
we have used capital letters to denote the constituent
quark mass in (4.7). Therefore the "effective" parameters
(P,s), are identical to 1/M„, 1/Md, and 1/M„respec-
tively, for D;*~D, +y (i =1,2, 3), and hence in the
quark model

(Mphys Mphgs ) (Mphys Mphgs )D D D D
5 5

with the experimental value [21,23]

(4.5) Using the constituent quark masses from the Particle
Data Group [21],"
M„=338 MeV, Md =322 MeV, M, =510 MeV, (4.9)

bD =(0.9+1.9) MeV, we get

pQ]
=4.62e, pQ2

= —1.20e, pQ3
= —0.49e, (4.10)

In the presence of 1/m& corrections, the heavy quark symme-

try relations a, = —a, and g =f /2 are no longer valid and Eq.
(4.4) is modified to

for m, =1.6 GeV. The effective coupling p; enters the ra-
diative decay rate via

M "P —M "g' = —a, ( m, —
md ) I'(D;*~D, +y) = „k',pi

12m.(MP",y'
)

(4.11)

m'. m~3 m'„—3 +2 +
fo fo fo

M'"O' —M'""' =a (m —m )

12S

m~ m~ m,',
X —3

2
+2

2
+

fo fo fo
' At the preferred value g =0.52 as shown below, we obtain

MD =1971 MeV and M ~ =2112 MeV.

with k being the photon momentum in the c.m. frame.
Recall that the quark model predictions agree very

well with the two existing data on the D* decays [10]:
the upper limit on the total width of D*+ [12] and the
branching ratio measurements by CLEO II [11]. It
would be very important to see how well chiral perturba-
tion theory does in this regard. There are four unknown

'~These values of the constituent quark masses are given on p.

VIII.59 of Ref. [21].
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TABLE I. Predicted decay rates (in units of keV) and branching ratios (in parentheses) of strong and electromagnetic decays of
charmed mesons for various values of g with P=2.6 GeV ' and m, =1.6 GeV. For comparison, the quark model predictions [10]
and the experimental branching ratios measured by CLEO II [11]are given in the last two columns. The numbers under "quark

model" differ somewhat from those given in Ref. [10]because of the more precise pion masses used here.

Reaction

D++ DO +

D4+ D+ 0

D$+ D+
D*+~total
D+0 Do 0

D* ~total

g =0.5

78.8 (68%)
35.7 (31%)

1.9 (1.7%)
116.4
54.1 (61%)
34.0 (39%)
88.1

4.6

g =0.52

87.9 (68%%uo)

39.8 (31%)
2.0 (1.5%)

129.7
60.3 (65%)
33.0 (35%)
93.3
4.5

g =0.6

133.4 (68%)
60.5 (31%)
2.1 (1.1%)

196.0
91.5 (76%)
28.9 (24%)

120.4
3.7

g =0.75

276.0 (68%)
125.0 (31%)

2.5 (0.6%%uo)

403.5
189.3 (90%)
19.9 (10%)

209.2
2.1

Quark model

102 (68%)
46 (31%)

2 (1.3%)
150
70 (67%)
34 (33%)

104
0.3

CLEO II

(68.1+1.0+ 1.3)%
(3o.8+0.4+0.8)%
(1.1+1.4+ l.6)%

(63.6+2.3+3.3)%
(36.4+2.3+3.3)%%uo

TABLE II. Same as Table I except for P=3.0 GeV

Reaction

D*+~D m+

D*+~D+m.

D *+~total
D*' D'~'

D* ~total

g =0.5

78.8 (67%)
35.7 (30%)
3.4 (3%)

117.9
54.1 (53%)
47.5 (47%)

101.6
8.3

g =0.52

87.9 (67%)
39.8 (30%)
3.4 (3%%uo)

131.1
60.3 (56%)
46.7 (44%)

107.0
8.2

g =0.6

133.4 (67%%uo)

60.5 (31%)
3.8 (2%)

197.7
91.5 (67%)
42.6 (33%)

134.1
7.5

g =0.75

276.0 (68%)
125.0 (31%%uo)

4.7 (1%)
405.7
189.3 (85%)
33.3 (15%%uo)

222.6
6.0

Quark model

102 (68%%uo)

