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Path integral approach to two-dimensional QCD in the light-front frame
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Two-dimensional quantum chromodynamics in the light-front frame is studied following Hamiltonian
methods. The theory is quantized using the path integral formalism and an effective theory similar to
the Nambu—-Jona-Lasinio model is obtained. Confinement in two dimensions is derived by analyzing

directly the constraints in the path integral.
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I. INTRODUCTION

Quantum field theory quantized in the light-front
frame has been extensively studied in the past few years
as an alternative way for understanding nonperturbative
phenomena [1]. Although this approach is quite old [2],
only recently have new techniques of calculation been
developed [3,4] that could allow, in principle, the study of
phenomena such as confinement or hadronization, which
are very difficult to understand through the conventional
approach.

Several years ago, 't Hooft studied the solubility of
QCD in two dimensions (QCD,) in the light-front frame,
introducing the 1/N expansion [5]. In his work he was
able to solve the theory in the large-N limit and then
show how the bound state spectrum can be obtained by
solving a Bethe-Salpeter equation in this limit. However,
in spite of the relevance that the ’t Hooft results could
have in our understanding of QCD in four dimensions,
not much further progress was reached at that time in or-
der to understand the perturbative and nonperturbative
structure of QCD in the light-front frame.

The revival of light-front quantization has been mainly
pioneered by the authors of Ref. [3] and later also by
those of Ref. [4]. In these references two different non-
perturbative methods for calculating light-front wave
functions have been proposed, which although promising
still present some technical difficulties despite intense re-
cent research [1].

The canonical structure of QCD in the light-front
frame and its subsequent quantization via the path in-
tegral method is to our knowledge still an open problem.!
In the past this approach has been very useful in the un-
derstanding of many aspects of gauge theories and we
will show that it is very useful in the present context as

In Ref. [6] the Hamiltonian formulation of the Schwinger
model is studied at the classical level. On the other hand, in
Ref. [7] the reader can find recent canonical studies of two-
dimensional light-front gauge theories.
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well. The purpose of this research is the study of the
canonical structure of light-front QCD, and its quantiza-
tion following the path integral method.

II. QCD, IN LIGHT-FRONT COORDINATES:
HAMILTONIAN ANALYSIS

In this section we study the canonical structure of
QCD, in light-front coordinates following the Dirac con-
strained theory [8]. The Lagrangian is

L=-%FavFa’w+1ﬁ’(iD—m)¢r

" 2.1

(p=0,1;a=12,...,N5r=12,...,N).
In the light-front frame approach one defines the coor-
dinates
s L oy 1
=—=(x"t 2.2
x 75 (x"+x") (2.2)
and then writes all the quantities involved in the La-
grangian (2.1) in terms of x ¥ instead of x° and x'. After

doing this the Lagrangian density (2.1) becomes
L=YF% _V+¢liy_D,+iy,D_—m)}y , (2.3)

where Y and D, are defined in complete analogy with
(2.2), i.e.,

1
7i=7/72(70i71) )

1 2.4
D,.= T/TZ(DOiDl ),
and the y . matrices satisfy
?’?t:O’ {7’+77—}=2 . 2.5)

In order to carry out the Hamiltonian formulation, we
are forced to choose a time coordinate, which is usually
chosen as x *. Thus the canonical momenta are

ﬂﬁ.:—s'ggl;?a—:o ) (2.6a)

+45

W'L:gaa—l;;—:}?ﬁ__ , (2.6b)
+ -—
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SL .-

r— =gy, (2.60)
53,0 iy C

pr=—9L _g (2.6d)
80,97

where L = fdx_.L.

Observing (2.6), one can see that there are three pri-
mary constraints, namely,

7% =0, (2.7a)
X =P —ipy_=0, (2.7b)
¥'=P™=0, (2.7¢)

and which must be preserved in time x *.
The total Hamiltonian can then be computed, with the
result

Hr= [dx_[H7%)P+7%3_A% +gnefoab 4
+g0 Y AT —igy D Y —mPY
+ulrt +ulx +usy’]. (2.8)

where u g, u, and uj are Lagrange multipliers.
One can see that the preservation in time of 7% implies
the secondary constraint

G=3_m" +gns fo4b +gy’y _¢'T?, 2.9)

and that the other constraints (Y",¥ ") do not generate
new constraints.

A straightforward analysis shows that the constraints
G° x', and Y " are second class while 7% is first class. On
the other hand, a simple inspection also shows that
(G%x",X") are not a minimal number of second-class
constraints. The minimal set is found by combining ap-
propriately G° X', and ¥ ', and it is straightforward to
verify that this set is

Qe=14 , (2.10a)
Q=G +i(Y'TY+4'T%) , (2.10b)
X' =P =iy _, (2.10c)
x'=Pp", (2.10d)

where (Q§,Q9) and (y’,X") are first- and second-class
constraints, respectively.
The first-class constraints satisfy the algebra

{Qa(x_),05x")}=0, @2.11)

while the nonvanishing Poisson brackets between y” and
X are

(XX )X (X)) =—i(y_)gd78(x_—x"), (2.12)
where a, 3 are spinorial indices.

