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Angular distribution functions for the decay of charmonium states directly produced
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F. L. Ridener, Jr.
Penn State University at New Kensington, New Kensington, Pennsylvania 15068

K. J. Sebastian
Uniuersity ofMassachusetts, Lowell, Lowell, Massachusetts 01854

(Received 29 September 1993)

We calculate the combined angular distribution functions in the cascade process
pp~yj~l(y~(e e )y (J=0, 1,2) in terms of the complex angular momentum helicity amplitudes or
equivalently in terms of the multipole transition amplitudes in yJ ~fy, when the proton (p) and the an-

tiproton (p) are both arbitrarily polarized. The results are expressed as a sum over products of linearly
independent spherical harmonics. We discuss the results for the special cases when neither particle is

polarized, a single particle is polarized, and both particles are polarized. In general, by measuring the
angular distributions in polarized pp collisions we are not only able to get the magnitudes, but also the
relative phases of the decay amplitudes in the process y I~ li y and of the production amplitudes in

PP ~XJ

PACS number(s): 13.40.Hq, 12.39.Pn, 14.40.Gx

I. INTRODUCTION

There are ongoing experiments [1] at Fermilab to
determine the angular distribution of the decay products
of the charmonium yJ states formed directly in the col-
lisions of unpolarized proton (p) and antiproton (p ). Ex-
pressions for the combined angular distribution functions
of the electron and of the photon in the cascade process
pp~yJ~Q+y~(e+e )+y (J=0, 1,2) when both p
and p are unpolarized have been derived before [2,3].
These expressions are given in terms of the ordinary tri-
gonometric functions and are bilinear functions of the an-

gular momentum helicity amplitudes in the individual
processes pp~yJ, yj~ttt+y, and g~e+e . If we as-

sume that these helicity amplitudes are real they can be
obtained from the measured angular distribution func-
tions [1]. But there is no good reason to believe that the
helicity amplitudes are real. In fact, the potential model
calculations [4] indicate that they may be complex. In
that case, one needs to measure the angular distributions
of the decay products of the charmonium yz states when

p and p are polarized to obtain the magnitudes and the
relative phases of these helicity amplitudes. In this paper
we calculate the combined angular distribution functions
of the electron and of the photon in the process
pp~gJ —+l(t+y~(e+e )+y when p andp are arbitrari-
ly polarized. Our final result for the angular distribution
function is written as a linear combination of terms in-
volving linearly independent products of spherical har-
monics which are functions of the angles giving the direc-
tions of the final electron and of the photon with respect
to the incoming p direction. The coefficients in this ex-
pansion are functions of the complex angular momentum
helicity amplitudes in the different sequential processes
mentioned above, as well as functions of the longitudinal
and transverse components of the polarization vectors of

p and p in their respective rest frames. With zero polar-
ization for both p and p, the angular distribution function
depends only on ~B; ~

(i =0, 1), where B; are the angular
momentum helicity amplitudes in the process
pp~gJ (J=0, 1,2), and on Re(A;AJ") where the A, are
the angular momentum helicity amplitudes in the process
yJ~Q+y. Even though in this case our results reduce
to those of the previous works [2,3] when B; and A, are
real, as far as we know, this is the first time the results
have been expressed in terms of linearly independent and
orthonormal spherical harmonic functions. This feature
of our results will probably make it easier to extract the
helicity amplitudes from the measured angular distribu-
tion function. It should also be noted that one of the pre-
vious works [2] assumed without any real justification
that all the helicity amplitudes were real. When the rest-
frame polarization vectors of p and p are not zero, in our
expression the terms in the coefficients that are linear in

the longitudinal and the transverse components of the po-
larization vectors depend on both the real and the imagi-
nary parts of the helicity amplitudes in the processes

pp —+yJ and yJ ~/+ y. So by studying the angular dis-

tribution function in polarized pp collisions we are able to
determine not only the magnitudes but also the relative
phases of the complex angular momentum helicity ampli-
tudes in both processes. First we consider the general
case when both p and p are arbitrarily polarized. The ex-
pression for the combined angular distribution of the
electron and of the photon in the final state is derived by
means of the density matrix formalism and is given in

terms of the polarization vectors defined for the station-
ary p and p. We also discuss the results for the special
cases when neither particle is polarized, a single particle
is polarized, and both particles are polarized. The follow-

ing cases prove to be of particular interest: a single parti-
cle polarized with both transverse and longitudinal com-
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ponents of the polarization vector being nonzero, and
both particles polarized, one with a nonzero transverse
component and the other with a nonzero longitudinal
component.