46 (31%)
2 (1.3%)

150
70 (67%)
34 (33%)

104
0.3

CLEO II

(68.1+1.0+ 1.3)%%uo

(30.8+0.4+0.8)%
(1.1+1.4+1.6)%%uo

(63.6+2.3+3.3 )%%uo

(36.4+2.3+3.3 )%%uo

p&=4. 59e, p2= —1.14e, p3= —1.79e, (4.12)

which should be compared with the quark model predic-
tion (4.10). Of course, there is no reason to expect that

parameters in the theory: g, P, m„and A, and available

data do not permit an unambiguous determination of
these parameters. Furthermore, other corrections such
as I/m& effects may be of comparable importance as the
chiral-loop corrections. Unfortunately, these I /m&
corrections are difficult to estimate [13]. Consequently,
we will take a modest approach. We will set m, =1.6
GeV and A=A&-1 GeV, the chiral-symmetry-breaking
scale. Then, for P=2.6 GeV ' and 3.0 GeV ', we let g
take several different values at g =0.5, 0.52, 0.60, and
0.75. The results are presented in Tables I and II.' We
see that for the total width of D*+ to be of order 130 keV
or less we must have g 0.52. On the other hand, the
branching ratios for the D' measured by CLEO II ap-
pear to favor g =0.52 and p=2. 6 GeV '. For this par-
ticular choice of g and p, the predictions are quite close
to the quark model results except for the radiative decay
f D,*+. The decay rate for D,*+ D,+y is larger by a

order of magnitude in chiral perturbation theory than in
the quark model. Specifically, we find from Eq. (2.51)
that

these two different approaches for SU(3) violation should
agree with each other exactly. Loosely speaking, SU(3)
violation is treated nonperturbatively in the nonrelativis-
tic quark model, while it is calculated in terms of a per-
turbative expansion in chiral efFective Lagrangian theory.
Nevertheless, the fact that the predicted decay rates and
branching ratios for D*+ and D* agree so well with the
quark model and the data suggests a consistency between
"model and theory. " It will be extremely interesting to
measure the rate for D,*+~D,+y to see which predic-
tion, if any, is closer to the truth. It is obvious from
Table I that a smaller total width of the D'+ [12] can be
easily accommodated without upsetting the agreement of
the predicted branching ratios for both D*+ and D*
with the CLEO II data [11].

At this point it is worthwhile to compare our favored
choice of g =0.52 and P=2.6 GeV ' in chiral perturba-
tion theory with the corresponding parameters g&M and

p&M in the quark model. Recall that g&M =0.75 [3] and

P&M=1/M„=2. 96 GeV ' [10]. Since g&M is nonpertur-
bative in nature while g is an unrenormalized parameter
in the chiral Lagrangian approach, they are a priori not
the same. To see their relation, we write down the
D ~D~ amplitude in the quark model:

Strong decay widths are determined from (2.28) and (4.2),
while radiative decay rates are calculated from (2.51) and (4.11).

(4.13)

For this to be in accordance with (4.1) predicted by chiral
perturbation theory we are led to
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1/2
Z f MDM ~

f (4.14)
1 0

Since Z2 )Z„f )f0, MD )Mg""', and M )M~"+"', it

is evident that g &g&M. By the same token, the relation
between p and pQM can be understood along the same
line.

We next shift our attention to the heavy baryon sector.
For the strong decay of heavy baryons, we shall only con-
sider the decay X,~A, v which is experimentally seen,
although its rate has not been measured. (It is likely that
no other B6 ~B3m or B6 ~B6~ strong decays are
kinematically allowed. ) The decay rate for X,~A, nis.
given by' [3]

(g )2 (Mx +MA ) [(Mx —M~ )
—M12eff cccc

162r f2 M~
(4.15)

where [see Eq. (3.25)]

(4.16)

which includes chiral-loop efects. Before examining the SU(3)-breaking eS'ects induced by chiral loops in the elec-
tromagnetic decays of heavy baryons, it is instructive to examine the tree amplitudes of (3.29) to see what SU(3) viola-
tions are expected from the constituent quark model. From Eqs. (3.28) and (4.7), we find the quark model predictions

