
PHYSICAL REVIEW D VOLUME 49, NUMBER 11 1 JUNE 1994

Complete next-to-leading order QCD corrections to the photon structure
functions F$(x, Q ) and FE(x,Q )

E. Laenen
Fermi Rational Accelerator Laboratory, P.O. Box 500, MS 106, BataUia, Illinois 60510

S. Riemersma
Department ofPhysics, Fondren Science Building, Southern Methodist University, Dallas, Texas 75275

J. Smith
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840

W. L. van Neerven
Instituut Lorentz, University ofLeiden, P.O. B. 9506, 2300 RA, Leiden, The Netherlands

{Received 20 August 1993;revised manuscript received 30 November 1993)

We present the complete next-to-leading-order QCD analysis of the photon structure functions
F$ {x,Q') and F1{x,Q ) for a real photon target. In particular, we study the heavy fiavor content of the
structure functions which is due to two different production mechanisms: namely, collisions of a virtual
photon with a real photon and with a parton. We observe that the charm contributions are noticeable
for F${x,Q ) as well as Fg{x,Q2) in the x region studied.
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I. INTRODUCTION

In the past two decades there has been considerable in-
terest in the study of photon-photon interactions in
electron-positron colliders. When one photon is virtual
and the other one is almost real the analogy with deep-
inelastic electron-nucleon scattering motivates the intro-
duction of the corresponding structure functions
Fg(x, g ) (k =2,L) for the photon. The deep-inelastic
structure function Ff(x, g ) was originally measured by
the PLUTO Collaboration [1] at the DESY e+e collid-
er PETRA using single-tag events in the reactions
e +e+~e +e++hadrons. In the past several years
there has been a series of new measurements at PETRA,
the SLAC e+e storage ring PEP, and KEK TRISTAN
by several groups, including CELLO [2), TPC2y [3],
TASSO [4], JADE [5], AMY [6], VENUS [7], and
TOPAZ [8]. All these groups concentrated on the mea-
surement of the light-quark contribution to F$(x,g ).
The heavy-quark component (mainly charm) has been
hard to extract due to problems identifying charmed par-
ticle decays, so its contribution to the data was some-
times removed according to a Monte Carlo estimate. In
the near future higher-luminosity runs at TRISTAN
should yield some information on heavy-quark (mainly
charm) production, and this is one reason that we study it
here. At this moment the available data for Ff(x, g )

are in the region 0.03 & x & 0.8 and 0.7
{CxeV/c} &g &390 (GeV/c) . Because of the experi-
mental limitation that xy «1 [for a definition of x and
y, see (2.5)], there are no data available for the longitudi-
nal structure function FE(x,g }. However, there exists
some hope that FE(x,g ) can be measured [9] at the
CERN e e collider LEP. Finally, two-photon reactions

are important to understand as background processes to
the normal s-channel reactions at present and future
e+e colliders. These machines will have a large
amount of beamstrahlung [10,11]. Therefore a basic in-

put is the parton density in a photon, which will be
modified if higher-order perturbative QCD (PQCD)
corrections are included.

As far as theory is concerned, the first attempt to give
a theoretical description of the photon structure function
in the context of perturbative QCD was given by Witten
in [12]. He suggested that both the x and the g depen-
dence of these structure functions were calculable in
PQCD at asymptotically large g . Thus from a theoreti-
cal point of view this process should provide a much
more thorough test of PQCD than the corresponding
deep-inelastic scattering off a nucleon target, where only
the g evolution of the structure functions is calculable.
The original optimism subsided once it was realized that
there were complications with experimental confirmation
of this prediction at experimental (nonasymptotic) values
of g [13,14]. For recent reviews, see [15]. In particular,
there is a contamination of the purely pointlike PQCD
contribution by the hadronic component of the photon.
This latter piece, which is most important at small virtu-
alities, is not calculable in PQCD and must be extracted
from experimental data. One of the approaches used is to
describe both the hadronic and pointlike photon contri-
bution by parton densities in the photon, analogous to the
parton densities in a hadronic target. For parametriza-
tions see [16—21]. For a different approach, see [22].

In [19]a next-to-leading-order (NLO) analysis was car-
ried out for the photon structure function Ff(x, g ).
This analysis also includes the lowest-order contribution
coming from heavy-flavor production, which is described
by the Bethe-Heitler cross section corresponding to the
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process y'+y~g+Q. In this case the mass m of the
heavy flavor is not neglected with respect to Q, especial-
ly in the threshold region. If Q ))m, one encounters
large logarithmic terms containing ln(g /m ), which
have to be summed using the Altarelli-Parisi (AP) equa-
tions. This procedure provides us with the heavy-Aavor
densities in the photon which are akin to the parton den-
sities originating from the light quarks in the photon.
The same procedure has been applied for the longitudinal
structure function FE(x,g ) in [23], but only in leading
order.

In this paper we want to extend the above analysis by
including higher-order PQCD corrections which were
not considered in the literature so far. Since the NLO
QCD corrections to the longitudinal coefficient functions
due to massless partons [24] and heavy flavors [25] have
been recently calculated, we are now also able to present
an NLO analysis for Fg(x, Q ). In addition, we can also
improve our knowledge of the heavy-Aavor content of
F/(x, g ) by including the order a, corrections to the
Bethe-Heitler process y'+ y ~g +Q. We also include
corrections to Ff(x, g ) (k =2,L) due to heavy-flavor
production mechanisms given by the processes y'+g
~g+g (corrected up to order a, ) and

y'+q(q) Q+Q+q(q),
where the incoming gluon and (anti)quark originate from
the on-mass-shell photon. Furthermore, we use the most
recent gluon and (anti)quark densities in our analysis.

Finally, we should mention that there was a previous
investigation of PQCD corrections to heavy-quark pro-
duction in [26), where it was assumed that both photons
were off mass shell, and a small value for the photon vir-
tuality was chosen for generating numerical results.
Since these authors did not therefore encounter mass
singularities, they had no need to perform any mass fac-
torization. Hence their method was different from the
one we adopt.

The paper is organized as follows. In Sec. II we
present the photonic and hadronic coefficient functions
corrected up to next-to-leading order in a„which are
needed for the photon structure functions Fg(x, Q )

(k =2,L). In Sec. III we show the differences between
the leading-order (LO) and the next-to-leading-order
(NLO) photon structure functions. In particular, we dis-
cuss the effect of the heavy-flavor component (mainly
charm) originating from the hadronic as well as the
pointlike photon interactions.

