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We develop the dual picture for quantum electrodynamics in 3+ 1 dimensions. It is shown that the
photon is massless in the Coulomb phase due to spontaneous breaking of the magnetic symmetry group.
The generators of this group are the magnetic fluxes through any infinite surface ®5. The order parame-
ter for this symmetry breaking is the operator ¥ (C), which creates an infinitely long magnetic vortex.
We show that although the order parameter is a stringlike rather than a local operator, the Goldstone
theorem is applicable if {¥(C))#0. If the system is properly regularized in the infrared, we find
{V(C))#0 in the Coulomb phase and ¥ (C)) =0 in the Higgs phase. The Higgs-Coulomb phase tran-
sition is therefore understood as a condensation of magnetic vortices. The electric charge in terms of
V(C) is topological and is equal to the winding number of the mapping from a circle at spatial infinity
into the manifold of possible vacuum expectation values of a magnetic vortex in a given direction. Since
the vortex operator takes values in S' and I1,(S')= Z, the electric charge is quantized topologically.

PACS number(s): 12.20.Ds, 11.15.Ex, 11.30.—j

I. INTRODUCTION

Gauge theories play a dominant role in modern ele-
mentary particle physics. It is clear beyond a reasonable
doubt that all the interactions of elementary particles
known to date are described by a gauge theory. As a
consequence, in some physicists’ minds, gauge symmetry
attained a status of a philosophical principle. It must be
noted, however, that the reason for this is purely empiri-
cal. The “gauge principle” does not have the same deep
philosophical roots as, say, the equivalence principle of
general relativity or the uncertainty principle of quantum
mechanics. Mainly this is because it pertains to the form
of the description, the “language” in which one describes
a physical law, rather than to the physical law itself.
This language proved to be indispensable when formulat-
ing renormalizable theories of interacting vector parti-
cles. In many instances it is also very convenient for ac-
tual calculations, since the degrees of freedom used in
this description are almost free and the perturbation
theory can be easily applied. Such is the case in QED
and the ultraviolet region of QCD.

In some cases, however, although a neat mathematical
construction, the gauge symmetry in fact obscures rather
than highlights the underlying nonperturbative physics.
The main conceptual difficulty with the gauge description
is that it makes use of redundant nonphysical quantities,
which often makes interpreting a calculation almost as
difficult as performing the calculation itself.
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One example of such a situation is the understanding
of the (constituent) quark degrees of freedom in QCD.
On the large nonphysical Hilbert space, those appear as
multiplets of the “global color” SU(3) group. However,
this group acts trivially on the physical gauge-invariant
states of the theory, hence the problem of understanding
in physical terms what is precisely meant by the color
and its confinement.

It is of course possible in principle to fix the gauge
completely. However, in a completely gauge-fixed formu-
lation the fields that appear in the Lagrangian are as a
rule nonlocal. For example, in QED, fixing the axial
gauge turns the matter fields into variables localized on a
line rather than at a point,

¢axial(x)=¢(x)exp {iefwdy3A3(y)] ’ (1)

where the initial fields ¢(x) and A4,,(x) are “local” but on
the nonphysical Hilbert space. In the Coulomb gauge the
matter field

D Coulomb(X) = P(x)exp {ie fd3y Ai(y)LL @)
Ix —y[?

creates the electric field of a point charge and has there-
fore a nonvanishing support everywhere in space. When
written in terms of these fields, the Lagrangian is nonlo-
cal and the theory looks very different from a local field
theory.

Because of this unfortunate feature, there are several
interesting physical questions already in the simplest
Abelian gauge theories which either do not arise natural-
ly or tend to be ignored in the framework of the standard
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gauge description. Here are several of these, which
motivated us in the present research.

(1) Exact masslessness of a photon. In the standard
formulation the masslessness of a photon is almost a
consequence of kinematics. However, we know that the
photon can become massive in some circumstances, e.g.,
in the Higgs phase, and that this is in fact a profound
dynamical effect. When one discovers a massless particle,
the natural question is, what keeps it from acquiring a
mass? The simplest possible explanation is that it is the
Goldstone theorem. So there is a question of whether the
photon in QED is a Goldstone boson and, if yes, of what
symmetry.