( )QM( y+ p+ )
QM

2eff cc2
d

=1.02a2 =0.62e GeV

M
(a )Q (= ~= y)=aQ —+—2 1 u

2eff c c 2
S

»

=0.88a 2
=0.53e GeV (4.17)

( )QM( 0 Oy) QM1 M„
2eff c c 3 2

S

M„
M

= —0. 13a = —0.078e GeV
d

and

M„
(a& —8a', ),ff (X,* X,y)=a, —8a', =1.05a, —8a', = —1.45e GeV

d

M„
(a, —8a', )Qff (Q,*~Q,y) =aQ —8a', =0.66aQ —8a', = —1.07e GeV

S

M„ M„
(a 8a» )QM(-»e0 -»Oy) aQM

i eff -c -c
d 5

—ga ]
=0.g6a~] —ga ]

= —1.2{je GeV (4.18)

M + + M(a, +16a', ),ff (:-,"+-+=',+y)=3a, ——— +16a', =1.34a, +16a', = —0.49e GeV
5

M„
(a, +16a', )Qff (X;+—+X,+y)=3a, ——— +16a', =0.95a, +16a', = —0. 104e GeV

where we have made use of the quark model predictions
[10]

lations of (3.29). It is thus clear that a measurement of
the decay rates of

QM e g QM
1 3»-QM» 2 ~6 ~QM» (4.19} (i) X,* X,y, "',* =,' y, Q; Q, y,

(ii}:-,' ~:-,y
with pQM=1/M„. The parameter a', is predicted by
heavy quark symmetry to be [10]

e

12m,
{4.20)

From the lowest-order Lagrangian, we have the SU(3) re-

relative to =,'+~:-+y or r+ A+y,

~3Note that fo is replaced by f in Ref. [3], since there we

work in the tree approximation only.
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e e
a, = P, a—,=— P.

3
' ' 2v'6

(4.21)

The remaining two parameters g and P are finally fixed
with the values favored by the available D * decay data:

g =0.52, P=0.26 GeV (4.22)

The relevant wave-function and vertex renormalization
constants Z2, Z'„and Z", for various processes are given

(iii):-',*+~:-,'+y, X;+~X, y

will provide a nice test of SU(3}breaking.
We are now ready to compare the quark model predic-

tions with those from chiral perturbation theory using
(3.24), (3.25) and (3.30) for heavy baryon's decays. There
are six unknown parameters in the theory: A, m„g&, g2,
a, , and a2. Unfortunately, there do not exist any experi-
mental data for the heavy baryons to guide the choice of
these parameters. It is clearly premature to make an all-
out e8ort to study how the predictions vary with the pa-
rameters. To gain a general idea of how chiral perturba-
tion theory is compared with the quark model, we mini-
mize the number of parameters by setting A = 1 GeV and

m, =1.6 GeV as before, and by making use of the quark
model relations [10]

by (3.15), (3.22), (3.23), and (3.36)—(3.42). Numerically,

Zz(A, )=1.40, Zz(:-, )=1.83,

Zz (X, )= 1.12, Zz (:-,' ) = 1.14, Zz ( Q, ) = l. 19
(4.23a}

and

Z')(X, ~ A, n , 5("a))=1.07 .

From (4.15), (4.16), and (4.23) we find that

I'(X,++~A,+@+)=1.89 MeV

(4.23b)

(4.24)

Z)(X'++ ~X++y }=0.77,

Zi(X,'+~X,+y) =0.62,

Z)(X,' ~X,y)=0.92,

Z, (=-,"' =-,'y) =1.00,

Z)(:",'* ~:-', y)=0.78,

Z, (Q,'~Q, y) =0.63,
Z", (X;+ A,+y}=0.88,
Z", (:-,'+'~:-,+y ) =0.87,

(4.25)

and

in the chiral Lagrangian approach as compared with 2.45
MeV in the quark model [3].

Vertex corrections to radiative decays are

~al(Xg ~Xg y'6(c))=&a](=g * ~:-' y'6(c))=0.24e GeV

=0.

~a~(Xg "'~Xg'y;6(c))=5a, (:-g "'~=g y;6(c))=0.11e GeV

&az(Xg "~Agy;7(c)) = 0 08e —GeV.

