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We consider the two coupled channels VL VL and HH where H is the Higgs boson and V& the longitu-

dinal vector boson. We unitarize the tree diagram amplitudes using the coupled channel N/D method
and compute s- and p-wave scattering amplitudes for a range of Higgs boson mass values. We also find

values for the Higgs boson mass at which the potential is sufBciently strong to give a bound state below
the VV threshold (around 1.2 TeV for one choice of potential term).
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I. INTRODUCTION

Knowledge of deviations of vector-boson scattering
from lowest-order electroweak perturbation theory pre-
dictions is essential for accurate interpretation of future
proton-proton collider results for vector-boson produc-
tion. Toward this end a number of authors have comput-
ed corrections for various values of the Higgs boson mass
using various approaches. Such efforts include the origi-
nal calculation of Dicus and Mathur [1]showing that, for
sufficiently large Higgs boson mass unitarity would be
violated, the influential calculation by Lee, Quigg, and
Thacker [2] of longitudinal vector-boson scattering and
related processes in the N/D "determinantal" approxi-
mation, the N/D calculation of Contogouris et al. [3] of
the Higgs boson as a "bootstrapped" bound state of HH
scattering and as a resonance in ZZ scattering, the N!D
calculation of Hikasa and Igi [4] of H as an N/D
"bootstrapped" bound state in vector-boson scattering,
the N/D calculation of Sivers and Uretsky [5] of the
same nature but with different assumptions including, im-
portantly a free parameter in a subtraction constant, the
s-wave E-matrix unitarization by Repko and co-workers
[6], analytic approximations to unitarity using Pade ap-
proximants by Truong et al. [7], s-wave and p-wave uni-
tarization by Dicus and Repko [8] using Pade approxi-
mants, s- and p-wave unitarization by Veltman and Velt-
man [9] by carrying over pion-pion scattering results, a
Hamiltonian model for the Higgs resonance by Chiu, Su-
darshan, and Bhamathi [10], self-consistent calculations
using a Pade approximant unitarization scheme by Balazs
[11],a comparison of pion-pion and vector-boson scatter-
ing results by Atkinson, Harada, and Sanda [12], and a
study of the effects of final-state interactions by Basde-
vant et al. [13].

Our calculations in this paper use the N/D method.
The defining property of the method is that, given a po-
tential, it produces an amplitude that satisfies a unitarity
condition and has the same discontinuity across the left-
hand cut as that of the potential. Our unitarity condition

is that of elastic unitarity in the two coupled channels

VL VL and HH where VL is a longitudinal vector boson.
The HH channel is an important one because the poten-
tial rises as IH, although the effect is damped by the
4rnH increase of the elastic threshold. As Lee, Quigg,
and Thacker [2] point out, however, the H lifetime de-
creases rapidly (mH ) with increasing mz, casting doubt
on the validity and interpretation of HH scattering re-
sults.

We adopt the viewpoint that while the H lifetime falls
with mH, HH scattering increases and at the same time

VL VL scattering into inelastic channels rises with the HH
intermediate state potentially a major contributor. We
thus consider the inclusion of the HH intermediate state
potentially an improvement over the consideration of
only VL VL elastic scattering. To some extent, effects of
inelasticity are independent of the details of the inelastici-
ty. Specifically the opening of inelastic channels provides
increased attraction in the lowest threshold channel so
that, at the very least, inclusion of the HH intermediate
state should provide qualitative insight.

A second thorny issue is that of (unknown) subtraction
constants in the s-wave dispersion relation. Within the
standard model (SM), s-wave VL VL scattering is calcu-
lable in low order with no undetermined parameters;
however, for a large Higgs boson mass it must be unitar-
ized by higher-order diagrams. These corrections do not
"hold fixed" VL VL scattering at any point. Thus, if we
made a subtraction at the symmetry point

s=t=u =—', mz,

~ =(pi+pal }'

t =(p, —p3}
u =(pi pc)

(1.2}

it would not be correct to set the amplitude for VL VL

where for p&+p2 —+p3+p4 we make the conventional
definitions
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scattering at the symmetry point equal to its tree-diagram
approximation.