II. HIGHER-ORDER CORRECTIONS TO THE PHOTON
STRUCTURE FUNCTIONS

e

e+

FIG. 1. The process e (p, )+e ~e (p,')+e++X, where X
denotes any hadronic state.

by the photon-photon collision reaction (see Fig. 1)

y'(q)+y(k)~X, (2.2)

where one of the photons is highly virtual and the other
one is almost on mass shell. The process (2.1) is de-
scribed by the cross section

d 0.
dzzfi, z,

2x y
2' S

Q4

X I[1+(1—y) ]F$( xg )
—y FE(x Q )]

(2.3)

S a 1+(1—z) (1 —z)(zS —4m )f' z, 1n
m 2' z z mme e

(2.4)

provided a heavy quark with mass m is produced (for
light quarks, m =0). The scaling variables x and y are
defined by

where Fg(x, g ) (k =2,L) denote the deep-inelastic pho-
ton structure functions and a =e /4~ is the fine-

structure constant. Furthermore, the off-mass-shell pho-
ton and the on-mass-shell photon are indicated by the
four-momenta q and k, respectively, with q

= —
Q &0

and k =0. Because the photon with momentum k is al-
most on mass shell, expression (2.3) is written in the
Weizsacker-Williams approximation. In this approxima-
tion the function fr (z,S/m, ) is the probability of finding
a photon y(k) in the positron (see Fig. 1). The fraction of
the energy of the positron carried off by the photon is
denoted by z while &S is the c.m. energy of the electron-
positron system. The function f'(z, S/m, ) is given by
(see [27])

The deep-inelastic photon structure functions denoted
by Fg(x, g ) (k =2,L) are measured in e e+ collisions
via the process (see Fig. 1)

k.q
2k.q' k p,

'
q (2.5)

e (p, )+e+~e (p,')+e++X, (2.1)

where X denotes any hadronic state which is allowed by
quantum-number conservation laws. When the outgoing
electron is tagged, then the above reaction is dominated

where p„p,' are the momenta of the incoming and outgo-
ing electron, respectively. Following the procedure in

[28] the photon structure functions in the QCD-improved
parton model have the form
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+ x3
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g e; Ck x, +eHCk4 Q 4 H

M
x, Q, m (2.6)

where the meaning of the symbols is explained below.
The quantities Xr and hr represent the singlet and

nonsinglet combinations of the quark densities in the
photon, respectively, while the gluon density is represent-
ed by g~. The same flavor decomposition is also applied
to the hadronic (Wilson) coefficient functions
C„;(i=q, g) so that Ck (z, Q /M ) and CNks(z, Q2/M2)
stand for the singlet and nonsinglet coefficient functions,
respectively, and C „s(z,Q /M ) denotes the gluonic
coefficient function, where M is the mass factorization
scale. The hadronic coefficient functions can be attribut-
ed to hard processes with a light quark or gluon in the in-
itial state, such as y*+q ~q+g or y'+g ~q +q, where
the initial parton emerges from the real (on-mass-shell)
photon. Hence they are multiplied by the corresponding
parton densities in the photon.

We also make a distinction between light- and heavy-
flavor contributions to the coefficient functions. The
latter are indicated by their explicit dependence on the
heavy-flavor mass m. For example, in the contribution to
C k;(z, Q /M, m ) [second part of (2.6)] the virtual pho-
ton is attached either to the incoming light quark, as is
the case in the reaction y'+q~q+Q+Q, or indirectly
to the incoming gluon. Actually, the C k;(z, Q /M, m )

belong to the same class as the hadronic light-parton
coefficient functions presented in the first part of expres-
sion (2.6). The only difference is that C k;(z, Q /M, m )

receives contributions from a heavy-flavor pair produced
in the final state.

In the third set of terms in (2.6) the heavy-flavor
coeScient functions originate from subprocesses where
the virtual photon is attached to one of the outgoing
heavy flavors, as, for example, in y'+g~Q+Q; so they
are given an additional superscript H. Finally, the fourth
set of terms in (2.6) contains the photonic coefficient
functions indicated by C k r coming from reactions such
as y'+y~q+q or y'+y~Q+Q. These originate
from hard processes where the (on-shell} real photon is
directly attached to the light or heavy quarks produced

in the final state so there is no need for any convolution
integral.

The index i in (2.6) runs over all light active flavors
whose number is given by nf and e;,eH stand for the
charges of the light and heavy quarks, respectively, in
units of e. The upper boundary of the integrals in (2.6)
containing the convolution of the parton densities with
the heavy-flavor coefficient functions is given by

4 2+Q2 (2.7)

The parton densities as well as the coefficient functions
depend on the mass factorization scale M except for the
C k, which can be calculated in PQCD without perform-
ing mass factorization. Notice that in addition to the
mass factorization scale M the quantities in (2.6) also de-
pend on the renormalization scale R which appears in the
PQCD corrections via a, (R ). However, in this paper
we will put R =M.

According to the origin of the photonic parton densi-
ties and the two different types of coefficient functions,
i.e., Ck, Ck (hadronic), and Ck (photonic), we will
call the first three terms in (2.6) (represented by the in-
tegrals) the hadronic photon parts, and the last term the
pointlike photon part. Notice that both these terms are
separately factorization scheme dependent as indicated
by the presence of the scale M. In particular, the scheme
dependence of the pointlike photon part in (2.6) is due the
light-quark contribution Ckr(x, Q /M ). The scheme
dependence is canceled by the hadronic photon part due
to the light-quark contribution, provided that the quark
densities and the hadronic coe%cient functions are com-
puted in the same scheme as C k (x, Q /M ). The ha-
dronic heavy-Savor part is scheme independent by itself.
The photonic heavy-flavor piece is obtained without hav-
ing to perform mass factorization and needs no parton
distribution functions, and is thus not dependent on the
factorization scheme.

In the subsequent part of this section we will discuss
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71f =3, 2pe, =—,
] 3

3

y e4= —,
9

(2.8)

the contributions to the coefficient functions in (2.6)
which are needed for a next-to-leading-order (NLO)
description of the photon structure functions F((x,Q )

and FE(x, Q ). The results of our calculations will be
presented in the plots of Sec. III. For these NLO calcula-
tions we also have to use the next-to-leading logarithmic
(NLL) approximation to the parton densities, which are
given, for example, in [19—21].