&a (=g ':-g y;7(c))= —0. 16e GeV

&az(=g "'~=g ' y;7(a)+7(b)+7(c)) =0.15az —0.03e GeV

We get from Eqs. (3.30},(4.23a), and (4.25) and (4.26) that

(a, —8a', ),s(X; ~X,y)=1.08a, —8a', = —1.36e GeV

(a
&

—8a I ),JQ;~Q, y }= 1.46a
&

—8a I
= —1.68e GeV

(a~ 8a~ ),s(:",' ~:-,' y)=1.19a, —8a', = —1 45e GeV.

and

(4.26)

(4.27a)

(a, + 16a ', ),s(:-,"+~:-,'+ y ) = 1.02a, + 16a ', = —0.05e GeV

(a~+16a', ),s(X,*+~X,+y)=1.35a, +16a', = —0.35e GeV
(4.27b)

A comparison between (4.27) and (4.18) indicates that the
two approaches give similar results for some processes
such as X,* ~X,y and:-,'* ~:-,' y, while they give
dramatically different results for others such as
X,*+~X,+y and:-,'*+~:-,'+y. For the decay amplitude

A (B6 ~B6+y )=gzu (k„d e„k )y5u", — (4.28)

with gz being given by Eq. (3.29}, the corresponding de-
cay width is [10]



5876 CHENG, CHEUNG, LIN, LIN, YAN, AND YU

m
I (B6 ~B6+y)= zlzz 1 — (3m; +mf ),

48m mz

(4.29)

where m, (mf ) is the mass of the initial (final) baryon in

the decay. This formula is presented here for complete-
ness, and we will not give any predictions for the decay
rates of spin- —,

' heavy baryons as their masses are still un-

known.
As for the electromagnetic decays B6~B3+y, Eqs.

(3.30), (3.29), and (4.23)—(4.26) lead to

(az),s(X,+~A,+y) =1.27az =0.67e GeV

(a z ),s(:-,'+ ~:",+y ) = l.36a z
=0.72e GeV

(az),s(:-,' ~:-,y ) =0. 10az =0.05e GeV

(4.30)

I'(B6~Bz+y) = —z),k'Z 3 (4.31)

for the radiative decay amplitude

Note that =,' ~=,y receives two contributions, one from
Fig. 7(a) and the other from Fig. 7(c), and there is a can-
cellation between the two. The sign of this amplitude in
(4.30) is actually opposite to that in the quark model [cf.
Eq. (4.17)]. With the formula [10]

model [see (4.10), (4.17), and (4.18)]. It is thus extremely
important to measure the decay rates of the above-
mentioned modes to test the underlying mechanism of
SU(3) violation.

%e should reiterate the tentative nature of the discus-
sion in this section. In the heavy meson case, the data for
D' are useful but not decisive in selecting the values of
the parameters. Other important effects such as 1/m&
corrections have not been incorporated. The procedure
employed here is by no means a best fit. The apparent
agreement between the quark model and chiral perturba-
tion theory is pleasing, but it should be taken with cau-
tion. In the heavy baryon sector, the situation is even
more diScult. First of all, we do not have any experi-
mental data. Second, there are many more parameters
here than in the heavy meson sector. The choice of pa-
rameters based on (4.19)-(4.21) is necessarily ad hoc.
The only virtue is that it provides a rule to fix the param-
eters. It mill not be surprising if nature picks a very
different choice from the present one. Third, the renor-
malization effects are very significant, as evident from
(4.23) and (4.24). We may question the validity of chiral
perturbation expansion. ' Fourth, large cancellations
occur sometimes. For all these reasons, the resu1ts ob-
tained in this section should not be considered final.
Rather, they make it clear that more experimental and
theoretical works are needed.

a (B, B, +7 )=q, t--, ~„,k e"u, , (4.32)

the decay rates of various decays are then predicted to
be14

I (X,+~A,+y)=112 keV,

I (:-,'+ ~:-,y) =29 keV,

I (:-', ~:-,y)=0. 15 keV,

(4.33)

y ~
~ (D,"-D,') ) ~'& y ~

~ (D*'-D 'y ) ~',
poj pal

y ~A(Q; n, y)~ &y ~A(X,* X,y)~
pol pol

(4.34)
pol

y ~~(X,*+-X,+1)~'»y ~~(:-',*+-=-;+) )~',
pol pol

which are opposite to what expected from the quark

which should be compared with the corresponding quark
model results: 93, 16, and 0.3 keV.