The format of the rest of the paper is as follows. In
Sec. II, we define the polarization vectors and the density
matrix of spin- —,

' particles. We then express the density
matrix elements for arbitrary values of p and p momenta
in terms of their rest-frame polarization vectors. We also
express the transition amplitude for the process
pp~yz~P+y —+(e+e )+y in terms of the Wigner D
functions and the angular momentum helicity amplitudes
in the processes pp~yj, gJ~Q+y and f~(e+e }.
We then give a formal expression for the angular distri-
bution function of the electron and of the photon in
terms of the transition amplitude and the density matrix
elements of the initial arbitrarily polarized pp system. In
Sec. III, we reexpress this angular distribution as a sum
of products of spherical harmonics which are functions of
the angles defining the directions of the final photon and
of the final electron. The coefficients of the spherical har-
monics in this sum are functions of the angular momen-
tum helicity amplitudes as well as the longitudinal and
transverse components of the rest-frame polarization vec-
tors ofp band p. These coefficients are listed in Appendix
A. In Sec. IV we discuss our results. Finally in Sec. V we
make some concluding remarks.

II. POLARIZATION VECTORS,
DENSITY MATRICES, AND FORMULATION

OF THE PROBLEM

q.P q(q P)
m

' m(s+m }

where m is the rest mass of the particle. In the arbitrary
Lorentz frame, the (4X4) density matrix can be written
as

yam I+yA
P*=

2m 2
(5)

In Eq. (5), the positive sign refers to the proton and the
negative sign refers to the antiproton. The density matrix
elements are connected to their rest-frame values in the
following way. Let y& be a two-component Pauli spinor
for either particle at rest quantized along the direction
given by the unit vector e. That is,

o"ey&=Ay& . (6)

Let e" be a four-vector whose value in the rest frame of
the particle is (O, e). Then we write four-component
Dirac spinor W+(q, A, ) for the proton or the anitproton in
an arbitrary Lorentz frame with the properties:

gW+(q, A, ) =+m W+(q, A, ),
y 5' W+ ( q, A, ) =A W+ ( q, A ) .

As before, the plus sign in Eq. (7) refers to the proton and
the minus sign refers to the antiproton and q is the four-
momentum of either particle. The density matrix ele-
ments are then connected to their rest-frame values by
the equation

Gonsider a beam of spin- —, particles consisting of an in-

coherent mixture of pure spin states, denoted by i, each
occurring with probability f;. If N; is the number of par-
ticles in the pure state ~i ) and N is the total number of
particles,

+m l+y

1+a P
XA, 2

In the rest frame of the beam, the polarization vector is
then given by

We now give a derivation of our formal result for the an-
gular distribution of e and y when both p and p are ar-
bitrarily polarized.

The probability amplitude for the process

P= gf;I, , (2)
p(&))p(&2)~yj, ~g +y„~e (~, )e+(a, )+y„,

where I, is a unit vector pointing in the direction of the
filter axis that allows complete transmission of all parti-
cles in the state ~i ). The magnitude of the polarization
vector ranges from zero for an unpolarized mixture to 1

for all particles in a pure state or a completely polarized
beam. The density matrix for such a mixture in its rest
frame can be written as

p= —'(I+P cr)

where o „,o, and o, are the three (2X2) Pauli matrices.
In an arbitrary Lorentz frame where either p or p has

the four-momentum "=q( qs), we can define a polariza-
tion four-vector s" which is related to its rest-frame value
of (O,P) by equation

where iL&, A,z, v, o, p, , a, , and r~2 are the particle helicities,
can be written as the product of the amplitudes of three
sequential events:

P (~i)+p(4) Xs,.XJ,. 4.+y„
and

g ~e (a., )+e+(rc2) .

If ~p, 0, $;A, ,A,z) represents a two-particle helicity state in
the zero-momentum (c.m. ) frame, where p is the magni-
tude of either particle's momentum and the angles (8,$)
represent the first partic1e's momentum and A, &,A,2 the hel-
icities of the two particles, then fallowing Jacob and
Wick [5] and Martin and Spearman [6], we can write an
expansion in terms of the angular momentum states as
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2J+1
„($,8, P)—~pJM;A, ,A, &, (9a)

J,M

In the g rest fraine, with the direction of the final
electron's momentum specified by (8', p'), the helicity
amplitude for the process g ~e (~, )+e+(az) becomes

1/2

c„,D ",( p', 8', —(t '),

As 2 (9b) (15a)

and p, 8, and —
(() are the three Euler angles. The

Wigner functions DMi are the (M, A, ) matrix elements of
the (2J+1)-dimensional representation of the three-
dimensional rotation matrices.

We will work in the gJ rest frame with the z axis taken
to be in the direction of motion of P. The momentum of
p, namely, p, makes an angle 0 with the z axis. Then,

where

K —
/C1 K2 (15b)

KKKK12 21 (15c)

By charge-conjugation invariance [6], the amplitude C„,
1 2

satisfies the equation

kXp
and a=gXk .