Starting with the NLL parton densities, the singlet and
nonsinglet combinations are written in the following way.
Below the charm-quark threshold we have

I'
(

(~
(,

FIG. 3. Feynman diagrams contributing to the one-loop
correction to the process y*(q)+ y(k) ~q+ q. Additional
graphs are obtained by reversing the arrows on the quark lines.
Graphs containing the external quark self-energies are included
in the calculation, but are not shown in the figure.

gr=u»+ur+d»+dr+s»+s», (2.9)

b,r= —(2u»+2u» —d» —d» —s» —s») .
1

9
(2.10)

Above the charm-quark threshold and below the
bottom-quark threshold the above quantities are changed
into

10 34nf=4, ge, =, ge, =
9 ] 8 1

r=u +u +dr+dr+sr+s +cr+c

br= (u»+u—»+c»+c» d» d»—s»——s") . —1

6

(2.1 1)

(2.12)

(2.13)

Finally, above the bottom-quark threshold they become

2 11 4 35nf=5, ge, =, ge, =f & I 9
7 ] 81

) (2. 14)

Xr =u r+u r+dr+dr+sr+sr+cr+cr+br+br,

(2.15)

(3u»+3u»+ 3c»+3c» 2d» 2d—»—1

15

2s» 2s» 2b—» —2b—») . — (2.16)

Because the photon is a charge-conjugate eigenstate, one
can set the quark densities equal to the antiquark densi-
ties.

%e will now discuss the origin of the coefficient func-
tions Ck; (k =2,L) and (i =q, g, y) which appear in (2.6).
Starting with the last terms, the photonic coefficient func-
tions Czr are given up to next-to-leading order by the
following parton subprocesses. In the Born approxirna-
tion the light quarks are produced by the reaction (Fig. 2}

while the heavy quarks are produced by the same reac-
tion

y'(q)+y(k)~Q+Q, (2.18)

provided the square of the c.m. energy denoted by s,
where s =(k+q) satisfies the threshold condition
s ~4m . The 0 (a, ) PQCD corrections are given by the
one-loop contributions to processes (2.17) and (2.18) (see
Fig. 3) and the gluon bremsstrahlung processes (see Fig.
4)

y*(q)+y(k)~q+q+g,

y*(q)+y(k)~Q+Q+g .

(2.19)

(2.20)

I I I I N%

The parton cross section for the Born reaction in the case
of light quarks (2.17) can be found in [14,29]. In the case
of heavy-fiavor production (2.18) the Born cross section is
presented in [16,28]. Notice that the above reactions are
very similar to the ones where the on-mass-shell photon
y(k) is replaced by a gluon g(k). The cross sections of
the photon-induced processes constitute the Abelian
parts of the expressions obtained for the gluon-induced
processes, which are presented up to order a, for the case
of massless quarks in [24] and in the case of massive
quarks in [25]. By equating some color factors equal to
unity or zero in the latter expressions, one automatically
obtains the cross sections for the photon-induced process-

y*(q)+y(k)~q+q, (2.17)

FIG. 2. The lowest-order Feynman diagrams contributing to
the Born reaction y (q) +y( k)~q +q.

FIG. 4. The order g (a, =g /4~) Feynman diagrams con-
tributing to the gluon bremsstrahlung process y*(q)
+y(k) ~q+q+g. Additional graphs are obtained by reversing
the arrows on the quark lines.
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es above, in particular, for (2.19) and (2.20) (see Appen-
dix). In the case of massless quarks the parton cross sec-
tions for (2.17) and (2.19) contain collinear divergences
which can be attributed to the initial photon being on
mass shell. These singularities are removed by mass fac-
torization in the following way. We define

1 1 2
Vk (,Q , e)= g dz, dz25(z —

, 2)I'; (z„M , e)
0 0

Q2
XCki z2,

M (2.21)

where Pkr(z, g, e) is the parton structure function,
which is related to the parton cross section in the same
way as the photon structure function Fg(x, Q } is related
to the cross section d o /dx dy in (2.3). The parton struc-
ture function contains the collinear divergences
represented by the pole terms E J (j is a positive integer),
where e =n —4 (we use dimensional regularization).
These divergences are absorbed in the transition func-
tions I;z (i =y, q, g), which depend both on e and on the
mass factorization scale M. They can be inferred from
the Abelian parts of I; in [14,18,29,30].

Both the photonic and hadronic coefficient functions
Ck, (i =y, q, g) which appear in the expressions for
F$(x,g ) and FE(x,g ) in (2.6) are computed in the
modified minimal subtraction ( MS ) scheme. The
coefficient functions C; k in (2.6) and (2.21) can be ex-
panded in a power series in a, as

a M a, (M )

4a

(2.22)

which holds for the light- as well as the heavy-fiavor con-
tributions. The photonic coefficient functions for light
quarks C k

' and C k" can be directly derived via the mass
factorization formula (2.21) from reactions (2.17) and
(2.19), respectively. The heavy-flavor coefficients C k' '

and C k'~", which are obtained without using mass factor-

y'(q)+y(k) —+q+q+q+q, (2.23)

while C k's"' can be inferred from the contributions to

y*(q)+y(k)~q+q+Q+Q . (2.24)

Fortunately there is a quicker method to obtain the same
information. The hadronic coefficient functions needed
for the O(a, ) renormalization-group improved photon
structure functions Fg(x, g ) (2.6) can also be obtained
from deep-inelastic lepton-hadron scattering, where the
higher-order corrections are known. For light-flavor pro-
duction we have listed the parton subprocesses and the
corresponding coefficients which follow from these reac-
tions in Table I. We have given the corresponding infor-
mation for heavy-flavor production in Table II. In lowest
order the photonic and hadronic coefficient functions
have been presented in the literature (see [14,29,23,28]).
Since these authors used a notation which is different
from ours, we will present the relevant formulas below.
In next-to-leading order the expressions for the coefficient
functions are obtained from [24] (light quarks and gluons)
and [25] (heavy quarks). However, the expressions are
too long to be presented in a paper. ' The method where-
by the higher-order coefficients can be derived from the
expressions in [24,25] is explained in the Appendix.

Starting with the photonic coefficients for light quarks
[see reaction (2.17)] they are given by

ization, originate from processes (2.18) and (2.20). Notice
that in the case of massive quarks the parton structure
functions corresponding to the reactions (2.18) and (2.20)
do not have collinear singularities and they can automati-
cally be identified with the coefficient functions C k ~.

Using the mass factorization formula in (2.21) one can
also obtain the order a, contributions to the hadronic
coefficient functions Ck" coming from process (2.19).
The higher-order contributions to the hadronic
coefficient functions emerge when one calculates the
NLO corrections to process (2.17). For example, the
gluonic coefficients Ck's can be inferred from the contri-
butions to

2 2
C' ' z, =4[z +(1—z) ] ln + ln(1 —z) —ln(z) +32z(1 —z) —4 (2.25}

and

2
p(0) Q

M2
=16z(1—z) . (2.26)

For massive quarks in the final state [see (2.18)] we have

16 32 4
C2' '(z, g, m )= 4—8z(1 —z)+ z(1 —3z) — z L

g4

Nl+ —4+ 32z ( 1 —z }—16 z ( 1 —z)
2

1/2
4m1—

S
(2.27)

These functions are available from smith@elsebeth. physics. sunysb. edu
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TABLE I. List of deep-inelastic virtual-photon-parton subprocesses up to O(a, ). The one- and
two-loop corrections to the lower-order processes have been included in our calculations, but are not
explicitly mentioned in the table.

