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Variational calculation of the phase shifts in the A,P model
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In this paper, we develop Schifi's discretization procedure for calculating the phase shifts in the A,P~

model in (8 +1)-dimensional space-time (D )0) with the Gaussian wave-functional approach. In 1+1
and 2+ 1 dimensions, the phase shifts are negative, which indicates the interaction between two pions is

repulsive. In 3+1 dimensions, the phase shifts vanish. We also discuss the dependences of the phase
shifts upon the scattering energy in detail.

PACS number(s): 11.80.Fv, 11.80.Et

The scattering process serves as a major source of in-
formation about the properties of various elementary par-
ticles, while the phase shift is a crucial quantity charac-
terizing this process. Traditionally, the scattering prob-
lem is coped with mainly by the covariant perturbation
technique. Recently, however, the development of the
Gaussian wave-functional (GWF) approach has hinted
that it is possible to analytically calculate the phase shift
in quantum field theory. In the last decade, the Gaussian
wave-functional approach in the Schrodinger picture field
theory which was gradually developed by Schiff [1],
Rosen [2], Barnes and Ghandour [3], etc., has become a
powerful tool for investigating the vacuum structure
[4—10] as well as searching for the bound states in quan-
tum field theory [5,11,12]. Being explicitly computed, the
two-particle state energy may be analyzed to extract
knowledge on the phase shift. As an attempt, we have in-
vestigated the scattering state in the sinh-Gordon and the
sine-Gordon models with this approach [13,14]. In this
Brief Report, we continue to study the simplest self-
coupling model, the A,P model, with the same approach.

The A,P model was originally introduced into quantum
field theory to describe the pion-pion interaction [1,15].
By now it has become an important model in quantum
field theory (including gauge theory), finite-temperature
field theory, quantum cosmology, and condensed-matter
physics. This model is also an ideal theoretical laborato-
ry for various new methods. Since being advocated [16],
the Gaussian wave-functional approach has been used for
many problems in A,P theory, such as spontaneous sym-
metry breaking, triviality, vacuum stability, the bound-
state problem, and so on [4,17-21]. But the scattering
problem of this model is an exception. Although the
phase shift in 3+ 1 dimensions was calculated in SchiFs
pioneering work [1], the treatment of the divergence
makes for a very latne conclusion [4]. To our under-
standing, the scattering problem in lower dimensions is
also interesting and important. The purpose of this re-
port is to calculate the scattering phase shifts of the two-
particle system in this model for different dimensions and
discuss the lower-dimensional results in detail.

Consider a scalar field (()(x)=P„[x=(xi,x2, . . . , xn)
is the coordinate in D-dimensional space] described by
the Hamiltonian

~%0) =Nfe"p
2 f (4 tpo)f .(4, tpo)
1

g, Z
(2)

where f =f dy dz= fdyidy2 dyndzidz2 dzD,g, Z

Nf is some normalization constant, ipo is a classical con-
stant field, and

f P f(p)e iy(y —z)

(2st }
(3)

with the one-particle variational energy [3,4]

f (p») ="ir p"+V'(e o)

and p=(p„p2, . . . ,pa) a vector in D-dimensional p-
space. In Eq. (4),

p (tpo)=m +6kf„„'+12k.p2o, i (5)

where f „' is the inverse off„.
The functional annihilation operator is [3]

Af(p) = 1

2(2n } f(p)

1/2

X e '"
p „—tpo+

x x

and its adjoint is the functional creation operator

H= = —'II +—' + 'm +
X X

where f„=fdx =fdx, dx2 dxD and V is the gra-
dient operator in D-dimensional space. m and A, are the
bare mass and coupling parameters, respectively.

From [3,4], the Gaussian vacuum state is

0556-2821/94/49(10)/5625(4)/$06. 00 49 5625 1994 The American Physical Society



5626 BRIEF REPORTS
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Then a trial positroniumlike state of two particles with
the center of mass in rest can be constructed as

I2& =f dp X(p)lp, —p &

= f dp X(p) AI(p) AJ (
—p) po ),

where X(p) is the Fourier transformaton of an S-wave
function of the two particles. Using functional integra-
tion techniques, one can calculate the total energy of the
two-particle system as

f &21~.1»

2fdp[X(p)]'f(p)+[3k/(2~) ][f dp[X(p)/f(p)]]'

Jdp [X(p)]'
(9)

The two terms in this expression can be regarded as the kinetic energy of two constituent particles and their interacting
energy, respectively.

Minimizing m2 with respect to X(p), one can have

X(k)= f(k)[2f (k) —m~]

where A is a normalization constant, and accordingly Eq. (9) can be read as

dp (2n )

p 2 p m2

(10)

When m2 &2@(tpo), the positronium like state with Eq. (10) is a scattering state and Eq. (11) contains the scattering
information of the two particles. As a matter of fact, the integrand on the left-hand side (LHS) of Eq. (11) has a singu-

larity po =g(m& /2) —}I (yo). So the integral of Eq. (11)can be regarded as the corresponding principal value integral
plus the contribution of this pole to the integral. Through the same discretization procedure as used in Ref. [1], the in-

tegral for 1+1, 2+ 1, and 3+ 1 dimensions can be written as

f ~ dp
" Ip'+V'(Vo)][2+p'+V'(V 0)—m2] m2+(m2/2) —p (tpo)

cot5

+v I""
I
p'+ p'(to)][2+p'+ p'(mo) —~2]

(12)

and

[p'+V'(V o)][2+p'+V'(V o)
—~ ] &

' ' [p'+V'(Vo)][2+p'+V'(Vo) —~ l

(13)

p dp sin8d 8d y
[p'+V'(Vo)][2+p'+V'(V 0)

—~~]
4n [(m~/2) —p (tpo)]' p dp sin8d8dy

[p'+V'(V o)][2+p'+V'(Vo) m~]—

respectively. An analysis on the wave function shows
that the quantity 5 de6ned above is indeed the phase shift
of the two-particle state at large distances. Thus, Eqs.
(12), (13), and (14) dictate the connection between the
singular points and the scattering phase shift. As a re-
sult, according to Eq. (11) the expression of 5 for 1+ 1 di-
mensions has the form

2 2m2+mz —1
cot5= ,'Qm ~

—1——
3A,

——1n(mz —~ m2 —1)
'17

with A. = A, /p, and, for (2+ 1) dimensions,
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phase shifts may be discussed through the analogous
treatment with the above. Here we shall not continue to
treat it.

Comparing Fig. 2 with Fig. 1, one finds the curves in

Fig. 2 are closer to the horizontal axis than those in Fig.
1. Furthermore, in the higher dimensions the curves
reduce to the horizontal axis. Therefore it seems that the
dimensionality of space tends to cripple the effect of in-
teraction between two quantum particles.

In conclusion we have obtained the phase shifts of the
model in various dimensions with the GWF ap-

proach. Although it is the discretization procedure that
makes it possible to derive the phase shift, the results do

not depend upon the discretization at all. Our results are
nonperturbative and reasonable, though the degree of ap-
proximation of the variational approach is difficult to es-
timate. The earlier investigation by Stevenson [4] and the
researches for the bound state [5,8,9] show that the GWF
result is qualitatively correct at least. We hope that the
GWF approach can be extended to practical scattering
processes such as hydron scattering, etc., which are help-
ful for the development of quantum field theory.
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