/kXp/
(1()) By parity invariance [6], we also have

(15d)K K K K
1 2 1 2Using Eq. (9), the helicity amplitude for the process

P(l, )p(&, )~yj „can be written as
' 1/2

(Jvl&180'&iA2&= Bz i d„i(e), (lla)
4m. 1 2

where A, is given by Eq. (9b),

d,~(e)=D „i(0, 8,0), (1 lb)

and B is a transition operator. Depending upon the au-
thor, the amplitudes on both sides of Eq. (1 la) are re-
ferred to as helicity amplitudes. We shall refer to the
amplitude on the left, with the operator between helicity
states, as the helicity amplitude. The amplitude B& &,

I 2

which is actually the matrix element of the transition
operator between states characterized by the angular
momentum and the helicity indices, will be referred to as
the angular momentum helicity amplitude. We notice
that because of charge-conjugation invariance [2,6], the
angular momentum helicity amplitude

(12)

and, by parity invariance,

(13)
T

112K1K2P

The helicity amplitude for the process yz, ~P +y„with
the quarkonium g and the photon y moving along the
+z and —z directions, respectively, can be written as

1/2

3 '„D „(0,0,0),

x y g'„J „„D„'*„„(y,e, y)d'„, (8), —
v(JM)

(16)(Oo, opia iJv&=

If the e e system is produced by the process qq~y~e+e, the helicity-zero amplitude Co=&2C++
=&2C is of order m /E = 3.3 X 10 compared to the
helicity-1 amplitude C+ =C + =C1, and should be
negligible. But for the sake of an independent experimen-
tal determination of Co from the measured angular distri-
bution, we keep it in our expressions.

Wick [7] constructs a two-particle helicity state in an
arbitrary frame by first constructing it in the zero-
momentum frame. The state is then transformed to the
arbitrary frame with the angular momentum states of
Eq. (9a) transforming as single-particle states of spin J
and mass 2E. Using this technique, the helicity ampli-
tudes in Eq. (15a) have the same values in both the g and

yJ rest frames, with no Wigner rotations.
The amplitude T& &, , „for the process to go from the

2K1K2P

initial state of p (A, , )p (ki ) to the final state of
e (a, )+e+(~2)+y„ through all possible helicity states v
of yJ and 0 of 1( is a sum of linearly independent prod-
ucts of amplitudes of Eqs. (1 la), (14a), and (15a) summed
over all possible values of v and o. subject to the con-
straints v=0 —p and @=+1.We thus get [3]

2
1/2

3(2J+1)
(4~)i 1 2 I 2

where

D, „(0,0,0)=5,

(14a)

(14b)

where v takes the values 0 to +J for p = —1 and —J to 0
for p=+1.

The normalized angular distribution function for the
cascade process when the initial p and p are arbitrarily
polarized and the final polarizations of y, e, and e+ are
not observed is given by W(e;O', P'):

and A
' „are again the angular momentum helicity ampli-

tudes. Charge-conjugation invariance is trivially satisfied
in this process. By parity invariance [2,6],

(14c)

1 2 1 2 1 1 2 2 1 2KIK2P
K1K2P
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The normalization constant NJ is determined by requir-

ing that, for the unpolarized case, the integral of the dis-
tribution function W(8;O', P') over all the directions of y
and e or over all the angles 8, P, 8', and P' is l. In Eq.
(17) the symbols p, z z, and p, represent the density

1 1 '22
matrices of p and p, respectively. In the helicity basis
states of the particles these matrix elements are

(18)

Similarly,

P2„—iP2„1+P2,
p

2 2 22 2x+lP2y

1 —P2,

P2. —
&P2y

1 —P2,

P2 ~ +iP2„.

1+P2,.

A2

(26)

p, =P„+—,'(1+P ~ )P
2A'2~2 2 2

2
(19)

and

a pox =k&X (20)

(21)

where A, , and A, z can take the values +1 or —l. In the
coordinate system we defined in the beginning, since p
and p are in the xz plane with / =0,

In Eqs. (18}and (19}P, and P2 are the polarization vec-
tors of p and p and the helicity basis states y& of p and

1

Pz ofp are defined by
2

U=p=0. 15 . (27)

In Eqs. (24) and (26), P„and P2, .—are the longitudinal
components (components along the momenta of the
respective particles) and the x' andy' components are the
transverse components of the polarization vectors. The
angular distribution function W(8, O', P' ) for arbitrary
values of p and p momenta is now given in terms of the
density matrix elements defined for the stationary proton
and antiproton.