(2) The nature of the Higgs-Coulomb phase transition.
The Higgs-Coulomb phase transition is usually described
as due to spontaneous breaking of the electric charge in
the Higgs phase. This description is, however, not
without a flaw. Electric charge, being equal to a surface
integral of the electric field at spatial infinity, does not
have a local order parameter. (This is the reason why the
Goldstone theorem is not applicable in the Higgs phase.)
Consequently, the Coulomb and Higgs phases differ only
in expectation values of nonlocal fields. In this situation,
however, there is no physical argument that tells us that
the two phases must be separated by a phase transition.
In fact, in the similar situation in Z gauge theories it is
known that the phases are analytically connected [1]. In
QED, however, the two phases are separated by a
genuine phase transition which is second or first order de-
pending on the values of parameters. The question is
whether one can give a different, complementary charac-
terization of the Higgs and Coulomb phases in QED
which will make clear that those are really distinct
phases. Usually, such an explanation involves spontane-
ous breaking of some global symmetry.

(3) Topological nature of the electric charge. The elec-
tric current in QED is trivially conserved:
0,J#=09,(3,F*")=0. In quantum theory the charge is
also quantized.! Both these features would automatically
follow if the electric charge could be represented as a to-
pological charge associated with a nontrivial homotopy
of a vacuum manifold. The possibility that the electric
charge could be topological is not so unnatural. One can
measure the charge by making local measurements of the
electric field far from its location, making use of Gauss’
law. For a nontopological charge this would be impossi-
ble. Maybe it is possible to find in QED a set of variables
in terms of which the degeneracy of the vacuum and the
topological nature of the electric charge become explicit.

'Here we are interested only in QED with matter fields carry-
ing integer multiples of an elementary charge. In principle, one
can formulate a theory with incommensurate charges, and in
this case the electric charge will have no topological interpreta-
tion. However, since the quantization of electric charge is ex-
perimentally well established, these theories are only of a mar-
ginal interest. We will return to this point in the last section of
the paper.

It would be very interesting to find an alternative for-
mulation of a gauge theory or, at least (since the exact re-
formulation turns out to be very difficult), an alternative
basis in which these questions become natural and the
answers to them are relatively straightforward.

In fact, in 2+ 1 dimensions there exists a “‘dual” repre-
sentation that allows one to answer all of these questions
in the affirmative. There one is able to define such a vari-
able: the complex vortex operator V(x) [2,3]. Although
it is defined in terms of an exponential of a line integral of
the electric field, it can be shown to be a local scalar field
[4]. Tt is an eigenoperator of the conserved charge: the
magnetic flux through the plane [5]. In the Coulomb
phase the field V(x) has a nonvanishing expectation
value and the flux symmetry is spontaneously broken
[3,6]. This results in the appearance in the spectrum of a
massless Goldstone boson: the photon. The electric
charge, when expressed in terms of the vortex field, has
the form of a topological charge associated with the
homotopy group I1,(S"): Q« [d’x€,;9,(iV*3,V+c.c)
[7]. In the Higgs phase (¥ )=0. Consequently, the
charges are completely screened and there is no massless
particle in the spectrum.

In this picture it is clear that the Higgs and Coulomb
phases must be separated by a genuine phase transition
line. The relevant symmetry, the magnetic flux symme-
try, is stored in the Higgs phase. The Nielsen-Olesen
(NO) vortices exist in this phase as particles that carry
the corresponding charge. The Coulomb-Higgs phase
transition can be thought of as condensation of the NO
vortices in the Coulomb phase. Moreover, on the basis of
universality, one concludes that whenever it is second or-
der the Higgs-Coulomb phase transition must be in the
universality class of the XY model.

In (1+1)-dimensional QED the dual representation
also exists. Since in 1+ 1 dimensions there is no massless
photon and no Coulomb-Hibbs phase transition, only the
third question can be asked. In this case the electric
charge can be represented as topological in terms of the
dual field 0: Q= fdx do=0(+ w)—o(— ). For the
massless and massive Schwinger models, the standard bo-
sonization procedure leads to an exact reformulation of
the theory in terms of the field o only [8] and thereby to
the exact dual Lagrangian. In the scalar Higgs model,
the dual transformation can be only performed approxi-
mately [9], but the topological interpretation of the elec-
tric charge is nevertheless achieved.