The predicted SU(3)-breaking patterns in chiral pertur-
bation theory for radiative decays of charmed mesons
and baryons are [see (4.12) and (4.27)]

V. CONCLUSIONS

As we have emphasized before, the lowest-order low-
energy dynamics of heavy mesons and heavy baryons is
completely determined by the heavy quark symmetry and
chiral symmetry, supplemented by the quark model. In
order to gain a different perspective of our previous
quark model calculations, we have investigated in the
present paper chiral symmetry violation induced by the
light current quark masses. Chiral corrections to the
strong and electromagnetic decays of heavy hadrons are
computed at the one-loop order. The leading chiral-loop
effects are nonanalytic in the forms of m ' and m lnm .
%'e have also confirmed in chiral perturbation theory at
the one-loop level the exact result in QCD that the heavy
quark contributions to the M1 transitions of heavy had-
rons are not modified by light quark dynamics [see (2.47),
(3.33b), and (3.35)]. Moreover, all consequences of heavy
quark symmetry are not affected by chiral corrections.
We then applied our results to the radiative and strong
decays of charmed mesons and charmed baryons.

i4A11 the charmed baron masses are taken from the Particle
Data Group [21]. For the mass of:-,', we employ the hyperfine
mass splitting m, —m = = 100 MeV derived in Ref. [25].

C

'5The similar problem in the meson sector is less severe

except for the D,* decay. For g =0.52, we have

Z~ (D *
) =Z2 (D *+

) = 1.18, Z2 {D,*+
) = 1.32, and all the Z, 's

are very close to unity for the strong decays, and

Z 1 (D
* ~D y ) =0.74, Z, (D *+~D +

y ) =0.87, Z, (D,.*+

~D,+y ) =0.57 for radiative decays.
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We found in the meson sector that for a particular set
of the parameters g and P inferred from the measured
branching ratios of the D* and D*+ and the upper limit
on the D*+ rate, the predictions of the strong and elec-
tromagnetic decays of the D* mesons in the chiral La-
grangian approach are not very different from the quark
model results except for the radiative decay of the D,*+.
Using the quark model to relate the four unknown pa-
rameters in the baryon sector to g and P, we have com-
puted the strong decay X,~A, m. and the radiative de-
cays B6 ~B6+y and B6~B3+y. We found that the
chiral Lagrangian and quark model approaches in gen-
eral give similar results for many processes, whereas they
yield drastically different predictions for others such as
X,*+~X,+y and:-,"+~:"',+y. Moreover, the predicted
SU(3}-breaking patterns as shown in (4.34) are opposite to
the quark model expectations. It is thus of great impor-
tance to measure the decay modes listed in (4.34) to test
the underlying mechanism of SU(3) violation.

A more meaningful and improved comparison between
theory and experiment has to wait until more data on
heavy hadrons become available. In the meantime, it is
important to have a better theoretical understanding of
the corrections due to the 1/m& effects. We believe that
both SU(3) symmetry breaking and the lim& eFects
should be considered simultaneously. We will return to
this effort sometime in the future.
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APPENDIX A

In this appendix we list some of the useful Feynman integrals which are relevant to this paper:

~
~

A'd "I 1„ m A=iv„ ln
(2m. )" (I —m +is)(u I+is) "

16m m

~
~

~
A'd "I 1„1 . m

i (g—„„—v„v„),
(2m. )" (I —m +i@) (v I+is)

f A'd "1 1„1 m A
2 2

" 2= —i(g„„—2u u ) ln
(2n. }" (I —m +i@)(v I+it) "" " "

16m. m

A'd "I I„I,
(2m)" (I m+i—e)[u (I+k)+5m+is)]

m 1 A
i —(g„, v„v„)+—i ln [(g„,—2v„v, )(v %+5m)m —2(g„„—4u„u„)(v k )5m j24~ " " '

16m m

(A 1)

(A2)

(A3)

+i (g„,—3u„u„)(u.k )5m,

A'd "I I„I,I,
(with k =0 and u k =0)

(2m)" [(I+k) —m +ie](l m+ie—)(v I+is)