Order Parton subprocess

r*+q(q)-q(q)
r'+q(q) q(q)+e

r*+~ q+q
r*+q(q)-q(q)+a +a

y*+q(q)~q(q )+q(q)+q(q)
r *+a q+q+r

Coefficient function

p(0)
pNS, { 1 ) @S,( 1 )

k, q k, q
ge)(1)

k, g
pNS, {2) @S,(2)

k, q k, q
pNS, {2)@(pS,(2)

kq kq

and

CL'~ '(z, Q, rn )=16z(1—z)

1/2
4m

S

Pl—2 L (2.28)

where m is the heavy-flavor mass and &s is the c.m. en-

ergy of the virtual photon-real photon system. Further-
more, we have

In zeroth order of a, the hadronic coefficient functions
are

Q & 1
I++I—4m /s

z 1 —Ql —4m /s
(2.29)

p(o) z Q
2, q

=5(1—z), (2.30)

Formulas (2.27) and (2.28) can be found in [31,32].
In the next order in a„process (2.19) (Fig. 4) and the

one-loop corrections to process (2.17) (Fig. 3) give rise to
the coefficients Ck"r) (z, Q /M ). In the case that the out-
going ferrnion lines in Figs. 3 and 4 stand for the heavy
flavors [see reactions (2.18) and (2.20)], the corresponding
coefficients are given by Ck'"(z, Q, m ). More informa-
tion about the higher-order corrections to the photonic
coefficient functions can be found in the Appendix.

C)(0) z Q —0Lq z,
M

(2.31)

2
p(0) z Q

k, g
=0 (k =2,L) . (2.32)

In order a, the hadronic coefficient functions originating
from a light quark in the initial state (Table I) are given

by

2
p(1) Q

2)q
1 —z +

Q2 3—2 —2z In + ln(1 —z) ——
M 4

—2 lnz + —+—z +5(1—z) 3 ln —9—4g(2)
&+z' 9 5

1 —z 2 2 M
(2.33)

2

CL" z, =C~[4z] .
M

(2.34)

where the standard definition of a plus distribution is
used, and

TABLE II. List of deep-inelastic virtual-photon-partonic
subprocesses contributing to heavy-flavor production up to
0 (a, ). The one-loop corrections to the Born approximation
have been included in our calculations, but are not explicitly
mentioned in the table.

Notice that in order a, there is no difference between

q
and C k q' ". The coefficient functions for a g luon in

the initial state and massless quarks in the final state
(Table I) can be derived from (2.25) and (2.26) via multi-

Order Parton subprocess

) *+a Q+Q
}'*+a Q+ Q+a

@*+q (q 1~q(q )+Q +Q

Coefficient function

CH, (1)
k, g

( H(2)
k, g

C H, (2) pNS, (2) pS, (2)
k, q ~ k, q k, q
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plication by a color factor

Q
2

M

2
(o) Q

=nf TfC„), z,
M

(k =2,L) . (2.35)

(2.37)

An analogous relation holds when the massless quarks in
the final state are replaced by the heavy flavors (Table II)
and we get, from (2.27) and (2.28),

' "(z,Q, m )=Tfgk (z, Q, m ) (k =2,L) . (236)

The color factors that appear in the above equations are
given by CF =—', and T =

—,
' for the case of SU(3).

The higher-order a, corrections to the coefficient func-
tions, describing massless partons only, are denoted by
C(k,', where i =q, g (see Table I). They have been calcu-
lated in [24]. In the Appendix we have decomposed C k,

'

into color factors so that we can infer the O(a, ) photonic
coefficients C k'~ from the Abelian part of C k g.2'r

The O(a, ) corrections to the heavy-flavor coeffi-
cient functions given by C I, I(z, Q /M, m ) and
C k", '(z, Q /M, m ) (Table II) are calculated for the first
time in [25]. The relations between these coefficients and
the ones derived in Sec. V of [25] will be presented in the
Appendix. By decomposing them in color factors we
again can derive the photonic heavy-flavor coefficient
C k'z" from the Abelian part of C k'( ' Sin. ce in
lowest order the hadronic heavy-flavor coefficient
C(k,'(z, Q /M, rn ) only contributes up to the O(a, ) lev-

el, when i =q we do not have to distinguish between
singlet (S) and nonsinglet (NS) and we can put

/1 2
ps, (2) Q 2 CoNS, (2) z Q ~ 2M2™ k, q M2™

The above expression indicates that in lowest order
C'(kz'(z, Q, m ) is determined without having performed
mass factorization, which is indicated by its indepen-
dence of the mass factorization scale M. This is because it
originates from the Compton scattering process, which in
lowest order does not have collinear singularities.

Finally, in Table III we have translated our notation
for the coefficient functions into that used in
[14,23,28,29]. We also list the new contributions to the
photon structure functions which were not included ear-
lier in the literature.

III. RESULTS

In this section we will discuss the NLO QCD correc-
tions to the photon structure functions FIr(x, Q ) for
(k =2,L). In particular, we focus our attention on the
heavy-flavor contributions (mainly charm), which origi-
nate from the hadronic as well as the photonic coefficient
functions in (2.6). Since heavy flavors can be produced
either in virtual-photon parton or in virtual-photon real-
photon reactions, we will call the former hadronic
heavy-flavor production and the latter photonic heavy-
flavor production.

In the subsequent part of this section we want to make
a comparison between the LO and NLO description of
the photon structure functions, where all contributions
listed in Tables IV and V are included. Furthermore, we
want to investigate the relative magnitude of the heavy-
flavor (mainly charm) component of the structure func-
tion. %e also show the difFerence between the massless
and massive heavy-flavor approach. When the heavy
quarks are treated as massless, their contribution to the
photon structure functions are given by the correspond-

TABLE III. Notation in several papers for the hadronic and photonic coefficient functions. Notice
that the expressions in [29] are in Mellin transform space. The blanks mean that these contributions
were not considered in the papers quoted. The expressions with + can be found in [23], the ones with
s 4 in [28].