At least two approaches to the subtraction constant
problem are possible. (1) We can (and will) assume no
subtraction is needed. We will calculate within the X/D
"strip approximation" [14] in which numerical results are
achieved without a numerical need for a subtraction to
eliminate divergences; within that approximation numeri-
cal results are relatively insensitive to the width of the
strip. (2) Alternatively, we could make a subtraction and
then attempt to relate the subtraction parameter to a
physical quantity as, for example, Sivers and Uretsky do
in adjusting mII and the subtraction constant so as to
reproduce the Higgs position and width. We adopt the
first approach with the aim of providing readily compara-
ble numerical experiments by varying the i~put potential.

We are thus led to a third related issue, the form of the
potentia1 to be unitarized. Three choices present them-
selves immediately; others are possible.

(a) We can comp«e VaH VvH»d Vvv f« the c«-
pled reactions HH ~HH, VI VL ~HH, and

VL VL VL VL for high J and analytically continue to
low J. This procedure intentionally omits contact and
direct channel pole terms. Its virtue is that it takes from
the SM only the quantum numbers of the particles of in-
terest and the relation between the couplings of the ex-
change particles and m~.

(b) We can add, to the potential matrix above, the s-

channel elementary particle corresponding to the Higgs
boson. We do this by adding a pole to V with the Higgs
position and residue.

(c) We can add, to the potential matrix above, the con-
stant contribution necessary to reproduce the full tree
amplitudes.

Below we solve the coupled channel N/D equations for
all three choices. Our goal is to aid in providing assis-
tance to those involved in preparing to search for a heavy

Higgs boson at the CERN Large Hadron Collider (LHC).
Toward this end we consider three questions.

(1) Onset of low-mass s-wave bound states. For m~
suSciently large the attractive force should give rise to a
s-wave bound state in VL VL scattering. Such a bound
state would appear to be an intermediate mass (or low
mass) Higgs boson. However, a theory with an elementa-

ry H with a mass m& so large as to predict the presence
of an absent particle would not make sense. If a value of
m~ above which a VL VL bound state is predicted could
be established, we could limit the Higgs boson search to
masses below that value. It then makes sense to attempt
to compute such a mass value with a variety of different
unitarization methods (in the absence of a single compel-
ling one).

(2) Unitarized VI VL scattering amplitudes. As I& in-

creases, the residue of its pole increases and it becomes
increasingly dificult to establish from VV production the
existence of an s-wave pole. Again it appears to us useful
to compute VL VL scattering with a variety of unitariza-
tion methods, including the N!D method.

(3) p-wave and I =2 scattering. A partial-wave
analysis of Wl 8'I production wi11 not be easy. It there-
fore appears useful to compute p-wave scattering as well

as s-wave scattering in order to determine plausible

ranges for corrections to the s-wave predictions. We note
that s-wave exchanges do not produce p-wave resonances
and we do not consider in this paper bootstrapping p-
wave resonances. Finally we address as well isospin two
scattering which is needed for predicting 8'L+ 8'I+, Z~ Z~,
and 8'I WL.

Our objective is to study the questions cited using the
three potentials discussed above. Section II gives the de-

tails of the formalism. Section III describes the numeri-

cal computations and their results. Section IV has a dis-

cussion of these results.

II. FORMALISM

We proceed in the approximation of degenerate Z and

W, miv=mz=mv. We do not set m~/m~ to zero. We
consider the amplitudes AJ =0 ( VL VL ~ VL VI ),

AJ —p( Vl VL ~HH)& AJ 0(HH~HH)& AJ —0 ( VL VL

VLVL ), and AJ i'(VLVL ~VI Vq).
We write each amplitude A as N/D, where D's singu-

larities are those required by unitarity (for positive ener-

gies) at thresholds while N has all the singularities but
those of D. With this decomposition it is well known [14]
that an integral equation for X can be written and that D
can be found from 1V. The density of states factor p, for
the s-wave VL Vl, s-wave HH, and p-wave VL VL, systems

are

pov(s) = i (1 4m v/s)

poH(s) = Ti(1 —4mH2/s)1/2

p, v(s) =(s —4m v) ~ /(8s '~
) .