(A4)

. m 1=i [(g&, u„u, )k +c—yclic in p, , v, a]+ k„k,k32m. 2m

2 2. m A

3277 m

2g„+ k„k v +cyclic in p, v, a —2v„v v
3m

(AS)

where the common factor

1 1 1 1
yE+ —ln4m-,

E 2 2
(A6)

with @=4—n, has been lumped into the logarithmic term
ln(A /m ) as A is an arbitrary renormalization scale
occurring in the dimensional regularization approach.
Note that only the leading contributions linear in v k are
retained in (A4). Our results for the integrals (A3) and
(A4) are in agreement with Ref. [17]. Equation (A5) is

I ( )
A'd "I
(2m. )" (I —m +iE) (v I+i e)

(A7)

derived by assuming v-k=0, where k is the momentum
of the outgoing photon which couples to heavy hadrons.
This is a legitimate assumption as long as both incoming
and outgoing hadrons are on shell. To evaluate above in-
tegrals, we Srst apply tensor decomposition as well as
momentum expansions to reduce them into the proto-
types
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and

A 'd'l 1I&a=
(2m)" (I —m +ie) (u.I+is) (A8)

Now the l integration is standard, which gives

iver( —1) A'
I, a=-

(2vr )"

We observe that all the external momenta have disap-
peared from the denominator due to the expansion

2l-k+k'
(I +k)' —m I —m 1'—m

+ 0 ~ ~ (A9)

This expansion is a valid procedure since the momentum
k is very soft in the current context. Similar types of ex-
pansions can be applied to Eq. (A4) for bringing up the
residual momentum k to the numerator.

To carry out integrals I, and I2, the usual Feynman
parametrization

1 I (m +n) ( x '(1 —x)" 'dx

a b" r(m)I (n) 0 [ax+b(1 —x)]
(A 10)

does not allow one to shift the loop momentum l without
destroying the structure of the integral. Hence it is con-
venient to combine denominators using the identity

1 I (m +n) 2"A," 'dA,

a b" &(m)&(n) 0 (a +2kb)
(A 1 1)

which is obtained from (A10) by changing the variable
x =1/(1+2K, ). Sometimes the integration can even be
done without combining denominators. We consider the
integral I, as an example to illustrate the importance of
the i E terms presented in the denominator. We write

((/2 I (a —(n —1)/2)
( p}f(& ((/2).

I (a)

(A17)

It is easy to see that I, (a) is finite for any integer a. Tak-
ing n =4 we have

I (a ——')i( —1) n 2
(

Q)3/p

1(a) (A18)

d "l
I2(1)= 8i. dA, A'

0 (2m}" [I'—(m +A, )]3
(A19)

It is obvious that no infinities arise in the momentum in-
tegration. Carrying out the momentum integration, we
obtain

To evaluate Iz(a), it is more convenient to apply the
identity (All) since the principal part of the integral no
longer cancels. By the power-counting argument, one ex-
pects I2(1) to be logarithmically divergent. However, as
we will show momentarily, such ultraviolet divergence
will appear in the A, integration rather than in the
momentum one. Therefore some care is needed in order
to consistently treat the infinities. To illustrate this, let us
first apply Eq. (All) to combine denominators of Iz(1).
This procedure gives

A 'd "I 1

(2m)" (I —m +i@)'(u I+ie)
I~(1}= 2imA—'f 1. 1(.

~+ rn
(A20)

1

U l+EE U'l +EE'

1 p
4'd l 1

(2')" (I —m +i@)'

(A12)

where we have changed the variable such that K=A, .
Apparently, the ultraviolet divergence now appears in the
~ integration. To consistently implement the dimensional
regularization, let us perform an analytic continuation on
I2(1) with the aid of

The second line follows from the fact that I, is invariant
under the substitution l ~—l. Since

V'l +EE
1=P —i~5(u I)

v l
(A13)

dn —jl 1I, (a)= —i~( —1) A'
(2rr)" (I +m —ie)

(A15)

where I is a vector in (n —1)-dimensional space. Per-
forming the angular integration gives

the integral becomes

A'd "I 1I, (a)=

iver

f —5(u. l) . (A14)
(2m. )" (I —m +is)