This paper

(2.25)

e 8' ' (2.26)4~'"
'4

3(x~
PH, (0) (2.27)

4m 3
c 43'. 8 ' ' (2.28)

4m 3

e'" (2.33)

(2.34)

C 2" (2.35)
e~,", (2.35)
eH'" (2.36)
C'k" [24]
PH, (1) [25]
&'k', ,' [24]
QH, (2) [25]

[29]

B',"' (4.12)

Bxs,By"' (4.10)

[14]

B (3.7)

BNs Bq (3 7)

a~ {3.7)

[23]', [28]"

—ry "' (1S)'
L~Ã

I'$, (2.13)—
X

py, (o) (16)LW
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TABLE IV. Coefficient functions used in this paper for a leading-order (LO) and a next-to-leading-
order (NLO) analysis of Ff(x,Q')/a

Order

a0,

1
&s

Parton subprocess

r*+q(q) q(q)
r*+r q+q
)'*+)' Q+ Q

r*+q(q) q(q)+g
r*+g~q+q
l'*+g Q+Q

r*+r Q+Q+g
y'+g -Q+ Q+g

y" +q(ql~q(q)+Q+Q

Coefficient function

@H,(0) LO2r
PNS, (1)

( @S,(1)
) NLO2, q 2)q

C "g NLO
C '"LO

2, g
CH") NI.O2r
C ") NLO2)g

H, (2) PNS, (2)( @S,(2)
) NLO2, q ~ 2, q 2, q

ing parton densities in the photon convoluted with the
light-quark and gluon coefficient functions. This descrip-
tion is appropriate when Q ))m . If Q is of the same
order of magnitude as m, then the massive quark ap-
proach has to be adopted and the heavy-flavor produc-
tion is described by the heavy-flavor coefficient functions
in (2.6), which can be computed order by order in pertur-
bation theory.

In the literature an LO analysis was given for
F((x,Q ) in [16] and FE(x, Q ) in [23]. Here all LO
coefficient functions in Tables IV and V were included ex-
cept for the ones related to hadronic heavy-flavor produc-
tion (i.e., r'+g~Q+Q). The last contributions were
also neglected in the NLO analysis for F/(x, Q ) in [19],
and the photonic heavy-flavor contribution from
y'+y~Q+ Q was only taken into account in lowest or-
der. An NLO analysis of FE(x, Q ) could not be carried
out previously because the order 0., contributions to all
the longitudinal coefficient functions were not known un-
til recently. Since all NLO coefficient functions are now
known, and they are listed in Tables IV and V, we are
able to present a complete NLO description for both
F( (x, Q ) and for FE(x,Q ) so that one can make a com-
parison with the LO descriptions.

In our plots we adopt the LO and NLO parametriza-
tions of the parton densities in the photon from [19] (for
other sets, see [20,21]). For nf =3 we use A&co=232
MeV at leading order, and AQcD=248 MeV at next-to-

leading order. For nf =4, both the leading-order and the
next-to-leading-order AQcD are set equal to 200 MeV. In
leading order, we adopt the one-loop result for the run-
ning coupling constant, and in next-to-leading order, we
choose the two-loop corrected running coupling constant,
as, e.g. , given in Eq. (8) in [19]. All calculations are done
by putting the factorization scale M =Q, unless indicat-
ed otherwise. In the case that the charm quark is treated
as massive, its production is described by the heavy-flavor
coefficient functions Ck; (k =2,L), and (i =q, g, r), and

C„ in (2.6) (see also Tables IV and V) with m, =1.5
GeVjc . Furthermore, the incoming light partons are
given by u, d, s, and g, which are described by the parton
densities given in [19]. In this case the number of light
flavors is given by nf =3, which has to be used in the run-
ning coupling constant as well as in the light parton
coefficient functions.

If the charm is treated as massless, the incoming charm
is described by a parton density in a similar way as is
done for the light partons u, d, s, and g. The number of
light flavors is now put to be nf =4 and, in order to avoid
double c:ounting, the heavy-charm coefficient functions
Ck; (k =2,L), (i =q, g, y'), and Cl, ~

in (2.6) have to be
omitted. Notice that the bottom- and top-quark contri-
butions will be omitted, since they are negligible for the

Q values accessible at past and present experiments. In
the subsequent part of the paper we will introduce the no-
tation that n& =3 stands for the massive charm approach,

TABLE V. Coefficient functions used in this paper for a leading order (LO) and a next-to-leading or-
der (NLO) analysis of FE(x,Q') la

Order Parton subprocess

r*+r—~q+q
)"+) Q+Q

r +q(q)~q(q)+g
r*+g—q+q

) *+a-Q+Q
r +r q+q+g
l'*+)' Q+ Q+g

r*+q(q) q(q)+g +g
r +q(q )~q(q )+q(q)+q(q)

+g q+q+g
r '+g Q+Q+g

y'+q(q)~q(q )+Q + Q

Coefficient function

@H,(0) LO
PNS (1)

( P~S (1)) LOE, q 'L, q

@H,(1)

C'q''1, NLO"' NLO
PNS, (2)( @S,(2)

) NLOE, q L, q
QNS, (2) QS, (2 ~(~ QNS, (2)

) NLOL, q ~ 'L, q E, q

'," NLOL qr

pH, (2) pNS, (2)
( pS, (2)

)L, q ~ L, q L, q
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whereas nf =4 indicates the massless charm description
of the photon structure functions.

In the LO approximation the corresponding parton
densities are multiplied by the coefficient functions in
Tables IV and V, which are indicated by LO. In NLO we
have chosen the MS scheme for the parton densities, the
coefficient functions, and the running coupling constant.
The coefficient functions which have to be added to the
LO ones are indicated by NLO in Tables IV and V. In
order to get a consistent NLO analysis for the structure
functions we follow the procedure in [19], which is ex-
plained in [18].Therefore we multiply the LO coefficient
functions by fr, and the NLO coefficient functions by f$
in (2.6} (for the notation of fr and f$, see Eq. (A23} and
the discussion in Appendix A in [19]). Notice that in [19]
the parton densities described in Appendix A were
presented in the deep inelastic scattering for photons
(DIS&) scheme. However, they can be changed into the
MS scheme via Eqs. (4)—(6} in [19]. After changing the
lowest-order photonic coefficient function C2~ in the
DIS& scheme, we have checked that both schemes lead to
the same result, provided the change of Eq. (4) in [18] is
only applied to the parton density denoted by fr as
defined above.

We now compare the results from our calculations for
F)(x,Q ) first with data from PLUTO [1] [Q =5.9
(GeV/c) ] and then with data from AMY [6] [Q =51
(GeV/c) ). We also show predictions for FE(x,Q ).

