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Head-on collision of n vortices
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We show that the result of the head-on collision on n vortices in the Abelian-Higgs model is the
scattering by an angle of —even when there is another vortex of arbitrary topological index at the
center of scattering. This is obtained by analysis of both the geodesic flow on the moduli space and
of the string approximation to the short range interactions of vortices. We also provide formal tools
for an analysis of more general scattering events with n vortices by diagonalization of the moduli
space metrics around the point where the n vortices coincide. Arguments after a certain degree of
equivalence of the string and moduli space approaches are presented.

PACS number(s): 11.15.Kc, 11.27.+d

I. INTRODUCTION

Recently there has been some interest in the head-on
scattering of n solitons in 2+ 1 dimensions. In [1] some
arguments were given which suggest that in all head-on
collisions of n indistinguishable objects the scattering an-
gle is expected to be —„.The results of [1] are expected
to hold in all models in which the solitons are topolog-
ically stable and the topology is based on the S2 -+ S2

mappings. In this work we show that the —scattering
is the result of the head-on collision of n vortices in the
Abelian-Higgs model in 2+ 1 dimensions at the critical
value of the coupling constant [2—4]. The vortices are
solitons that are stable thanks to the nontrivial topology
of the mappings Si ~ Si.

The collisions in which more than two vortices take
part can be expected to be significant statistically in a
multivortex system of large density. The thermodynam-
ics of a multivortex system has been studied recently in
[5]. We find such a local parametrization of the moduli
space [6—8] near the points where the n vortices coincide
in which the metrics are diagonal. This enables us to
obtain the general solution to the equations of motion
near the center of collision. The back transformation
from the geodesic coordinates to the coordinates of the
zeros of the Higgs field amounts to looking for the com-
plex roots of a certain nth-order polynomial. The case of
the head-on collision is so simple that it needs just a toy
calculation. When the n vortices collide in the head-on
fasion the whole configuration shrinks to the coincident
position and then reappears rotated by an angle of-
with respect to the initial one even when there is an-
other vortex of arbitrary topological index in the center
of collision.

Next we address the same problem but with the help of
the string model for short range interactions of vortices
[9], which is an extension of the Ben-Ya'acov inodel [10]
to the case of overlapping vortices. The results for the

head-on collision are the same as those obtained in the
moduli space approximation. We comment on the iden-
tity of the results giving arguments after the equivalence
of the two approaches in the case of short range inter-
actions of parallel strings. The equivalence provides us
with an alternative tool for investigations of multivortex
collisions —the string model.

II. APPROXIMATION BV GEODESIC MOTION

Let us consider the Abelian-Higgs model in 2+ 1 di-
mensions defined by the Lagrangian

where I'„„=B„A„—B„A„andD„P= 8„$—i A„Q. It
is known [3,4] that at the critical value of A = 1 the field
equations for the static configuration with the positive
topological index n reduce to

1
(Di + &D2)p = 0 and Fi2 ———(1 —pp*) .

2
(2)

The n-vortex solution may be written as

P(r, 8) = e'" f(r),

A;(r, 8) = e;,z, —a(—r),

where f and a satisfy

hP = nf{r)e'" h{r,8)

with boundary conditions f(0) = a(0) = 0 and at infinity

f = a = 1. Let us try the following ansatz [4,7] for the
fluctuations of P and of A+ = Ai + iA2.
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where h and a are complex functions. Following [7,8],
to completely determine the fields we impose the back-
ground gauge condition

c)A, +Ps sgb=0 .

Substitution of the fiuctuations to the field equations (2)
and to the above gauge condition and next linearization
yields

iBa 1 c)a
f h ——————=0

r Br r208

c)h . c)h
Q = ——zr—

88 Br

Upon substitution of Eq. (10) to Eq. (9) one obtains a
simple equation,

V'h=f h,

&om which it is easy to obtain the general form of the
Huctuation of the Higgs field. Once this fluctuation has
been found Eq. (10) enables us to find the corresponding
change of the gauge field. The function 6 can be Fourier
expanded in 0:

(12)

The series does not contain the zero-order term because
the vortex solution (3) and (4) is stable with respect to
the monopole fluctuations, they cannot be zero modes.
To explain why it is truncated &om above let us observe
that the profile functions satisfy

t'd2 1 d
4- ————

~ H(J, )(r) = f (T)H(/, )(r) .

y( ) yo(
"—A(") —A(" ) — —A( ) ), (15)

where z = x+iy, A(") = A~ +iA2, and we have taken(~)

into account that, for small r, f(r) - for". When all the
A's are equal to zero we have n coincident vortices. In
the case of nonzero A(") the asymptotics takes a simple
form:

y(z) y (z" —A( )z, m+ p = n.