(2.1)

(2.2)

(2.3)

1,p(s')N (s')
77 RHC S S

(2.5)

where V is the input "potential" with no right-hand cut
(RHC). The N/D method is such that, along the left-

hand cut, discA =disc(XD ')=disc V, as can be seen
from Eqs. (2.4) and (2.5) while along the RHC
discA =p~A~ = ImA.

%'e take the potentials for the five amplitudes from
standard model tree diagrams; thus we have, letting

A~ =2G~m~/(8~&2),

2

VJ:0(s)=AM 1n(1+4vv/m~)
4v~

3 ~a 5
2

Qp Ct4
S fPl H

(2.6)

We note that our phase space factors correspond to a
choice of elastic scattering of the form (W/q)e' sin5
while the Lee, Quigg, and Thacker [2] choice is

( W/2q)e' sin5. Thus our potentials in (2.6)—(2. 10)

below, where comparable, are twice those of Lee, Quigg,
and Thacker. The N/D equations are

N(s) = V(s)+ —f ds', p(s')N(s'), (2.4)
1 , V(s') —V(s)

RHC s s
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VvH(s)— 3
J 0 2

1/2

~M
2$'aqv

zi+1
z) —1

+3
2

mH
aZ+a4

s —mH
(2.7)

scattering and ZL ZL scattering are given by

( W+ WL ~W+ W )=—'A +—'A '+ —'A
L 2 6

(2.18)

(2.19)
3mH

Vz 0(s) =3k,~ in(1+4vH/mrt),
2VH (ZL ZL ~ZL ZL )= —,

' A +—', A (2.20)

2
mH—3 aZ —a4

s —mH
(2.8)

and that, in deriving the potentials above and in the dis-
cussion below, we have used the crossing matrix of Chew
and Mandelstam [16]:

m
VJ ('(s}=A,M Q)(1+4vv/mH ),

2~v

VJ 0 (s) =Est ln(1+4vv/2mH )—a4
4vv

(2.9)

(2.10)

2/3 2 10/3
att. = 2/3 1 —5/3

2/3 —1 1/3
(2.21)

where qv=vv=(s 4m v)/ pH =vH =(s H }/
s =(p, +p2) =4(pH+mH ) =4(qv+m v), Q is a Legendre
function of the second kind, and

F =1—4mv/mH+2smv/mH (2.1 1)

and the three cases (at, =a4=0), (at =l,a4=0), and
(a~=a&=1) correspond to taking the J =0 potential to
be the result of analytic continuation only, analytic con-
tinuation plus the addition of a (direct-channel) elementa-
ry particle, and the full field theory tree amplitude, re-
spectively. Additionally, we have

z, =(mH —s/2)/(2pHqv) . (2.12)

D; (s)=1——f, p;(s')N; (s'),1 s
lj

7r RHC St S
l lJ

A, (s)=Nk(s)[D(s")]k ',
(2.14)

(2.15)

where (i,j ) equals (1,2) for (HH, VL Vt ). It can be shown
that V; being symmetric implies A,. - is symmetric.

Partial wave cross sections are given by

4m(2J+1)0J=
k

pA (2.16)

where k is the c.m. momentum. Bound state poles corre-
spond to zeros of D. Their coupling constants (and
widths) are given by

I,=N(so) BD =2@'I ~, (2.17}

where W=&s is the total c.m. energy [15].
For completeness we note that amplitudes for 8'L+ 8'L

The solution of (2.4) and (2.5), with potentials Vz
and VJ:0 (and phase space factors p, v and pov) then
yield the amplitudes AJ &' and AJ 0. The I=o, J=o
amplitudes give rise to coupled equations as follows:

,
Vk(s'}—Vk(s)