In Eq. (17), the angles (O', P') give the direction of e
in the g rest frame and the angle 8 gives that of p in the

yJ rest frame. But there is no Lorentz frame where yJ
and fare both at rest. In they& rest frame or the pp c.m.
frame, P is moving with a velocity

cosg /2 —sing /2
~+ sing /2 ' ~ cos8/2 (22)

If the direction of e in the gz rest frame is given by
(8",P"), these angles are related to the angles (O', P') by
the relations (to first order in p)

and the phase of P is such that [7]

Equations (18) and (19) can be rewritten as

(23)

cosg'=cosg" —Psin 8",
sing' =sing" +P sing" cosg", (28)

1+P),
+1

P)„+iP)

(I+P), )

(P)„.+iP,y.

Ph —iP)

1 —P),
(P(„iP&y.

—

(1—P), )
(24)

In order to get the angular distribution in the pp c.m.
frame, all we have to do is to reexpress T& &, „„in terms

2K1K2P

of (8",P") by making use of Eqs. (28).

where the unit vectors along the new x', y', and z' axes
are related to the corresponding vectors of the xyz coor-
dinate system by

III. COMBINED ANGULAR DISTRIBUTION FUNCTiON
OF THE ELECTRON AND OF THE PHOTON, IN TERMS

OF SPHERICAL HARMONICS, WHEN p AND p
ARE ARBITRARILY POLARIZED

a =cos8a —singk~jXp,

k'= p =singi+ cosgk .

(25)

In this section we express the angular distribution
function W(8;O', P') of Eq. (17) in terms of the spherical
harmonic functions in the variables 8 and O', P'. Substi-
tuting Eq. (16) in Eq. (17), we can rewrite Eq. (17) as

3 2J+1
1 2 1 2

A 112

X g g A „'+p „A'„+„„D,+„„(P',8', P')D~+„„(P',O', —P')d Jq(g)d~~q, (g} .—
p= +1 v(p)v'(p)

(29)

Performing the p =+1 sum gives
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~."+„,„~."+„,„D.'+„,A.'+„,.d'.2d'. 2.

p =+1 v(p), v'(p)

L'=0, 1,2

(11K—KlL'0)( —1)"+'g A„A .*(—1)'( ll, v —1, —(v' —1)lL', v —v')

2J
X g &JJu'lL, ~+~')&JJvv'lL, v+v')[D'. *. od-'. . +( —1)'+'( —1)'D'.—,od'.—.od.' .— ],

L=0

(30)

where we have made the notational replacement

A, =A'„1 1=(—1) A' „+1

and employed the Clebsch-Gordan series [8]
&(j&,j2,J)D",D ', = g (j1j2m1n12lJM)(j, j2rnI1r12lJM')D11rM, .

(31)

(32)

The L'=1 term in Eq. (30) does not contribute to the distribution function W(8;O', P') of Eq. (29) since the distribution
function is invariant under the exchange K1~K2. So, substituting Eq. (30) into Eq. (29), we get

2 0,2 2J 1,0, 1

W(8;O'P')= N gE g g A N„
I.' L =0

The term EL is defined as

+ 1/2

Ki = g C„, l
(11K KlL'0)( —1)"+'

KlKP

—1,0, 1

lC„l (11K K L'0)( —1)'+',

(33)

(34a)

where

C1=C+

C11=v2C++ =v'2C

C 1=C

Because of charge-conjugation or parity invariance [Eqs. (15c) and (15d)] we also have

C1=C-1 ~

The symbol N22 in Eq. (33) stands for

(34b)

(34c)

0~J 0~J
N22 = g N„„.22

= g (
—1)'( ll, v —1, —(v' —1)lL', v —v')(JJvv'lL, v+v') A„A,'

V, V

x[ '„"„,,d'. .. , ,, +(— )'( —)"" '. ..d'„„„„,, ] .

Since
L'L L'L e

N-, u =( —1)'N...~~

we get, upon v~v' reordering,

) O~J L'L
N ~

=—g [N „. ~ +( —1) N„„*~ ]
VV

J=—g ( —1) ( 1lv —1, —(v' —1)lL', v v')(JJvv'lL, v+v')—
VV

(35)

(36)

(A A A A ~ )[D *
0 ( 1) D ~ 0][d + g+2 ( 1) d + ~ 1g 2 1]]
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Finally, the symbol A1 1„. in Eq. (30) denotes where

v= 2(0+5), v'=
—,'(o —5) . (42b)

Xp z, , (JJ,ANAL, A, +A.')
1 ' 1

=B1„Bg'R».( JJA,A.'iL, A, +A,'), (38a)

where

B 1=BJ J

B'=B' =(—1)'B'

B,=B+

and

(38b)

~ P1~,1',Pu, -~,~', -1 .
1' 1

(38c)

It should be noted that our present helicity amplitude
B0 difFers from that of Ref. [3] by a factor of v 2, and for
J= 1, Bo is zero. Since N&& =N&.& and

A» =( —1) Az.z we have, upon interchanging the in-

dices A, and A, ',

Substituting Eqs. (42) into Eq. (37) and then using Eqs.
(38) and (39), we can evaluate the right-hand side of Eq.
(33) which gives the angular distribution function in

terms of the Wigner D functions. Finally we want to ex-

press the D functions in terms of spherical harmonics.
Notice that in Eq. (33) all the angular dependence is in

N1„1, and the polarization dependence is in A». There
L'L

are two kinds of D functions in the expression for N&&.

given by Eqs. (35) and (37), namely, of the type
DM0(P', O', —P') and dmm (8). Now,

1/2
4m.

