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for regular articles is followed, and page proofs are sent to authors.
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In a recent paper on SU(16) grand unification, because of the presence of intermediate-energy
gauge groups containing products of U(1) factors which are not orthogonal among themselves, the
renormalization-group treatment has a few small errors. I correct it. I emphasize that one should
not switch gauge couplings at the various thresholds. It is easier, and it avoids errors, to use
throughout the gauge couplings of the standard model, and compute at each threshold, in the usual
way, the extra contributions to the P functions from the extra nondecoupled fields. I also point out
that the SU(16) grand unification theory, due to the large number of scalars present in it, is not
asymptotically free. It becomes a strong-coupling theory at energies only slightly larger than the
uni6cation scale.

PACS number(s): 12.10.Dm, 11.10.Hi

This is a Comment on the paper of Ref. [1], which is
on the grand unified theory (GUT) SU(16). The points
made in this Comment are however also relevant to the
GUT SU(15), notably its analysis in the paper of Ref.
[2], and also other GUT's. Moreover, the first two para-
graphs of this Comment are of a general nature, and one
does not need to have read any of the above papers in
order to understand them.

In the context of GUT's, when intermediate-energy
gauge groups containing products of U(1) factors arise,
people usually use the set of U(1) factors which is more
intuitive (which has some siinple physical interpreta-
tion). Those U(1) factors are usually not, however,
orthogonal relative to the active (nondecoupled) set of
fields at each energy scale. Orthogonality is defined
as follows: two U(1) charges are orthogonal if the sum
over all the active fields of the product of their values,
weighted by the factors 11/3 for gauge-boson fields, —2/3
for fermion fields, and —1/3 for complex scalar fields,
vanishes. This nonorthogonality leads [3] to errors in
the renormalization-group (RG) treatment of the theory.
More or less erroneous conclusions may then be extracted
from the RG analysis; I have given [3] as examples two
GUT's, the first one based on the group SO(10), where
the error has led only to small quantitative imprecisions
in the results of the RG analysis, the second one based
on the group SU(8), where the error has led to quali-
tatively false conclusions being extracted &om the RG
analysis. I find the same error in Ref. [1], this time in
the context of the GUT SU(16). It is a much more com-
plex case. The breaking chain of SU(16) in Ref. [1] has
several intermediate-energy gauge groups, three of which
contain products of two U(1) factors. Moreover, the au-
thors of Ref. [1]have, at each threshold energy, traded the

gauge couplings of one intermediate-energy gauge group
by the ones of the next intermediate-energy gauge group,
the procedure of which involves a matching of the gauge
couplings at each threshold, described in detail in Eqs.
(2.11)—(2.29) of Ref. [1]. This procedure, although cor-
rect, is complicated and unnecessary. I emphasize here
an argument at the end of Ref. [3]. The P functions of the
gauge couplings of the standard model can only change
in response to more fields becoming active, i.e., nonde-
coupled, at some energy in the middle of the RG evolu-
tion. That change is always computed from the Dynkin
indices of the representations of newly active fields. For
the purpose of the RG evolution, it is irrelevant whether
the effective gauge group changes or not at the thresh-
old (i.e., whether at the threshold some gauge bosons
become active, or only fermions and/or scalars become
active). One just needs to compute the color representa-
tions and the weak-isospin representations and the weak
hypercharges of all the fields which have their masses
at each threshold energy, and take them into account in
the normal fashion in the computation of the P func-
tions. This procedure is transparent, and it avoids both
the pitfall of the intermediate-energy gauge groups with
products of U(1) factors, and the complication of having
to trade some gauge couplings for others with the use of
matching functions.

What was said above should be physically intuitive.
Its mathematical justification is in the fact that all the
gauge groups at each energy range, including the U(1)
factors, must be orthogonal to each other, relative to the
set of fields active at the particular energy. The sum over
the active fields of the product of the eigenvalues of any
two generators of the gauge group must always vanish.
Otherwise, the gauge bosons coupled to those genera-
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tors mix by means of the one-loop vacuum-polarization
diagrams. Then, it is meaningless to talk about the one-
loop RG evolution of the gauge couplings of each of those
gauge bosons, because at the one-loop level those gauge
bosons are mixing during their propagation. Now, if
all the generators of the intermediate-energy group are
duly orthogonal, then the argument at the end of Ref.
[3] shows that the following two procedures lead to the
same result: performing the RG evolution in terms of
the intermediate-energy groups, or performing all the RG
evolution in terms of the gauge couplings of the standard
model. The second procedure is much simpler.