In Fig. 5 (nf =3) we make a comparison between the
LO and NLO approximation for F((x,Q ) at Q =5.9
(GeV/c), where the heavy-charm components (hadronic
and photonic) are included. The low-x hump is due to
charm production, which turns off' at about x =0.4 (the
threshold value). We also show separately the contribu-
tions due to massive charm production. When this con-
tribution reaches its maximum value it constitutes about
20% of the structure function F$ in LO, and 25% in
NLO. The 0(a, ) corrections to massive charm produc-

tion are quite large, and amount to about 50% of the
lowest-order charm component of Ff F. urthermore, Fig.
5 reveals that the LO and NLO descriptions of F$ are not
very different. Note that the data also seem to indicate
the presence of a charm component.

In Fig. 6 (nf =3) we do the same for Fg(x, Q ) at
Q =5.9 (GeV/c) . This is for theoretical purposes only:
there are no data presently available for FE at any value
of Q . As in the case of F$, Fig. 6 shows that there is not
much difference between the LO and NLO results for FE.
However, the heavy-charm component of FE is less im-
portant than in the case of F$. At LO it is about 10%
where this component reaches its maximum, whereas in
NLO it amounts to about 25%. The latter is due to the
fact that the 0 (a, ) corrections to the heavy-charm com-
ponent of FE are as large as 100%.

In Fig. 7 (nf =3) we present F$(x,Q ) at LO for three
different choices of the mass factorization scale. Note
that in this case the only variation is due to the parton
densities. The variation in the M dependence is uniform
over the whole x range. Notice that F$ gets smaller as M
decreases. In Fig. 8 (nf =3 ) we do the same for
FE(x, Q ) at Q =5.9 (GeV/c) . Here there is an addi-
tional scale dependence due to a, (M }, so that, contrary
to F(, the longitudinal structure function FE gets larger
as M decreases.

Figure 9 (nf =3) shows again the scale dependence of
F$, but now at NLO. There is now an additional scale
dependence due to a, (M ) and the mass factorization
scale logarithms of the type ln(Q /M ) in the coefficient
functions [see, e.g. , (2.25) and (2.33)]. Note that the scale
dependence is reduced over the whole x range compared
to the LO case. For x & 0.4 (above the charm threshold)
there is almost no scale variation anymore. For x )0.85
we observe that, contrary to the LO approximation (Fig.
7},F$ gets larger when M decreases.

In Fig. 10 (nf =3) we show the same plots as in Fig. 9
for FE(x, Q ). The scale variation is small as in the LO
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0.2 0.4 0.6 0.8

FIG. 5. The x dependence of F$(x,Q2) (nf =3) at Q2=5.9
(GeV/e): solid line: FpNLO); long-dashed line: F((LO);
short-dashed line: NLO heavy-charm contributions; dotted
line: LO heavy-charm contributions. The data are from PLU-
TO [I].

FIG. 6. The x dependence of FE(x,Q') (nf =3) at Q'=5. 9
(GeV/c)2: solid line: FE(NLO); long-dashed line: Fg(LO);
short-dashed line: NLO heavy-charm contributions; dotted
line: LO heavy-charm contributions.



5762 LAENEN, RIEMERSMA, SMITH, AND VAN NEERVEN

0.5 0.5 I I j I I I

0.4 0.4

0.3

Q
X

&O2

0.3

0
X

0.2

0.1

0
0 0.2 0.4 0.6 0.8

0
0 0.2 0.4 0.6

I j I I I j I I I j

0.8

FIG. 7. The x dependence at LO of Fj(x,Q') (nf =3) at
Q'=5. 9 (GeV/c)2 for three choices of the mass factorization
scale M: M=2Q (long-dashed line), M=Q (solid line), and
M =Q /2 (short-dashed line). The data are from PLUTO [1].

FIG. 9. The x dependence at NLO of F((x,Q') (n&=3) at
Q'=5. 9 (GeV/c) for three choices of the mass factorization
scale M: M=2Q (long-dashed line), M=Q (solid line), and
M =Q/2 (short-dashed line). The data are from PLUTO [1].

0.2 I I j I I I j I I I j I I j I I I

case. Notice that in the NLO case there is a turning
point at x =0.4 so that, when x )0.4, Fj' gets smaller for
decreasing M.

We now turn to a comparison of results for the massive
versus massless charm approach as discussed above.
Since the differences are essentially the same in the LO
case as in the NLO case, we only show plots for the
latter. Therefore in Fig. 11 we compare the NLO (nf =3)
massive charm-quark approach to F((x,Q ) at Q =5.9
(GeV/c), with the NLO massless (nf =4) description.
For x &0.4 (above the charm threshold) the massless
charm nf =4 description leads to a result which is small-
er than the one obtained from the massive charm ap-
proach (nf = 3 ). However, when x )0.4, where the
charm contribution is zero, the massless charm approach
provides us with larger values for Ff than given by the
massive charm description.

In Fig. 12 we show the same plots for Fg(x, Q ) in

NLO at Q =5.9 (GeV/c) . Note the enormous increase
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FIG. 10. The x dependence at NLO of FE(x, Q') (nf =3) at

Q =5.9 (GeV/c)' for three choices of the mass factorization
scale M: M=2Q (long-dashed line), M=Q (solid line), and
M = Q/2 (short-dashed line).
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FIG. 8. The x dependence at LO of Fg(x, Q ) (n&=3) at
Q'=5. 9 (GeV/c)' for three choices of the mass factorization
scale M: M=2Q (long-dashed line), M=Q (solid line), and
M =Q/2 (short-dashed line).

X

FIG. 11. The x dependence of the NLO massive charm ap-
proach to FI (x,Q') (n& =3, solid line) compared with the NLO
massless charm description (n&=4, dashed line), at Q =5.9
(GeV/c) . The data are from PLUTO [1].
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FIG. 12. The x dependence of the NLO massive charm ap-
proach to FE(x,Q ) (nf =3, solid line) compared with the NLO
massless charm description (nf =4, dashed line), at Q2=5. 9
(GeV/c) .

that occurs when we adopt the massless charm approach
(dashed line). Since this effect is already there in the LO
case, it can be understood as follows. In the case of
nf =3, where the charm is considered to be massive, one
includes the light-quark coefficient function CL' ' (2.26),
which is multiplied by —'„as well as the heavy-charm
coefficient function CL'z ' (2.28), which is multiplied by

When the charm is treated as massless with nf =4,
the coefficient function C L'( ' (massive charm) is replaced
by CL

' (massless charm). For x &0.4 the former van-

ishes, but even for x &0.4 the massless charm coefficient
function is much larger than the one for massive charm
due to the threshold suppression factor in (2.28). This ex-
plains why the result for nf =4 is much larger than for

nf =3. Notice that in the above arguments we have
omitted the influence of the hadronic massive charm
coefficient function CL'" (2.36), which is negligible for
x )0.1.