The aim of this paper is to develop a similar picture for
the (3+1)-dimensional Higgs model. In Sec. II we dis-
cuss the analogue of the flux symmetry in 3+1 dimen-
sions. The conserved currents of this magnetic symmetry
are the components of the dual field strength tensor F v
Because of the constraint 9;B; =0, no local order parame-
ter can be found. The (3+ 1)-dimensional analogue of
V(x) are stringlike operators V(C) which create
infinitely long magnetic vortex lines along a curve C.

In Sec. III we show that although these operators are
not local, they are still good order parameters, in the
sense that the Goldstone theorem is applicable in the
phase where they have a nonzero expectation value. We
also show that in this phase the electric charge is topolog-
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ical in terms of ¥V (C) and is thereby quantized. An elec-
trically charged state carries a unit wind of the phase of
V(C,) where V(C,) is the set of all magnetic vortices as-
sociated with straight lines in the direction u. In the clas-
sical approximation, indeed, { ¥(C) )70 in the Coulomb
phase.

Because of the infinite length of the vortex line, the
operator V(C) cannot have a finite expectation value
beyond the classical approximation. Infrared divergences
due to phase fluctuations of V' (C) leads to a vanishing of
the vacuum expectation value (VEV) even in the
Coulomb phase, not unlike the vanishing of an order pa-
rameter in (1+ 1)-dimensional theories with a “classically
broken” continuous symmetry. In the present case, how-
ever, one can define a regularized model in which one of
the spatial dimensions is compact. Vortex lines parallel
to this direction will then have a finite expectation value
in the Coulomb phase and the Goldstone theorem, and
the topological interpretation of the electric charge will
be retained. This is discussed in Sec. IV.

Section V is devoted to a brief discussion of the dual
picture and possible extension of this approach to non-
Abelian theories.

In the Appendix we point to similarities and
differences between the realization of magnetic symmetry
in QED, and continuous symmetries in 1+ 1 dimensions.

This paper is an attempt to generalize our previous
work on QED; [3,4,7] to four dimensions. The reader
may find the terminology and some of the concepts we
use somewhat unfamiliar. Most of these, however, have
been dwelled upon extensively in [3], and reading [3]
should be helpful for easier understanding of this paper.

II. MAGNETIC SYMMETRY,
THE COULOMB-HIGGS PHASE TRANSITION,
AND THE VORTEX OPERATOR IN 3+1 DIMENSIONS

The approaches to all three questions mentioned in the
Introduction, which we are addressing in this paper, have
one common element. They all require the construction
of a sufficiently local (gauge-invariant) order parameter.
Let us briefly recall how this was constructed in 2+ 1 di-
mensions.

The symmetry which is broken in the Coulomb phase
of the (2+1)-dimensional Higgs model is the magnetic
flux symmetry generated by

&= [d* B(x), (3)

with the conserved current F - The defining relation for
the vortex operator V(x) therefore is the commutation
relation with the magnetic field

[B(x),V(p)]=—gd&4x —y)V(y) . 4)

One also insists on the locality of V(x): It has to com-
mute with all gauge-invariant local fields at spacelike sep-
arations:

[V(x),0(y)]=0, x#y . (5)

These conditions determine ¥ (x) up to a multiplicative
local gauge-invariant factor as

—¥);

,j )zE( y)

Ly |e

V(x)=C exp

+0O(x —y)o(y)

] , (6)

where ®(x) is an angle between the vector x; and the x,
axis, 0 <® <27. The requirement of locality leads in par-
ticular to the quantization condition on possible eigenval-
ues of the magnetic flux g: g =2wn /e.

The operator ¥ (x) has a simple physical meaning: It
creates a pointlike magnetic vortex of the strength g. In
the Higgs phase the magnetic flux symmetry is not bro-
ken and the NO vortices behave like particles. In the
Coulomb phase they condense. This breaks the flux sym-
metry spontaneously and leads to the appearance of the
massless photon.

A. Vortex operator

Let us now try to implement the same program in the
(3+1)-dimensional Higgs model.