N J(s) = V7(s)+ —f ds', pk(s')Nkj(s'),
7T RHC s s

(2.13)

Consider the meaning of the factors az and a4 in
(2.6)—(2.10). If a~ and a~ are both 1, these equations sim-

ply reproduce the tree-diagram approximation to the (one
Higgs doublet) standard model amplitudes. "olution of
the N/D equations then constitutes one method for add-
ing higher-order contributions, specifically those parts of
loop diagrams with two-body threshold singularities. If
both at and a~ are zero, (2.6)—(2.10) give the results of
analytic continuation of the potential, in complex J, from
high J (for which there are no direct channel bound states
or resonance contribution, no one vertex diagram contri-
bution, and no terms nonanalytic in J induced by cross
channel pole spin factors) to low J. The result of this
continuation is to subtract from the az =a4=1 potentials
those contributions just cited —the direct channel Higgs
pole, the various one vertex four point Higgs diagrams,
and an extra constant term that arises from the coupling
of the exchanged Higgs scalar to spin one particles. That
is, write t/(t —mH ) = I+ mit /(t —

mH ); with a4=0 only
the second term on the right-hand side (RHS) is kept.
Use of this potential constitutes an attempt to
"bootstrap" the physical Higgs boson.

If there is a value of mz for which the result of solving
the N/D equations (for the a~=a4=0 potential) is to
give an s-wave bound state at m&, with the same coupling
to H and V assumed in computing the crossed Higgs pole
contribution to HH and VV scattering, that value would
be a unique self-consistent one. For that value of mH the
scattering amplitudes would be analytic in the J plane
and the Higgs boson would lie on a Regge trajectory. If
this were to happen, the scattering amplitude would be
completely determined by specifying the particle content
of the theory and enforcing the requirements of unitarity
and analyticity, but there would be no assurance that the
corresponding field theory is renormalizable. Choosing
az = 1, and a4= 1 specifies a theory in which the scatter-
ing amplitude is analytic in J except for the contribution
of an elementary s-channel Higgs boson [related to a
Castillejo-Dalitz-Dyson (CDD) pole [17]]. Lee, Quigg,
and Thacker [2] consider only the a~ =a~= 1 possibility,
while Contogouris et al. [3] search for a bootstrap solu-
tion with only the az =a4=0 possibility. We provide re-
sults for all three cases.
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III. CALCULATIONS

Our calculations were performed on a Vax 6420 using
the routine uNRG from the IMSL.MATH library to in-
vert the matrix approximation to the one-channel and
two-channel integral equations (2.4) and (2.13). For the
single channel case we approximated the kernel of (2.4)
by a 100X100 matrix; for the coupled channel case we
used 100 s-values in each channel for a total of 200 X 200.

A. I =0 scattering

We begin with coupled channel, I =0 scattering for
which we looked at four possibilities for the two by two
( VL VL, HH) potential matrix (2.6)—(2.8).

(A) ai =a4=0; no VL VL ~HH coupling. Recalculat-
ing this case permitted checking against the single chan-
nel work of others, as well as providing a base line against
which one can see the effects of more elaborate potentials.

(8) ap =a&=0 with VL VL HH co—upling as given in

(2.7). This case corresponds to the classic "S-matrix
theory" approach as described above.

(C) a4=0, and ai, =l (with VI VL HH cou—pling).
Here an elementary Higgs boson is explicitly introduced
into the s channel.

(D) a4=ai =1 (with VL VL HH cou-p—ling). This case
corresponds to the full field theory potential of Lee,
Quigg, and Thacker [2]. We augment it with the off-

diagonal contributions as well.
These cases give rise to strikingly different potentials.

For VI VI ~ VI VL, for example, in cases (A) and (8), V

is positive definite and approaches a nonzero constant at
s =4M]„in cas'e (C), V has a pole at s =mH, is negative
just above the pole, and then returns to slowly decreasing
positive values; in case (D), Vis essentially linearly rising
near s =4MV but above the pole at s =mz approaches a
negative constant. Table I illustrates the wide variation.