2L+1DM0(P 8 P )= (43)YL',M(8'0') .

Expressing d (8) in terms of spherical harmonic func-
tions is more involved. All the d .(8) in Eq. (37) can be
expanded in terms of dt0(8) and d', 0(8), which are relat-
ed to Yz(8, 0) and Y»(8,0), respectively. In order to see
how this is done, let us give an example. First of all, we
note that,

—1,0, 1 L
1

—1,0, 1

Z A»Nl" = Z[At-'+(-1)'At:]Nt,"
2 ~,~

(39)
10 11 10 —1 —1

1 1 1 1

In writing Eq. (44) we made use of the fact that

(44)

Also since the density matrices are Hermitian, we can
write

A,',.=-,'( JJu'IL, ~+A')

d„(8)=(—1) d (8)

1
)m' —

md L (8) (45)

X I(BÃf'+B~'B~1. )[Ru. +(—1)'R~~ ]

+(BA~' —B~'B~v )[Ru —(
—I)'R~1. ]] (40)

Next we expand the left- and the right-hand sides of Eq.
(44) by means of Eq. (32). We then get

( 11,1 1 i22) (11,01i21)d21(8)
In order to calculate Nu. , from Eq. (37) we note that

ar L'L ar L'L
vv, AX v v, AA, (41)

2= g (11,1 —liLO)(11,0—1~L, —1)d, (8) . (46)
L=0

v=O v'=0 v=O v'=0

J 2J —5

5=0 0.=5,5+2, . . .
(2—5s,»",»

and so

J J J v

g N„„,», = g g (2—5vv')N

(42a)

Equation (46) expresses d22, (8) in terms of spherical har-
monics because of Eq. (43). By using suitable combina-
tions as in Eq. (44) and then using Eq. (32), we can ex-
press all d .(8) of Eq. (37) in terms of spherical har-
monics. We can now express all the angular dependence
in Eq. (33) in terms of spherical harmonics as

min(J, L') 2J min(1, L)
W(8;8' $')=N&J g g g g CI M LM[YI M(8' P)+&( —1) YL'M (8 &$')]YI.M(8&0) .

L'=0, 2 M'=0 I =0 M =0
(47)

In Eq. (47) the spherical harmonics YL.M.(8', p') and the
Legendre polynomials and associated Legendre functions
YLM(8, 0) are linearly independent. The normalization
constant NJ which will make the integral of W(8;O', P')
over all angles equal to 1 is found to be

1NJ=
4m.

(48)

for all J. From Eq. (47), using the orthonormality of the
spherical harmonics, we can derive an expression for the
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coefficients CL ~ L~ as an integral over the angular dis-
tribution function. It is given by

28~
LMLM1+(1)L+M

X f' dP'f d(cos8')

X f d(cos8) W(8;8', P')

X YL sr'(8', P') Yr~(8, 0) . (49)

If the angular distribution function W(8;O', P') is known
experimentally with sufficient completeness, the integral
in Eq. (49) can be done numerically and the individual
coefficients can be evaluated from the experimental data.
It should be clear from Eq. (47) that the coefficients

CL ~ LM when M'=0 and L is odd do not contribute to
the sum in that equation. The coefficients of all the con-
tributing terms in Eq. (47) are given in the Appendix.

IV. DISCUSSION OF THE RESULTS

Equations (47) and (28), together with the Appendix
giving the expressions for the coefficients CL.~. L~, are
our final results for the angular distribution of the final
electron and of the photon in the cascade process pro-
duced by arbitrarily polarized pp collisions. The results
give the angular distribution function in terms of linearly
independent spherical harmonics. The coefficients in the
expansion CL ~ L~ are functions of bilinear combina-
tions of the production amplitudes 80 and 8, in pp -~gJ
and of the decay amplitudes A, in yJ —+i)'j+y. They are
also functions of the longitudinal (P, ) and the transverse

(P„,P ) components of the polarization vectors of p and

p. In the case where neither particle is polarized, this re-
sult agrees with that of Ref. I3]. An examination of the
coefficients in the Appendix yields the following results
for the different J values.

J=O

If neither particle is polarized then P =1,P„=O, and

Coo oo
= 1 Czo oo = C/2&5. So a measurement of Czo oo

will determine C. In the standard model, where
cc~y ~e+e, C is very close to 1. Any significant de-
viation from 1 will challenge the dominance of this decay
mechanism.