In Fig. 13 (nf =3) we show the x dependences of the

FIG. 14. The x dependence of the LO and NLO massive ha-
dronic charm contributions to FE(x, Q ) (nf =3) (solid lines)

compared with the LO and NLO massive photonic charm con-
tributions (dashed lines), at Q'=5. 9 (GeV/c)'. The NLO con-
tributions are the larger ones.

massive hadronic charm contribution and the massive
photonic charm contribution to F( (x, Q ) at Q =5.9
(GeV/c) in LO and in NLO. The corresponding results
for FE(x,Q ) are shown in Fig. 14 (nf =3) in LO and in
NLO. The interesting feature to note in all these figures
is that for x )0.01 the photonic charm component com-
pletely dominates the hadronic charm contribution. This
makes F((x,Q ) for massive charm production at
moderate x a very promising test of PQCD because of the
lack of dependence on the hadronic component. Experi-
mentally, this is of course a very difficult quantity to
determine, but perhaps not impossible. The same holds
for FE(x,Q ) for massive charm production, but that is
even more difficult to determine experimentally. Howev-
er, for x (0.01 the pointlike contributions to both F$
and FE for massive charm production become very small
and the hadronic component begins to dominate.

We now repeat in Figs. 15-24 the previous Figs. 5 —14
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FIG. 13. The x dependence of the LO and NLO massive ha-
dronic charm contributions to Ff(x, Q ) (n&=3) (solid lines)
compared with the LO and NLO massive photonic charm con-
tributions (dashed lines), at Q =5.9 (GeV/c) . The NLO con-
tributions are the larger ones.

FIG. 15. The x dependence of Fi(x, Q ) (nf =3) at Q =51
(GeV/c), solid line: F$(NLO); long-dashed line: Fl'(LO);
short-dashed line: NLO heavy-charm contributions; dotted
lines: LO heavy-charm contributions. The data are from AMY
Ãl.
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FIG. 16. The x dependence of FE(x, Q ) (n&=3) at Q'=51
(GeV/c)2, solid line: FE(NLO), long dashed line: FE(LO), short
dashed line: NLO heavy-charm contributions, dotted line: LO
heavy-charm contributions.

FIG. 18. The x dependence at LO of Fg(x, Q') (nf =3) at
Q'=51 (GeV/c)' for three choices of the mass factorization
scale M: M=2Q (long-dashed line), M=Q (solid line), and
M = Q /2 (short-dashed line).

for the case Q =51 (GeV/c) corresponding to the value
for the AMY Collaboration. We remark that now the
charm contribution switches off at x =0.85. Here the
heavy-charm component becomes, in general, larger than
in the case for Q =5.9 (GeV/c) . For F( it is 30% in

LO and NLO, where this component reaches its max-
imum. For Fi the percentages are 30 and 40, respective-
ly. The 0(a, ) corrections to heavy-charm production
are smaller than for Q =5.9 (GeV/c) . For Ff they are
up to 20% and for FE up to 30% of the lowest-order
charm component. The mass factorization scale depen-
dence for Fg(x, Q ) (k =2,L) is appreciably reduced
compared to the case of Q =5.9 (GeV/c) . This holds
for LO (Figs. 17 and 18) as well as NLO (Figs. 19 and 20).
It can mainly be attributed to a smaller value of a, be-
cause Q is now larger.

In Figs. 21 (F( ) and Fig. 22 (FE) we make the same

comparison between the massive (nf =3) and massless

(nf =4) charm approach as is done in Figs. 11 and 12,
but now at Q =51 (GeV/c) . A comparison between
Figs. 11 and 12 on the one hand and Figs. 21 and 22 on
the other hand reveals that the difference between these
two approaches becomes larger for FI'I as Q increases,
whereas for FE we observe the opposite. For Fg this is
easy to understand because CL'rI ' (2.28) turns into C'L 'r

(2.26) when Q ~ ~ and the threshold suppression factor
in the former disappears. However, in the case of F( the
physics is completely different. Here Cz' ' (2.27) [the
same also holds for C z

' "(2.36)] diverges like

M
@+2' '(z, Q, m ) — Pz '(z, Q )+P' '(z)ln, (3.1)

2
Q —+ oo m

where P,'r'(z) is the Altarelli-Parisi (AP) splitting func-
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FIG. 17. The x dependence at LO of F$(x, Q ) (nf =3) at
Q =51 (GeV/c) for three choices of the mass factorization
scale M: M=2Q (long dashed line), M=Q (solid line), and
M = Q/2 (short dashed line). The data are from AMY [6].

X

FIG. 19. The x dependence at NLO of F] (x, Q ) (n& =3) at

Q =51 (GeV/c) for three choices of the mass factorization
scale M: M=2Q (long-dashed line), M=Q (solid line), and
M = Q/2 (short-dashed line). The data are from AMY [6].
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FIG. 20. The x dependence at NLO of FE(x,Q') (n/=3) at

Q =51 (GeV/c) for three choices of the mass factorization
scale M: M=2Q (long-dashed line), M=Q (solid line), and
M =Q/2 (short-dashed line).

FIG. 22. The x dependence of the NLO massive charm ap-
proach to FE(x,Q') (n/ =3, solid line) compared with the NLO
massless charm description (n/=4, dashed line), at Q =51
(GeV/c) .

tion occurring in the splitting yacc and Cz ' is given in

(2.25). The logarithmic term ln(M /m ) has to be
resummed according to the AP equations, and 8z r ap-
pears in the next-to-leading order to the same equations.
In this way one absorbs expression (3.1} in the charm-
parton density, and this defines the massless charm ap-
proach. Notice that this also happens for the higher-
order coefficient functions CL'" contributing to FE, but
this effect is suppressed by a, . Above the charm thresh-
old the massless charm approach (nf =4}gives an equal-

ly good description as the massive charm approximation
( nf =3 ), since the lowest-order Bethe-Heitler process,
represented by C &

' ', is somehow buried in the parton
densities. However, close to threshold and below
[x )0.8 for Q =51 (GeV/c) ], both approaches start to
deviate from each other. This is no surprise because in
the case of nf =3 the charm component in this region is
suppressed, whereas it is still present for nf =4 even at

large x values. We believe that for moderate Q values
[5&Q &100 (GeV/c) ] and x )0. 1 the massive charm
approach (nf =3) is better, since we are relatively close
to threshold: W =Q (1—x)/x +4m, (see also the re-
mark in the fourth line, right column on page 1974 of
Ref. [19]).