In the breaking chain of SU(16) studied in Ref. [1] there
are three intermediate-energy gauge groups containing
factors U(1)SU(1). If we consider Eqs. (2.31) and (2.32)
of Ref. [1],we observe that the P functions of the U(1) fac-
tors are not needed in the computation of the evolution of
A3 and of n21 . Therefore, that computation is correct (I
have checked it). The problem is with the computation of
the evolution of the hypercharge gauge coupling. Table I

]

gives the set of scalar fields active at each particular en-
ergy. It is clear that, because of the representation 5601,
the charges U(l)~& and U(l)~& in the intermediate-energy
g~~g~ group 4'3L, 2L, 3R3R1~1~ a«not orthogo nal. A»
consequence, the contribution in Ref. [1] of the 560i to
the RG coefFicient for the hypercharge-coupling RG run-
ning between energies Mii and Ms~ (9/10) is wrong: the
correct value of that coefFicient is 0, as is evident from the
fact that all the scalars of the 5601 active at that energy
scale have a vanishing hypercharge. Similarly, the contri-
bution of the 5602 to the running of the hypercharge used
in Ref. [1] is wrong in the energy range Mi. & M ( Mqi.
In the first part of that range, M3~ ( M & M4~, the cor-
rect coefficient is 9/10 instead of 9/2, and in the second
part of that range, MY ( M ~ M3~, the correct coef-
ficient is 0 instead of 18/5 (once again, because all the
scalars of the 5602 active at that energy scale have zero
hypercharge) .

As a consequence of these small errors, Eqs. (2.35) and
(2.36) of R,ef. [1] should be replaced by

2~
nQ

ln10
457 1 179 1 3005 1 4943

12 096 ' 1792 48 384 16 128

397 3439 1171 2285 47 245 41 875
3024 16 128 1728 6048 16 128 16 128

2~n12-
ln 10

1 3 —1 5
'(Mz) + —~ '(Mz) ——n '(Mz)

24 3c 21 96 1Y
7

32 '
1 7 13 5 85 75

+—nY ——n3~ + —n4~ + nB + n6R ——n6I. .
6 32 24 12 32 32 (2)

From these equations the correct versions of Eqs. (2.38) and (2.39), and of Eqs. (2.41) and (2.42), can easily
derived. It may also be useful to give the value of n~(M~):

—1 —1
G ( G) 72 576 3c ( ) 10 752 21, ( z) +

0 304 i&(Mz)

ln 10 tt'419 735 54 035 218 825 54 523
27r 96 768 18 144 96 768 10 368

186 715 208 283 686 405

36 288 96 768 96 768

It is easy to check that these corrections to the results
in Ref. [1] may sometimes be highly relevant. For in-
stance, for nY ——2.5, n3~ ——2.6, n4~ ——12.0, n~ ——13.1,
ns~ = 13.5, and nsl, = 13.6, Eqs. (1) and (2) give
n12 ——13.71 and n~ ——13.81, i.e. , M12 and Mt- about 2
orders of magnitude smaller than what would have been
found &om Ref. [1].

A second comment that I want to make is that the
SU(16) theory has such an enormous number of scalars
that it is not asymptotically free and it is strongly cou-
pled. Let us calculate the precise extension of this effect.

The Dynkin indices lR of the relevant representations R
of SU(16) are

91
l16: ) l 136 —9 ) l255 —16 l560 ) l1820 182

423
l2160 — ) l14144 1664 .

2

The 2160 is contained in the product 16 x 136, and I
will refer to its use later. The P function for SU(16) is
computed as in Eq. (2.4):
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11 1
P,s= —x16 ——x6

3 3

1 91
6

2 x 182+16+1664+16+2x—
2

91+16+2x —+2x —+2x9
2 2

1937
6 (5)

The P function is negative, which has as a consequence
the existence of a Landau pole [divergence of the gauge
coupling of SU(16)]. The energy Ml. at which that pole
occurs is given as a function of the uni6cation energy MG
by

ln = n~ (MG. ).ML, 12m

MG 1937 ~ (6)

For cr&. (M~) 10, one obtains ML, /MG 1.2. This
means that the SU(16) theory becomes strongly coupled
almost immediately after M~. It is not clear to me what
the cosmological consequences of this fact might be. But
it is clear that the threshold eÃects at MG. are enormous
and that they are not calculable in perturbation theory.

Notice that in the calculation of Pqs in Eq. (5) I have
taken into account the existence of mirror fermions (by
writing, in the second term of the right-hand side of that
equation, a factor 6 corresponding to six fermion fami-
lies), but I have not taken into account the extra Higgs
Gelds which are needed in order to give mass to those mir-
ror fermions. Those extra Higgs representations will ren-
der Pqs even more negative, and therefore make ML, /MG
even smaller.

In order to lessen the problem (but not eliminate it),
one might break SU(12)s to SU(3),g SU(2)sL, 8 U(l)~y
directly by means of a complex 2160 of SU(16), which
contains a (1,924) of SU(4)I SSU(12)~. This would avoid
the 14144 of scalars, which is the largest single respon-
sible for the negativeness of Pqs. This is however not
enough to render Pl s positive. It appears that, if we want
to have GUT's based on such large groups as SU(15) or
SU(16), we must accept that the GUT is nonperturba-
tive for practically the whole range of its validity, &om
M~ up to the Planck energy.

After completion of this work I became aware of the
paper in Ref. [4], which anticipated some of the results
in Ref. [3].

I acknowledge useful discussions with Professors L.-F.
Li and L. Wolfenstein. I also thank L. Wolfenstein for
reading the manuscript. This work was supported by the
United States Department of Energy, under Contract No.
DE-FG02-91ER-40682.
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I do not claim that this way of breaking of SU(12)s will
preserve desirable features of the theory, like the possibility
of a low uniication scale. I have not done a RG analysis
of SU(16) with breaking via the 2160 because that breaking
scheme by itself alone is not enough to solve the problem of
the negativeness of Pls.
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