The result of solving Eq. (2.13} for N, evaluating D
from (2.14) and finding the zeros of D (poles of the
scattering amplitude) is, for case (A) as follows. For
small mH, D has no zeros and is close to unity', corre-
spondingly the full amplitude is close to that of the po-
tential V. As mH is increased from zero, a minimum in

p;N;(s')
D, =1— s', I. = VI VI,HH

S; s s

develops near the threshold (si, =4mv, sH=4mH). For
sufficiently large mH (1.4 TeV) the minimum value of D
goes negative so that the amplitude has a bound-state
pole just below the threshold, the second, above thresh-

old, zero of D represents a value of s for which the phase
shift is falling through ~/2, as required by Levinson's
theorem [18], to its asymptotic value. No resonance is
possible (with purely attractive potentials) for an s-wave
channel since, with no centrifugal barrier, there can be no
partially confining well. As mH is further increased the
bound-state pole moves to lower values for ss(mH )/mH.
sz eventually goes negative.

In case (8), the result of the off-diagonal interaction is
little change in the bound state near 4mH, but significant
extra attraction in the effective VL VL channel so that the
onset of the bound state comes at lower mH (1.2 TeV vs

1.4 TeV). The result of case (8) is relatively little
modified in passing to case (C). Case (D), however, is

significantly different since the nonanalytic (in J) contact
terms constitute a sizable repulsive potential. Positive V
tends to give positive N and that makes D less than one;
negative N values tend to make D greater than one pre-
cluding the zeros that represent bound states. Neverthe-
less, at low s, V is positive and rises linearly and for
sufficiently large mH bound-state poles appear (at
m0=2. 3 TeV). These results are summarized in Table
II.

We turn now to the I =0, Vl VL scattering amplitudes.
In Figs. 1-4 we present the results for the I =0 ampli-
tude, (e ' —I )/2i, discussed above.

(A) ap=a~=0, with V(KH~VL VL } set equal to
zero, followed by three cases with V(HK~ VL VL ) not
set to zero: (8) ai, =a&=0; (C} ai, = l, a4=0; (D)

a~ =a4=1. For each of these four cases we plot the po-
tential and the real and imaginary parts of (e ' —I)/2i
for the range 8'=2m& to 8'=2 TeV. For completeness
we note that, in our calculations, 2m &=0.170 TeV; our
points begin at 0.175 and are calculated at intervals of
0.025 TeV. We truncate the curves for the potential at
absolute value one.

Case (A): In Figure 1(a) [mH =0.5, V (HH
~ Vz VI ) =O, ai, =a4=0] we see an example of a general

effect expected from unitarizing an attractive potential.
ReA is slightly larger than V for low 8'and slightly less
at high W: Figure 1(b} for mH=1. 0 TeV maintains the
same general shape. In Figs. 1(c) and l(d) we see the elas-

tic VV amplitude falling through n. /2 at 0.25 TeV and 0.6
TeV since, as discussed above, for mH & 1.4 TeV there is

a bound-state pole, which is, of course, not shown be-

cause it lies below threshold. This, of course, raises the
general point that if an intermediate mass "Higgs parti-
cle" is discovered below the 2m ~ threshold, it will not be
clear that such a particle corresponds to the Higgs boson
in the standard znodel Lagrangian; conceivably there
could be a high mass SM Higgs boson that produces

TABLE I. Selected values of the potential V for
Vl VL ~VL VL for the four cases (A), (8), (C), and (D).

Higgs boson mass, s (in TeV) (A),{B) {C)

TABLE II. Approximate minimum values of the Higgs-
boson mass mz for which VV bound states appear.

Minimum M~ (in TeV)

mH=1,
mH=1,
mH —2)

m& =2,

s =0.2
s =6.0
s =0.2
s =6.0

0.60
0.22
2.56
1.6

1.86
—0.02

6.6
—7.4

0.22
—1.6

0.16
—13.4

(A)
(B)
(C)
(D)

1 4.