To conclude, we have presented in this paper the first
complete NLO analysis of F$(x, Q ) and FE(x,Q ) con-
taining both light and heavy quarks. Summarizing our
findings, we have seen that for both values of Q the
NLO structure functions are not too different from the
LO ones. This is not so surprising for F$ (x, Q ), since we
used the parton densities of [19] and most of the contri-
butions were already included in their NLO analysis ex-
cept for the 0 (a, }corrections to heavy-quark production
and the contributions due to hadronic charm production,
which are numerically small. We see that the mass fac-
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FIG. 21. The x dependence of the NLO massive charm ap-
proach to F$(x,Q2) (n& =3, solid line) compared with the NLO
massless charm description (n/=4, dashed line), at Q'=51
(GeV/c) . The data are from AMY [6].

FIG. 23. The x dependence of the LO and NLO massive ha-
dronic charm contributions to F$(x, Q2) (n/=3) (solid lines)
compared with the LO and NLO massive photonic charm con-
tributions (dashed lines), at Q =51 (GeV/c) . The NLO contri-
butions are the larger ones.
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C '' z =CB'"'z +C CB ' zkq ~ M2 F FF ~ 2 A F AF ' M2

f F F FF
Q'
M

(Al)

+ (pPS, (2) Q
k, q

(A2)

where C r
'( ' and C z

' ' are the coefficients of the
(a, /4m. ) term in Eqs. (Bl) and (82) of [24], respectively.
The singlet coefficients can be split into a nonsinglet and
a pure singlet piece as follows:

2 2
(0S,(2) z Q PNS, (2) Q

k, q & M2 k, q

FIG. 24. The x dependence of the LO and NLO massive ha-
dronic charm contributions to Fg(x, g'} (n&=3} (solid line)
compared with the LO and NLO massive photonic charm con-
tributions (dashed lines), at Q'=51 (GeV/c}'. The NLO contri-
butions are the larger ones.

torization scale independence of F)2 is considerably im-

proved while going from the LO to the NLO approxima-
tion.

For FE(x, Q ) this is the first NLO analysis, and at the
same time complete, since all heavy- and light-quark con-
tributions have been included. We find that FE(x,Q )

changes very little from LO to NLO and is very stable
under scale changes. Above x =0. 1 the hadronic produc-
tion of charm is small compared with the photonic pro-
duction, while the former is dominant for x &0.01. All
this would make a measurement of FE(x,g ) (e.g. , at
LEP 2) an interesting prospect.

Our results could be used to determine more accurate
NLL parton distribution functions for the photon. This
would become especially relevant when data become
available for F)2 for charm production, and for FE. Final-

ly, we stress that, if the heavy-quark contribution could
be extracted from a measurement of F)2, this would yield
a very good test of perturbative QCD.

ACKNOWLEDGMENTS

The work in this paper was supported in part under
Contract Nos. NSF 92-11367 and DOE DE AC02-
76CH03000. Financial support was also provided by the
Texas National Research Laboratory Commission. S.R.
would like to thank Fermilab for their hospitality while
this paper was being completed. Furthermore, we would
like to thank A. Vogt for his help in using the parton
density prograin of [19].

The pure singlet coefficients Ck ' ' can be written as

PS, (2) Q
2 2

Ck ~ z,
2

=nf Tf CFDPp z(k) Q
M M

(A3)
L

where C I ' ' and C 2
' ' are the coefficients of the

(a, /4m) terms in Eqs. (83) and (84) of [24], respectively.
Finally, the gluonic coefficient is given by

2
p(2) Q

kg ilf TfCFEFF z,(k) Q'
M

+nf TfCAEFA z,(k) Q
M

(A4)

where Cl( ' and C2(s) are the coefficients of the (a, /4m)
terms in Eqs. (85) and (86) of [24], respectively. The
color factors in SU(3) are given by CF =4/3, C„=3,and

TF =1j'2, and nf denotes the number of light flavors. The
0(a, ) photonic coefficient C'k'r can be derived from the
Abelian part of 8'k s (A4) and it equals

Q
2

Ck Z,
M

2—CFEFF z,(k) Q
M

(A5)

The coefficient functions due to heavy flavor production
(see Table II) are related to the coefficients defined in [25]
in the following way. In first order in a, we have [see
also (2.36)]

A2
PH, (1)( g2 2) — Q c(0)

( ()y I L g (A6)

A2
C2s"'(z, g, m )=— [cT('(i),g')+cL '(r), g}], (A7)I z

with

APPENDIX

In this appendix we show how one can derive the
0 (a, } coefficients corresponding to the reactions in
Tables I and II from the expressions calculated in [24]
and [25], respectively. The 0 (a, ) coefficients mentioned
in Table I are given by

S —1,
4m

In second order in a, one gets, for i =q, g,

C( ' (z Q, m )=16m. dL '(il, g),
Pl Z

(A8)

(A9}
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2

Pz' '(z, g', m )=16m. [dTq'(rl, g)+dr. 'e(ri, g)],
m z

(Alo)

and

/l2
p»(2) z Q m 2

Li ' M2™
C'k z(z, Q, rn )=T&CFBFF(z,Q, m ), (A14)

(9»~ )(z g2 m2)=T (9» o)(z g& m&) (A13)
7

where Ck' ' denotes the photonic coefficient which is
given in Eqs. (2.27} and (2.28} [see also (2.36)]. In second
order in a, the expressions are analogous to the ones
presented for light-quark production in (Al), (A3), and
(A4):

2 M= 16m cL" (ri, g }+ct", (ri, g ) ln
m z m

(Al 1)
/l2

P»(2) z Q m2 T C D(k) z Q m2
kq 1 M2~ f F FF 'M2' (A15)

/l 2

C ' ' z, , m =16m c",'(ri, g)+c" (ri, g)
m z

+ [cT i'(rl, g }+cL,i'(rl, g)]

and

ll 28'' z m =TCE'"' z mkg & 2& f F FF &M2™

2

+TfC„EF~ z, , m(k) Q 2

M
(A16)

M
X ln

m
(A12)

In the above expressions the coefficients ck', ck', and dk'
for (k =T,L) and (i =q, g) are defined in Eqs. (5.3)—(5.6)
of [25]. As has already been mentioned, they are too long
to be presented in a paper and they are available upon re-
quest. Like the coefficient functions in Table I, the
heavy-Qavor contributions can be decomposed in color
factors in a similar way. In first order in a, we have C '"(z Q m )=C E'"'(z Q m ) (A17)

Notice that in the limit m ~0 the above expressions need
an additional mass factorization. After this procedure is
carried out, the coefficients BF~, DFy, EFy, and E~„pass
into their massless analogues defined in (Al}, (A3), and
(A4). The order a, contributions to the photonic
coefficient function Pk r can be derived from (A16). It is
equal to
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