In order to eliminate the second-class constraints, we
define the usual Dirac brackets. In this case the nonvan-

ishing Dirac brackets between the canonical variables are

{A4% (x 7% (x")}pp

={A%(x_), 7™ (x"_)}pp (2.13a)

(Walx ) ¥ p(x" ) pp=(7 _)gad"8(x_—x"), (2.13b)
{(Wolx_),Pp(x")}pp=8"8%8(x_—x"), (2.13¢)
{97 o(x_),Pp(x" )} pp=8"8%8(x_—x"). (2.13d)

The set of equations (2.8) and (2.10)-(2.13) defines
completely the canonical structure of the theory. The
next step is to fix the gauge in order to quantize the
theory.

III. GAUGE FIXING AND THE PATH INTEGRAL
QUANTIZATION

In this section we discuss the quantization of the previ-
ous model following the path integral approach. There
are several reasons that justify this study: (i) To our
knowledge the quantization of QCD, in the light-front
frame following the path integral approach has never
been discussed before, (ii) this study could throw some
light into the derivation of the Feynman rules in the
light-front quantization method and the influence of the
zero modes, and (iii) the path integral approach could al-
low for the influence of new fields that could simplify the
perturbative structure of the theory.

With these facts in mind, in this section we try to clari-
fy the problem of gauge fixing and path integral quantiza-
tion of QCD, in the light-front frame.

A. Gauge fixing

The gauge freedom is reflected from the Hamiltonian
point of view in the presence of first-class constraints. In
the problem at hand, we have two first-class constraints
[Egs. (2.10a) and (2.10b)], and as a consequence, two con-
ditions are necessary in order to fix completely the gauge
freedom. Thus we can start by imposing the following
condition as gauge fixing:

Q=4 =0, (3.1
which is known as light-cone gauge and which must be

imposed as a new constraint of the theory. Following
Dirac’s method [8], (3.1) must be preserved in time, i.e.,

3, 08={0% Hy} =0, (3.2)

Computing (3.2), we find that this consistency condition
implies the new constraint

Qi=7" +3_A% +gf4® 4 =0. (3.3)

Conditions (3.1) and (3.3) fix completely the gauge free-
dom. In fact, computing the Poisson algebra we find that
the nonvanishing brackets between the first-class con-
straints and the gauge conditions are



49 BRIEF REPORTS

(Q&x_),05x"_ )} =(8%9_—gf ™A )8(x_—x"),

(Qix_),0%x" )} =gf[A%d_8(x_—x")+3_A4%8(x_—x")]

+gfent §(x_ —x"_)+gif o rme 4l 48 8(x_—x"),

which is a second-class constraint algebra.

The question now is, are there other alternative gauge-
fixing conditions besides 4% =0? The answer to this
question is, of course, yes, although the correct way to
implement other possible gauge-fixing conditions in the
light-front frame is not trivial.

One could try to find, for instance, the analogue of the
gauge fixing in a covariant gauge theory, but this pro-
cedure does not work here. Indeed, this can be verified
by constructing the analogue of the Lorentz gauge
9, 4°#=0 in the light-front frame,

0_A% +0,A4% =0, (3.5
but a simple analysis shows that this condition does not
fix the gauge freedom. In fact, it can be shown that (3.5)
is not a true condition because when preservation in time
is imposed, we cannot generate a new constraint fixing
the remaining gauge symmetry.

The same occurs when we consider the analogue of the
axial gauge n* 47 =0 in the light-front frame,

n_A%+n, A2 =0. (3.6)

A possible solution to this problem consists in modify-
ing slightly the previous gauge conditions. Using (3.5)
and (3.6), one can see that the unique possible choices for

the above gauge conditions are?
J
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(3.4a)

(3.4b)

! d4+A4% =0 (Lorentz gauge) , (3.7
n, A2 =0 (axial gauge) . (3.8)

The Hamiltonian analysis shows, however, that Egs.
(3.7) and (3.8), although they are two independent gauge
conditions that fix completely the gauge freedom, are
contained in (3.1). This last point can be shown by com-
puting the analogue of (3.2) using (3.7) and (3.8). This
calculation gives

3,08=0=n_0%,

and, as a consequence, to impose (3.7) or (3.8) is formally
the same condition (3.1).