1.2
1.2
2.3
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0.07—

0, 06—

0,05, — 0.4—

0,04—

0,03— 0,2—

0, 02—

0,01—

0
0

1, 0

0.5
I

1,0
W(TeV)

1, 5

0

-0, 2 '

0

1,0

0, 5
I

1.0
W(TeV)

I

1,5 2, 0

0.8-

0,6—

0,4—

0.8—

0,6—

0 4

0,2— 0, 2—

-0,2-
0

-02-
—Q 4

I

1, 5
I

1.00 0, 5 1.0
W(TeV)

1, 5 20 0, 5 2,0
W (TeV)

FIG. 2. The same as Fig. 1, but with HH~ VL VL included. The potential is assumed to be the result of analytic continuation
only, i.e., a~ =a4=0 [see Eqs. (2.6)-(2.10)]. Again (a)-(d) assume I equal 0.5, 1.0, 1.5, and 2.0 TeV.

0, 15

O. 10—
(a)

(b)
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0,05—

(c) ~ (c)
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-0,05—
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I, Q

(a)

0.5 1,0
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I

1.5

(c)

2.0
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0 0, 5
1

1,0
W (TeV)

1, 5 2.0

0,5-

—05- -0.5—

—I.O
0

I

0, 5
-1,0

00.5 2.Q1,0 1.5 1,0
W(TeV) W(TeV}

FIG. 3. The same as Fig. 2, except for the addition of a direct channel elementary particle (ap = 1).

I

1.5 2,0
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displayed in Eq. (2.10). The result for the real part of the
scattering amplitude for the four mH values cited is given
in Fig. 9. The result for the mH value at which bound
states appear is very similar to that of case (D) with I =0.
The I =2 field theory potential differs from the I =0 one
in the absence of the elementary particle pole and its as-
sociated repulsive constant term:
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tive" case. (a) shows the real part of the amplitude; (b) gives the
imaginary part. The three "minority" curves have W& =3mH.

C. I =2 scattering

As with I =1, I =2 scattering is a single channel cal-
culation. As with I =0 there is a choice in the potential
between (i) the analytic continuation of the potential from
high J to J=0 or (ii) the field theory (SM) tree diagrams.
If choice (i) is made the result is just that of choice (A) in
Sec. IIIA above. That is, the contribution to I =0 and
I=2 scattering of the t and tt-channel p-oles is identical
so that the scattering is that of Figs. 1(a)—1(d) for the
four different values of mH (0.5, 1.0, 1.5, and 2.0 TeV).
There is, of course, no I=2 elementary particle pole
since in the SM there is no elementary I =2 Higgs boson.
In the I =2 case bound-state poles occur below the VL VL

part of) I =J=1 scattering. The imaginary part is essen-
tially zero and the potential is essentially equal to the real
part of the amplitude.

IV. DISCUSSION

We have considered coupled channel VL VL and HH
scattering in the N/D approximation along the lines of a
number of dynamical calculations listed in Sec. I above.
There are, of course, a variety of other approaches to the
problem such as those recently reviewed by Chanowitz
[19].

From the results of Sec. III, we see that, for an elemen-
tary Higgs boson of mass less than 1 TeV, N/D unitari-
zation predicts very little nonresonant background in VV
scattering below 2 TeV. This conclusion is clear from
Figs. 6(a) and 6(b), augmented by Figs. 8 and 9. It is
essentially independent of the choice made, among the
potential cases investigated in Sec. III, for the potential in
s-wave scattering.

For Higgs boson masses in the region above 1 TeV the
results do depend on the assumptions about the potential.
Assuming that the "correct" potential is the full field
theory tree amplitude, our results are that, in spite of the
large values of the potential in Figs. 4(c) and 4(d), the uni-
tarized amplitudes for mH = 1.5 and mH =2 TeV contain
a narrowed Higgs bound state.