For the J=O case only, polarization of p and p yields
nothing new. However, when the process goes through
this channel with polarized p and p, the results could
serve as a check on the values of P and P~.

When neither particle is polarized, P+ = 1 and
Pg =Pg =0. So Cpp oo

= 1 C2p 2p: —C /10, and a mea-
surement of C2020 will yield C. Both Cppzp and C2opo
depend upon I

A o I
and

I A, I
and, since the normaliza-

tion is IAol +
I A, I

=1, we have more than the
minimum number of measurables needed to determine

the magnitude of the amplitudes. Finally, Re(Ai Ao )

can be found from a measurement of C21,21 ~

If a single particle is polarized and it has a nonzero
longitudinal component of polarization, then a measure-
ment of Cz, » will determine Im( Ao A; ). The term in-
volving the coefficient C21» is easy to identify in the an-
gular distribution since it is proportional to sing'. So the
angular distribution for the J= 1 case helps us to measure
C, I

A o I, I
A i I, and the relative phase between A o and

When both p and p are polarized, nonzero values for
Ps and Pc and P+41 are possible. So although there
are no remaining quantities to be determined, these mea-
surements will allow a more accurate determination of
the amplitudes.

When neither particle is polarized both P+ and P are
1. Then, Cpp 00=1 and C0020, Cpp 40, C20 00, C20, 20

C2p 4p C21 21 C21 41 C22 pp C22 2p and C22 40 are the
only nonzero coefficients. The five measurable
coefficients C0020, C0040, C2000, C2020, and C2040 de-

pend upon C, IBol', IBi ',
I Aol',

I
A i I', and I Az I'

cause of the normalization conditions, IBol +IBil =1
and Aol +

I
A i I

+
I Azl =1, we have five measurable

coefficients to determine four independent quantities.
Furthermore, C2, » and C» 4, each depend on
Re( A i A o ) and Re( Az A; ) and Czz oo, Czz, zo and Czz 4o

are each proportional to Re( A z A o ). So, with unpolar-
ized p and p beams we can determine the magnitudes of
the amplitudes, Re( A, A o ), Re( A z A *, ), and
Re( A z A o ). The relative phase of Bo and B,,

Im(A, Ao ), Im(Az A", ), and Im(AzAo ) are undeter-
mined.

If a single particle (say particle 2 or P) is polarized, a
nearly complete determination is possible. %hen P2„. is

nonzero then C21» and C21 31 each depend on
Im(A, Ao ) and Im(AzA i ) and Czz, o and Czz 3o are
each proportional to Im(AzAo ). Hence the relative

phases of Ap, A1, and A2 can be determined.
When (Pz, +Pq~ ) is nonzero, Coo zi, Coo 4i, Czo zi,

2 2 1/2

C20, 41& 21 00& 21,20& C21,40& C22, 21& C22, 41& C21 10& 21,30&

C22», and C2231 are nonzero. Each has terms only of
the form Re(A;A.')Im(BoB i ) or Im(A, A' )Re(BoB; ).
So Re(BoBi ) can be found only when Im(A, -A') is

nonzero. We should also mention that, although it is
possible to produce a transverse polarization, it is not
possible to control how it is mixed between P2 ~ and P2 .

since only the direction of z is determined by the decay.
If both particles are polarized, nonzero values of P~,

P~, and Pc and nonunity values of P+ and P serve only
to increase the accuracy with which the quantities de-
scribed above can be determined. However, when PD or
PF is nonzero, Coo» oo 41 20» 2o 3& 2100 21 20

C21 40 C22 21 C22 41 C21 10 C21 30 C22 11 and C22 31 con-
tain terms of the form Re( A; A. )Re(BoB,' ) and
Im(A, A.*)Im(BoB*, ). So Re(BoBi ) can be determined
even when the A's are real.
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V. CONCLUDING REMARKS ACKNOWLEDGMENTS

k=1 v=O

Using Eq. (50) we can calculate the multipole amplitudes
once the angular momentum helicity amplitudes are
determined.

We have derived a model-independent expression for
the angular distribution of the final electron and the pho-
ton in the cascade process pp~yz~g+y~e+e +y
for arbitrarily polarized p and p in terms of the angular
momentum helicity amplitudes of the individual process-
es. The derivation is based only on the general principles
of quantum mechanics and invariance principles. Equa-
tion (47) and Table I can be used to determine the angu-
lar momentum helicity amplitudes from the measured an-
gular distribution. By studying the angular distribution
for polarized pp collisions, we can determine not only the
magnitudes of the amplitudes, but also the relative phases
among them. The terms involving Im(A;A*) and the
relative phase of the B's occur in the expression for the
angular distribution only when at least one of the beams
is polarized. In order to determine the relative phase be-
tween any two amplitudes H; and H unambiguously, we
need to measure IH, I

and IH I, as well as the real and
imaginary parts of 0;H . It is not possible to determine
the relative phase between the production amplitudes Bo
and B1 in the process pp ~g2 unless p or p is polarized.