I,s = — d x(OiPBig*+ BiA+c)iA )2
(17)

For the fluctuation of the Higgs field due to Eq. (12) and
the accompaning fluctuation of the gauge field, Eq. (10),
we can work out the e6ective Lagrangian as

We can see that p zeros of the Higgs field have been
moved from the original coincident position (z = 0) to
the pth order roots of A("). The geodesics on the mod-
uli space in which +A(") turns to —A(") corresponds, in
more physical terms, to such a head-on collision that the

p zeros of the Higgs field shrink to the coincident position
and then the whole configuration reappears but rotated
by an angle of vr/p with respect to the initial configu-
ration. This way of reasoning, originally applied to the
case of the head-on collision of CPi solitons [1], is essen-
tially the same as that of Ruback [7] in the special case
of p = 2 and m = 0. We think this reformulation to be
much more manifest.

We have implicitly assumed that in the geodesic mo-
tion A(") moves along a straight line in the complex plane.
To verify this assumption let us promote the A's in Eq.
(12) to the role of collective coordinates and following
Manton's idea of adiabatic approximation [6] let us work
out the form of the eft'ective Lagrangian [7]:

For large r H's can be approximated by the modified
Bessel functions. To preserve square integrability of the
fluctuation (6) we choose them to be exponentially van-

ishing at infinity. When we go from infinity to the vicinity
of zero the function H(i, ) approaches 8+v" + b r " In.
the case of nonzero h, which we think to be quite gen-
eral, the profile functions can be conveniently normalized
so that

where

.I (A:) (&) (+)dA dA*

dt dt

/k d
rdr y'H('„) + j -H(„)+—H(„) ~dr )

(19)

H(i, ) (r) r, r —+0 (14)

When we take into account that in the same limit f (r)r, we can see that if we want to preserve the regularity
of the Higgs field then A: cannot be greater that n, see
Eq. (6).

The series (12) contains 2n real parameters: A with
k = 1, . . . , n and o. = 1, 2. It is just the number of param-
eters the general solution of Eqs. (2) with the topological
index n should contain, as it was shown by Weinberg [4]
with a help of his index theorem. Although Weinberg
used the Coulomb gauge instead of the background gauge
the number of parameters should be a gauge-invariant
quantity. In the range of small r and up to linear terms
in A's the perturbed Higgs Geld looks like

where we have preserved only terms up to the second or-
der in the time derivatives and we have to keep in mind
that this Lagrangian is valid only for small A's or when
the vortices are almost coincident. Thus when we use
A's as local coordinates on the moduli space its metrics
is diagonal near the point, where the n vortices coincide.
Particular A's are independent from each other and they
really move along straight lines as it has been antici-
pated above. That it is not always the case we can see
in an example of Chem-Simons vortices where additional
charge-Qux interaction is present [ll). What we have still
to assume is that the splitting configuration (16) can be
extended to an asymptotic regime of largely separated
vortices where the positions of vortices can be unam-

biguously identified with the positions of the zeros of the
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Higgs field. If this assumption is correct, as we believe
it is thanks to extensive numerical studies [12,13] in the
case of n = 2, then we can conclude that after the head-
on collision of n vortices the asymptotic configuration
reappears but rotated by an angle of x/n with respect to
the initial one, even when there is an additional vortex
in the center of scattering of arbitrary topological index.

The scattering in which the n vortices collide symmet-
rically and simultaneously will occur very rarely even in
a multivortex system of very large density. We have in-

vestigated it just as a very characteristic case which can
give us an idea of what happens when n vortices scat-
ter almost in the head-on fasion but with the help of the
efFective Lagrangian (18) it is possible to investigate the
generic collision of n vortices without such a lot of sym-
metry. The only limitation is that all of the A's have
to be small. In other words our analysis is reasonable
when the n vortices pass simultaneously through the co-
incident configuration. Some of the more complicated
scattering events can be roughly approximated by a se-
ries of simultaneous collisions. The general simultaneous
collision at time say t = 0 is described by initial con-
ditions: A(") (0) = 0 and

&~
A(") (0) = u("), where the

complex u(")'s are a set of initial velocities. For small t
and z we obtain an asymptotics of the Higgs field

P(t, z) - f, (z" —tu(") —tu("-')z' — "—tu(')z"-')

= fp [z —R(,)(t)]. (20)

The zeros of the Higgs field have been moved from a
coincident position at z = 0 to the time-dependent roots
R(,)(t) of the above polynomial. In a general case of n
vortices it is difficult to establish these roots analytically
but it can be easily done numerically. Thus Eq. (20)
provides a basis for a general classification of multivortex
simultaneous collisions.