Since I is a scalar integral, we can easily evaluate it by go-
ing to the rest frame of v. In the rest frame of v,
u"=(1,0), we find

f1"I (I„f(I) )= fd "I I„ f (1)+n f d "If (I),

(A21)

2 2

I~(1)= — I2{2) .
4—n

(A22)

Since Iz(2) is convergent, the infinity in Iz(1) manifests
itself as a simple pole at n =4. To determine I2(1) in-

cluding its finite parts, one has to evaluate I2(2) to
O(4 —n). Applying Eq. (A11) gives

where f is an arbitrary function of 1. The LHS of Eq.
(A21) can be set to zero since the integrand is a total
derivative. Now Iz(1) can be defined in terms of Iz(2)
through Eq. (A21):

1 )aAE 2~(n —()/2 ltl 2

I,(a)=- dl
(2n)" 1 ((n —1)/2) (I'+m ')~

(A16)

W'd "I
I~(2) = 24K, d A.

0 (2m. )" [1 —(m +A. )]

Carrying out both integrations we arrive at

(A23)
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2l e A
I2(2)= 1 ——(yE —inn. —2 ln2)+ —ln

16m. m m

(A24)
2( m 2)2 —a

I,(a) =
16m. m

(A26)

To compute any I2(a) with a )2, one may repeatedly ap-
ply Eq. (A14). The general result is given by

By Eq. (A21) we obtain

4g 1 1 1 A'I (1)=— ———(yz —inn —21n2)+ —ln
2

(A25}

with a~2.
Finally, the integral (A5) can also be carried out by

combining the first two denominators via the convention-
al Feynman parametrization (A10), followed by another
combination with the third denominator (u I +is) using
the identity (Al 1). As a consequence,

1 co 1 1

[(I+k)2—m +if](l —m +iE)(u I+is)» [(I+vA. +kx) +x(1—x)k —
A,

—m ]
2 2 2 2

=4 dA, dx
2 2 2 2 3

After the momentum integration, the integration over x becomes trivial.

(A27)

APPENDIX B

In this appendix we explain the procedures used in Sec. III to obtain the results for strong and electromagnetic ver-
tices, especially how the SU(3) group factors are defined and arrived at. We will consider two examples: one for a
strong vertex and one for an electromagnetic vertex. For the strong vertex, we will take Fig. 4(b) with sextet baryons as
the intermediate states. The corresponding tree amplitude can be written as

A (S;;~St'I+n') =i e„—p,S"v qp5'"(S„, ltr(BtA, '8) lS,, ),I 4 papv kl (Bl)

where 8 is the sextet baryon matrix as defined in Eq. (3.2); lS;, ) and lSki ) are, respectively, the SU(3) flavor wave func-
tions for the initial and final baryons, such that

B.„ls,, )= ' (5., 5„,.+5.,5„,)lo) (i+J},VIII lj 2
I'll aJ

B.„IS„.) =5., 5„,I» .

Hence, for the specific case of S; ~S; +m. , we have

(B2)

rj g f papv a

The loop contribution from Fig. 4(a) with sextet intermediate states can be written in the form

(B3)

As(S,"~Sf(+n')=g 'II"M„,(b)S"(Sk( lG(b)lS~) ),
b

where M„„(b)is the contribution from the loop excluding the SU(3) matrices:
3

d I 2 „p & ~ ~i( —g +v v ) i( gPT+v—Pvr)
M„„(b)= i-

4f, (2~)4 aa2.a ayPSq pvg' U' I —m b
2 2 7

(B4)

(B5)

p 1 3M„(b)= 2i~„p„v—
q

—g, e, ,
0

(B6)

where e b is defined in (2.22). The operator G(b) is a

product of traces involving SU(3) matrices and the sextet
baryon matrix 8:

where we have neglected the residual momentum k of the
initial baryon and the external pion momentum q in the
propagators since we are only interested in the leading-
order contribution. Using the result (A3) for the integral
we obtain

3

G(b)=tr(8 A, 8)tr(8 A, 'B)tr(8 A,"8) . (B7)

Thus G (b} can be rewritten as

G (b) & trIBtgbgbBgaT+BtgbgaBgbT
4

+8 tgbB (gagb) T+8 tgbgagbB ] (B9)