It is also possible to test the charge-conjugation invari-
ance in the production process pp ~y, from a measure-
ment of the angular distribution of the electron and the
photon. From C invariance [Eq. (12)], it follows that the
amplitude Bo=B++= —B is zero when J=l. If it
were nonzero, the coefficients CL.M L~ would not be zero
when M'AM. The expressions for these coefficients with
M'XM involve transverse components of polarization for
at least one particle. So if the transverse polarization of
at least one particle is not zero and if we see terms involv-
ing CL M LM when M WM in the angular distribution for
the J=1 case, C invariance is violated in the process
PP ~X1

Finally we should point out the relationship between
the angular momentum helicity amplitudes A, (i =0~J)
in the process yz~f+y and the multipole amplitudes
az (k=1~J+I). It is given by [9]

'+' 2k+1
' 1/2

A„= g a„(kl;l,v —1IJv), (50)
k=1

where al is the E1 amplitude, a2 is the M2 amplitude,
and a3 is the E3 amplitude. The coefficients of transfor-
mation in Eq. (50) form a real orthogonal matrix and so

J+1 J
(51)

Most of the work for this paper was done while the au-
thors were visiting the University Park campus of the
Pennsylvania State University. They would like to thank
Professor Howard Grotch for his hospitality during their
visit.

APPENDIX

Expressions for the nonvanishing coefficients CL.~. L~
in terms of angular momentum helicity amplitudes and
components of polarization vectors ofp and p are given.

The amplitudes A„ in the process yj~g+y
(J=0, 1,2) are defined by Eqs. (14) and (31). They also
satisfy the normalization condition

v=O

The amplitudes Bo and B, in the process pp~yJ are
defined as

—
( 1)JBI

B', =B+ =(—1)'B'+ .

They satisfy the normalization condition

or

2[IB'I'+ IB'I']=1

The amplitudes C„„ in the process 1(~e+e satisfy the
1 2

normalization condition

I'+ Ic,+ I'=1,

C= Ic,
Ic, I'+Ic, +I'

We also use the following abbreviations in our expres-
sions:

P*=1+Pl'P2'
P~ =Pl„.P2 ~ +Pl P2„. ,

P~ P 1 P2 P ly P2y

PC —Pl P2 +Pl .P2 . ,

PD Ply' 2 '+
1

' 2y'

PE =P„.P2 +P, .P2,

1. J=O
Here only Ao and Bo are nonvanishing. So normalization gives I AoI =1 and IBoI =

—,':
Coooo=2(P +P~ )

Ceo oo —C(P +P„)= —Coo oo
1 C

4&5 2 5
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2. J=1
In this case, Cl ~ I~ =0 if M'WM since B++=0:

c~~= I Apl'I81I'(P++P, )+ I A, I'IB, I'(P ,'—P —),

cop 20 —[ 21 A11I + A1I ]l811 (P+ +Pa )
1

2 5

C
C2p, QQ 2 5

181 I'[
I A. I'(P+ +P, &

—2I A, I'(P+ —
—,'P, &]

. 3C~ 181I [Re(A, Ap )Pc —Im(A, Ap )(P„+P» )],

C2Q 2Q 181 I'(
I
A

11
I'+

I
A 1 I'&(P+ +Pa )

C

C2121= — I81I Re(A1A11 )(P++Pa) .
3C

3. J=2

C~,~= IBQI'(I Apl'+
I
A1I'+

I A2l')(P +P )+ 81 '[I Aol'(P+ —P, )+ I A1I'(P+ ,'Pa)+ —
I A—21'(P++-,'Pa &1,

{IBoI'(21 Aol'+
I
A I' —2I A I'}(P-+Pg &

x IBQI'[ Apl'(P+ Pa)+I A1'(-,'P, + ", Pa) I
A—21'(P+—+ ', Pa&]], -

C~ „= [2I Apl'+
I
A1I' —2I A2I'][ —PaRe(808', }+(P1,, +Pz, )Im(8081" )],

C~ 40
=—[I A11I' ——,

'
I
A1I'+-,'

I A2I'][IBo I'(P-+P~ }—-', I81I'(P+ Pa &], —

io
,
=—Q —", (I Apl —2

I A, I
+ —,'IA2I )[ PzRe(BQB—; )+(P1~ +P2~ )Im(BQ81 )],

c20 ~ = —{(IA111'—2l A1I'+ I A21') 180 I'(P-+P~ &+ I81I'
2 5

x [ I A11I'(P+ —Pa )
—2I A1I'(P+ —

—,'Pa )+
I
A 2 I'(P++ ', Pa }l!-

c,11,,11=—{ I811 '(I A(11' —A1l' —
I
A21'&(P +Pg)C

+ I81I'[-,' I
A

11
I'(P+ —P, )

—A1I'(-,'P+ + —", P, )
—

I
A 2 I'-,'(P+ + -', Pa }]]

C
C20» = —,[I A, l'- I A, I'-I A, l'][-P.Re(808', }+(P„+P»»m(8081)].