On the other hand, if the appropriate potential is that
obtained from analytic continuation from high J to J=0
[with a simple pole added for the elementary Higgs case
(C)] then the (narrowed) elementary Higgs boson is ac-
companied, as mH approaches 1.2 TeV, by increasing
strong scattering just above the VV threshold. For
mH & 1.2 TeV a bound state develops at the VV threshold
and for increasing mH the bound state moves to smaller s,
eventually becoming a tachyon. A VVbound state would
be distinguishable from a low-mass elementary Higgs bo-
son because its residue would be greater, with the ratio
increasing as the binding deepens.

TABLE III. Residues at the bound state for cases (A)-(D).

Bound state mass (TeV)

0.16
0.13
0.11

Res(A)

0.01
0.05
0.08

Res(B)

6X10
0.03
0.05

Res(C)

7X10
0.03
0.06

Res(D)

8x 10-'
3X10
4X10 3

Res(SM)

3x 10-'
1.3x 10-'
8x 10-'
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FIG. 8. The real part of the amplitude for I =J =1 scatter-
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TeV.

FIG. 9. The amplitude for I =2 scattering, with the potential
of Lee, Quigg, and Thacker [2]. Again the curves (a) —(d) use

mH equal to 0.5, 1.0, 1.5, and 2.0 TeV. The real part is in (a),
the imaginary part in (b).

A major feature of the results is the narrowing of the
elementary Higgs width. As is clear from, for example,
curves (c) and (d) of Figs. 6(a) —6(c), the unitary ampli-
tudes generated by the N/D procedure give widths for
the peaks in the I=J=O amplitude far less than the
values predicted on the basis of the potentials of (2.6). At
mH =1.5 TeV, Eq. (2.6) would predict a width well in ex-
cess of 1 TeV, an essentially unobservable resonance,
while Fig. 6(c) shows a striking resonance peak of width
well under 100 GeV. This narrowing could be an artifact
of our approximations; however, it should be noted that
such narrowing would violate no known principle such as
analyticity or unitarity.

Our results may be compared with dynamical calcula-
tions that use the E-matrix or Pade approximants to uni-
tarize [6,7,8]. For the K-matrix case the only output res-
onance is the input resonance and the input width is
preserved. For the Fade case the output resonance is the
input resonance for m& &2.6 TeV. For higher mz the
position of the output resonance falls below mz, increas-
ingly so with growing mH. The output width is of the
same order of magnitude but somewhat smaller than the
width of an elementary Higgs boson at that output mass.

It is important to note that our use of the inelastic
channel HH in VV scattering is only a first approxima-
tion to the effects of inelasticity. We have neglected the
whole series of nV thresholds (n =3,4, . . . ). Each of
these would be expected to add further attraction to
VL VL scattering similar in form to that of the HH chan-
nel but beginning at significantly lower energy. The re-
sult could well be "Reggeization" of VL VL scattering,
with a requirement to carry over to VV scattering much
of the panoply of "classical" strong interaction scattering
complications if a dynamical understanding of the VV
scattering is to be achieved.

In summary, we have checked the original conjecture

of Lee, Quigg, and Thacker [2] that, for large mH, VL Vl
scattering would manifest a low-mass s-wave bound state
in the N/D method; we have shown that such a bound
state does not occur until mH reaches 2.3 TeV for the Lee
potential choice. We have investigated VL VI scattering
for I =0, 1, and 2 including the effects of one inelastic
channel (HH), for two plausible candidates for the poten-
tial, in addition to that of Lee, Quigg, and Thacker. For
these other candidates a low-mass, I=0 bound state
occurs at significantly lower values of mH (1.2 —1.4 TeV).
In all cases, p-wave scattering is small. I =2 scattering is
close to I =0 scattering because the two potentials are
essentially identical except for the direct-channel elemen-
tary Higgs pole. The figures provide quantitative results
for use in estimating event rates. Table III compares the
width of a bound state Higgs boson with that of an ele-
mentary standard model Higgs boson. We note the
dramatic narrowing of a TeV range Higgs boson that
may be a consequence of the unitarity condition.
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