Note that the adjacent intermediate 8's and 8 's in (B7)
combine in pairs to form sextet "propagators" in the
SU(3) Qavor space: namely,

(,Bk(8 „)= ,'(5k„5( +5k—5(„).
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where the superscript T signifies the transposition of a
matrix. Again, for the case of Sj~Sj+w the Aavor
matrix element can be easily worked out to be

&S„IG(b)ls„)=g,, (810)

Adding up to the tree amplitude (83), we find

e,
gf pagv n JJ

X 1 ——g, & (812)

The quantity in the square brackets of (812) is the contri-
bution to Z, ' due to the intermediate sextet baryons of
Fig. 4(a). It agrees with the term proportional to gl of
Eq. (3.16).

The contribution to Z
&

due to the antitriplet baryon in-

termediate states of Fig. 4(a) can be computed similarly.
The SU(3) fiavor "propagator" for an antitriplet is

where g," is given by (3.17). When (83) and (810) are
combined we obtain

As (S,'~s,l'+m')
'3

2—i e„&„S"u q~S" —g, g e bg,, (811)
. 1 — . 3

0 b (814)a„r D„r=a—„r+ieA„[a,r] .

The electromagnetic vertex for m'~~ +y is given by

A (vr'~n +y ) = —ie (2q —k) cI —
—,'tr(A, '[a, l(b]) j,

(815)

where q and k are the momentum of m' and the photon,
respectively. The quantity in the square brackets is equal
to 1 when the Goldstone boson has a unit positive charge.
It will be part of the group factor defined below. Figure
6(c) with intermediate sextet baryons gives a contribution
to S~S+y,

As(SJ ~sg(+y)=g Sl'M„', (b)'M'&Skl ~G'(b) S; ),
b

a result of how the matrices for a sextet and an antitriplet
are defined [see (3.1) and (3.2)]. The minus sign in (813)
accounts for the antisymmetry of the antitriplet baryon
matrix T (or B3 ).

We now give an example of the calculation for a loop
diagram in which a photon couples to Goldstone bosons.
Consider the Feynman diagram of Fig. 6(c) with inter-
mediate sextet baryons. The interactions of the Gold-
stone bosons with the electromagnetic vector potential
A„are introduced into Eq. (2.20) by the substitution

kl mn ~ 5kn 51m 5km 5ln (813) (816)

The difference in normalization between (813) and (Bg) is in a notation similar to (84). We find

M„',(b)= i —
( ie) f —

e„&k,(1+k) u'( —2l k) ce „s—( —l )u
4fo (2n) " ' ' (I+@) —m b i —m „

i( —
g ~+u ui')

v l

(817)

3g)
M„',, (b)=epv

m
i(k„c —k,,c„) .

16~
(818)

The group factor operator G'(b) is given by

G'(b) =g tr(B k B)tr(BtA.'B)
I
—

—,'tr(A, '[Q, A.b]) j .

(819)
Making use of the sextet propagator (88) and the identity

Note that the Goldstone bosons m' and m on both sides
of the electromagnetic vertex must have the same mass,
which we denote as m b The inte.grals needed in (817)
are given in Appendix A. After neglecting a contribution
to the convention current proportional to v E, we get the
gauge-invariant result

&S; G'(b)~s, , ) = —
—,'ill(, [G,A, ]),, +A, ,";[6,A, ],, (1 —5;, )

+k,, [Q, Ab], , +(i~j ) j . (822)

As a consequence of the fact that 6 is diagonal, we have

[Q, A, ],=0,
A, ;, [Q, A."]J;+(i~j)=0 .

Finally,

(823a)

(823b)

As(sl'~S;". +y)=i —,
''M (Q, , +6")(k c„—k„c )'M"

&s,, IG (b)ls„) =g,, (824)

where g," is defined by (3.49). Combining (818) and (824)
we obtain

g A,;kA, '„=2(5„5„——,'5,k5 „),
Q

we obtain

G'(b)= —
—,'tr[B A,"[6,A, ]B+B k B[6,A, ] j

For the case S,- ~S, +y, we find

(B20)

(821)

e "3
2

— 1

32~ „ f~ 4 "6 +6

The quantity in the square brackets gives rise to the term
proportional to g, in (3.48).
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