C20, 40

C20, 41

7 5
—[ I

A 0 I'+ -',
I
A1I'+ -,

'
I
A 21'][ 180I'(P- +P~ &

—-', I81I'(P+ Pa &], —

[I Ap I
+ 4

I A1I + 6 I A2I ][ PaRe(8081 &+(P1y'+P2y' &Im(Bo81

C
C21 00

= —{[ 2+—Re( A 1 A p ) +Re( A 2 A 1 )][PgRe(808 1 ) (P1&' +P2y' )™(BpB1 )]
2&10

+5[2+—', Im(A, Ap )
—Im(A2A1 )][PzIm(8081 )+(P1 +P2 ~ )Re(8081 )]],

C21 10=i Q ,
' {[——2Q —', —Re(A1AQ )+Re(A2A1 )][PDRe(8081 )+(P, ~ +P2„.}Im(808," )]

+[2+—', Im( A, A 0~ )
—3 Im( A2 A f )][ PDIm(BQB,' )+(P,—„,+P2 ~ )Re(BQB,' }]j,

c21» =i —{[ —v'3Re( A 1
A 0 ) +2&2Re( A 2 A ', ) ] I

80 I Pc —[&31m( A, A 0 ) —/21m( A 2 A *, }]I
80 I

(P„+P2, )],21, 11
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Cz, zo= I[—', Q —,'Re(A, Ao )+ —",Re(AzA t }][—PzRe(BoB', )+(P, , +Pz„.)Im(BoB', )]

+[Q—', Im( A, A o )+Im( A z A t ) ][PzIm(BoB t )+(P» +Pz„)Re(BoB;) ]j,
C, = [[Re(A Ao ) 3»6Re(A A )]18o1 (P—+P )

+
I
8

& I [Re( A t A o )—,
' (P+ Ptt—}—v 6Re( A z A t )—,

' (P+ + ', Ptt )—]j,
Cz, 3o=i [[&6Re(A, Ao )+Re( Az A f )][ P23—Re(BoB t )

—(P,„+Pz„)Im(BoB', )]2&20

+[&61m(At Ao ) —3Im(AzA t )][—P&Im(BoB& )+(P&„.+Pz„.)Re(BoBt )]j,
Cz & 3&

= —iC+ —,', [ [&6Re( A t A o ) +Re( A z A t ) ]18 t I Pc+ [ )r 61m( A t A o ) +3 Im( A z A t ) ] I
8 t I (P;,.+Pz, )j,

Cz, 4o= [[&6Re(A, Ao )+Re(AzA*, )][PERe(BoB', ) —(P,„+Pz ~ )Im(BoB', )]j,7 10

C» 4,
=

f [&6Re(at Ao }+Re(A2A t }][IBol'(P +P, )
—

—,'IBt I'(P+ —Ptt }]j,
Czz, ~= — «(AzAo )[IBol'(P +P~)+ IBt I'(P+ —Pn)],

Czz, o= iCQ—,'[Re(—AzAo )18,1'Pc+Im(AzAo )18,1'(P;,.+Pz, .)],

Czz t&
=i —[Re(Az Ao )[PDRe(BoBt )+(P» +Pz„.)Im(BoBt )]

+ Im( A, A o )[PtzIm(BoB t )
—(P,„+Pz„)Re(BoBf ) ]j,

C„,,o= «(A, Ao )[IBol'(P +Pg) —
—,'IB, I'(P, —P, )],

Czz z, =CPRe(Az Ao )[ PERe(B—oBt )+(P, +Pz ~ }Im(BoB;)]

+Im(AzAo )[PzIm(BoB& )+(P,» +Pz» )Re(BoBt )]j,
C22, 30 t [Re( A2 Ao )IBt I Pc+Im( Az A o )IBi I (Pt +Pzz'}]

&3S

+Im( A, A o )[PDIm(BoB t ) —(P» +P». )Re(BoB t ) ]j,
—Re(A2Ao )[18ol (P +Pg) ——', 18t1 (P+ —Pzt)],

7 5

Zv'6
Czz 4,

= C Re( Az Ao )[PERe(BoBt ) —(P,» +Pz» )Im(BoB*, )] .

Czz, 40
=

Czz 3t
—i 3CQ —,', I Re( A z A o )[PzzRe(BoB t )+(P», +Pz„)Im(BoB ", )]
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