This last result means that in two dimensions in the
light-front frame, the light-cone gauge (3.1) contains a
complete family of gauge conditions that simplify the
canonical analysis.> This last point is another advantage
of the light-front approach.

B. Path integral quantization

The quantization in this case must be performed using
the modification introduced by Senjanovic [10] because
there are second-class constraints.

The generating functional is

Z=[Dr.D A% Dr"D A° DI DYDP'DP "det| M || det]| (X0 X5} | QEB QNS QS(XNB(T )

Xexp

—gme [ AL A4S —g Py T AL +iGy D —m Y] ] :

Using (3.4), the first determinant can be explicitly com-
puted,

Kab

det||M || =det 8(x_—x"), (3.10)

K.ab pab

where its elements are
Kab___aaba_ _gfabcA <
pab=gfabca_ A :L +gfabcA c:“— d_ +gfabcﬂc_

+g2fafobgcA£_Ag_ ,
|

Z=N[ DA% DI DYD(ghosts)s[ —3~ A% +g 'y _TY']

i [dx,dx_[7%0, A% +729, A% +PO, Y +P P —Hr P —73_4%

(3.9)

|
while the second determinant

0 —i(y_)g
—i (')’ — )aﬂ 0
X8(x_—x"_)8"

det{x’,, X p} =det

] (3.11)

is a ¢ number and can be dropped off the path integral as
a normalization factor.

In integration in 7%,7%, 4% ,P",P" and exponentiat-
ing (3.10) in terms of anticommutative ghosts, we find

X exp {if¢ix+(1x_[%(E)_A‘f+ Vi Ty 0 Y HiPy 9,0 —gd Ty _TY A% —m¢ Y +(ghosts)] | , (3.12)

2The other possible choices d_ 4% =0 for the Lorentz gauge and n_ 4% =0 for the axial gauge do not fix the gauge freedom.
3Recently, there has been some discussion about the problem of fixing the residual gauge in light-front QCD, [9]. In this paper we
assume periodic boundary conditions, in which case the zero modes do not have to be considered.
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where N is a normalization factor.

Using the antisymmetry of the structure constants and the anticommutative character of the ghosts, it is easy to see
that there is no coupling between the ghosts and the gauge fields and that the integration in the ghosts fields is trivial.
This result is a consequence of a general statement that establishes that all axial-like gauges are free of interactions with

the ghosts [11]. Having this fact in mind, (3.12) becomes
Z=N [DAL DY DYS[—3% A% +gd"y TV’

Xexp

This formula gives the path integral version of QCD,.
The constraint (Gauss’s law):

9244 —J* =0, (3.14)
with J% =g¢ "y _T%’, physically can be understood as
follows. In two dimensions there only exists an electric
field, which is given by E’=3d __ 4% . Using this field and
Eq. (3.14), E“is given by
Evx_)= [dx" elx_—x" ) (x"), (3.15)
where e(x _ —x'_) is the sign function. In order to see
what this result means, let us assume for the moment that
the quarks are pointlike. Thus J2 (x _) can be written as
N
JL(x_)=3 q,8(x_—x2)T*, (3.16)
=1
where g, is the quark charge and x is the place where
the ath quark is localized. Using (3.16), the electric field
J

Z=N f DY "D exp

where J% (x _)=g¢"(x _ )y _TY"(x_)and |x _ —x"_|is
the propagator of the gluon field obtained by inverting
the operator 92 .

Equation (3.19) is the starting point for the perturba-
tive and nonperturbative evaluation of quantum correc-
tions of QCD,. Nonperturbatively, this formula was used
in Ref. [13] in order to derive the 't Hooft equation for
the bound states in the large-N limit.

From the canonical point of view, the effective action
that appears in Eq. (3.19) was used by the authors of Ref.
[14] for the numerical study of light-front quantized

i [dx dx (1B AL P+id7y 3 U+idTy 3,4 —gPy TW AL —myy]| .

ifdx+dx_ [J’(i7/+a,+iy_8+—m)¢’—%fdx'_Jﬂ(x_ Mx_ —x" T (x" )] } ,

(3.13)

-
becomes
N
EYx_)=3 q.e(x_—x2)T*. (3.17)

a=1

Therefore the electric field between the particles is unable
to spread out and the quarks are confined. The reader
should note that confinement is present irrespective of
the (non-)Abelian character of the gauge field [12].

The next step is to integrate the 49 field. Using the
identity

[ Do 80 Ad+Brexp ifdx(¢c¢+u¢>]
- ; B.B_D
=exp tfdx ACA AB , (3.18)

where A,B,C,D are operators (with inverse), Eq. (3.13)
becomes

(3.19)

r
QCD,.

Finally, we should mention that the Higgs mechanism
in light-front quantized field theory was also considered
in Ref. [15]
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