~ ~ 2= B'2
R —nRO = (n ——1) B (23)

BO+2nBO =0 . (24)

~l
The terms with + are neglected, they are sma11 when
R ~ Q. It is straightforward to solve these equations.
From the second one we obtain the first constant of mo-
tion: the angular momentum J = B "O. Substitution of
this to Eq. (23) and integration yields the form of the en-

ergy: K = R (" )R +,„orK = R (" )[R +R 0 ].
The knowledge of these constants of motion enables us
to find the trajectory:

1
J2 2'

R(e) = —1+ tan nO ——
~K 2) (25)

The difference between 0; and 0 „iis equal to —.This
trajectory is expected [9] to be exact in the limit of very
small B. Thus when J ~ +0 the vortex starts to be
backward scattered by an angle of 6—.Apparently there
is a discontinuity, but the n vortices are indistiguishable.
This reasoning can be applied to any of vortices, so the
backward scatterings of any individual vortex by angles
of +—have to be identified. Thus the result is the same as
that obtained with the moduli space approximation: the
whole configuration shrinks to zero and then reappears
rotated by an angle of —„.We can also find how the
position of the zero of the Higgs field depends on time:

vortex and those of the first one, while Xi, and Yi, are
the Cartesian coordinates of the kth vortex. Thus we

have n drifting elementary vortices. The gauge fields are
neglected in Eq. (21) because at small separations of
vortices their in8uence on the motion is relatively weak.
After a little algebra in which it is convenient to use the
function F(x) = ~( ) one obtains the equations of motion
of the vortex core (zero of the Higgs field):

III. STRING MODEL AND THE METRIC (26)

Now we will show that the same results can be obtained
with a help of the string model derived in [9) to describe
short range interactions of vortices. Let us imagine n
vortices at the positions R(t) exp[iO(t) + ik —], where

k = 0, ..., (n —1). The equation of motion of the first
(k = 0) vortex [9] reads

1 t'nKt )
0(t) = —+ —arctan

~

2n n, ( J
With the help of Eq. (26) and the definition of K one
can also find the dependence of the velocity on time:

R' = 2 . + 2e'~ . + 2s'iR~ + 2R', (21)

e =R +Be
[~ + n'Kt ]('-=') (28)

where A, B take values 1,2 and denote x, y. The fields
on the rhs of the equation are due to the other vortices:
exp[ —@+i(@]= Pi . .P i. The Pi, 's are taken as

(22)

where f is a profile of the index-one vortex from Eq. (3),
I g is an actual distance between the position of the kth

I. = R'("-')[R'+ R'0'] (29)

so they can be interpreted as the equations of motion of

The velocity attains its maximal value at the minimal
separation of vortices (t = 0). This maximal value in the
limit of the head-on collision (J i 0) tends to infinity,
quite as in the case of two vortices [12,13,9].

Let us note that the equations of motion (23) and (24)
are the Euler-Lagrange equations to the Lagrangian
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the nonrelativistic point particle on a curved surface. If
one identifies A("~ = R e' the above I.agrangian will be
the same as that obtained in the moduli space approxi-
mation (18).

The analysis of the case with m vortices at the center
of scattering and the head-on collision of p other vortices
with the help of the string model also gives the same
result as in the moduli space approach. The source of
this coincidence can be traced to the equivalence of the
moduli space and string approximations in the case of
small separations of vortices. The construction of the
string model for short range interactions of vortices [9]
in the case of parallel strings essentially amounts to an
ansatz on the Higgs field

where Rig) is an actual position of the kth vortex on the
complexified plane. This ansatz can be compared with
the field in Eq. (22) and with Eq. (20). The second
step in the construction of the string model [9] is to find
such a time evolution of A~A. ~'s that this approximate
ansatz satisfies the field equations at the zeros of the
Higgs field. This yields an equation of motion of the
vortex core like that in Eq. (21). So far as the ansatz

is an analytic function in z we can expect it also to be
a good approximation of the exact solution in certain
neighborhoods of the zeros of the Higgs field. As the
zeros are very close to one another it provides a good
approximation to the exact solution in the whole region
containing all of the zeros or, in other words, for small
z. The effective Lagrangian (18) is based on the same
approximation of the exact solution so the results of the
two approaches have to be the same.

The string model can also be applied to the analysis
of the general n vortex simultaneous collision. Its advan-
tage as compared to the application of Eq. (20) is that it
uses directly the positions of the zeros of the Higgs field.
The price we have to pay for it is that we have to solve
the equations of motion of the vortex cores (21) while
in the former method they have been already solved by
diagonalization of the moduli space metrics only the po-
sitions of the zeros are related in a rather involved way
to A' s.
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