The analogue of the conserved flux current in 3+1 di-
mensions is the dual magnetic field strength tensor F v
Its conservation equation is again just the homogeneous
Maxwell’s equation of electrodynamics. It was shown in
[10] that the matrix element of F v between the vacuum
and the one-photon state in the Coulomb phase has the
characteristic form of a matrix element of a spontaneous-
ly broken current between the vacuum and a state with
one Goldstone boson. In the circular polarization basis,

(0|Fy;(0)leh,p)

. , 172 )
=+ (27;)3/2 70 eiiplzi_,o 1-T(p?) ’ 7
(0|F;(0)lek,p)
. 172
=_(_2_;l)3_/2_ pTO e‘]ke+phTO #(pz) , (8)

where IT(p?) is the vacuum polarization.

One can define many conserved charges associated
with the currents F uv- In particular, the magnetic flux
through any infinite surface S,

= [ ds'8, , O)

is time independent. Since the magnetic flux through any
closed surface vanishes, the set of independent &g is
given by the set of boundaries (at spatial infinity) rather
than the set of surfaces themselves. It will suffice for our
purposes to consider only the planes perpendicular to the
three coordinate axes. We define the magnetic charge ®;
as the average magnetic flux through a plane perpendicu-
lar to the ith axis,

¢—h%ﬁj Jax [ dsBxD, (10)

where S(x’) is the plane perpendicular to the ith axis
with the ith coordinate x°.
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We now construct an order parameter for F, =B.
This is an operator which creates magnetic vortices.
Clearly, in 3+ 1 dimensions no local operator of this kind
can be constructed. Since the magnetic field is diver-
genceless, the magnetic flux must either form closed
loops or infinitely long lines. Closed loops, however, do
not carry any global charge. The best one can do there-
fore is to construct an operator creating an infinite vortex
line. This operator should be “line local.”

Any gauge-invariant local field should commute with
V (C) at all points but on the line C. In particular,

[B.(x),V(C)]=gl,(x,C)V(C)
dx;(T)
dr

The commutator of ¥ (C) and J;(x) should also vanish
for x €C. Analogously to 2+1 dimensions, these two
conditions determine V (C) as [11]

(11)
Ii(x,0)= [dr8(x —%(7)

= 'ﬁ 3 . — .
V,(C)=exp ze fd yla,(y —x)E;(y)

+bo(x =y, (12)

where a;(x) is a vector potential of an infinitesimally thin
magnetic vortex along C, €,,9;a,(x)=1[;(x,C), and the
function b (x) satisfies 9;[b (x)]p0q0,=a;(x). Since a;(x)
has a nonvanishing curl, the function b (x) must have a
surface of singularities ending at the curve C. For exam-
ple, for a straight line C running along the x; axis one
has a,~(x)=eijx,~/x%+x%, i=1,2; a3(x)=0 and
b(x)=0(x), with ® the polar angle in the x,-x, plane
(Fig. 1). As in 2+ 1 dimensions, the operator V(C) is an
operator of a singular gauge transformation with the
gauge function nb(x). This ensures the commutativity of
V(C) with any local gauge-invariant operator outside the
line of singularities C. The single valuedness of the gauge
transformation imposes the quantization condition on
possible fluxes in a vortex: g =2wn/e. This of course
corresponds to the well-known fact that the Abrikosov
vortices in the Higgs phase carry quantized flux. From
now on we will concentrate on the elementary vortex
operator n=1.

Choosing C; as a straight line parallel to the ith axis,
we have

[V(C),®;1=8,2T¥(C,) . (13)
e
X3
/x2
G
X

FIG. 1. Function ®(x).

Using Gauss’s law and integrating by parts, one can re-
cast the vortex operator into the form

— _21 ipi
V(C)=exp (1 . ASE } (14)

where the integration is over the half plane bounded by C
(Fig. 2).

B. Vortex operator and the dual vector potential

Let us now make a slight digression and show how the
vortex operator can be represented in terms of the dual
vector potential. This is particularly simple in the case of
a free photon. Gauss’s law in this case reduces to
9;E;=0 and can be solved by introducing the dual vector
potential y; via

E;=€0X - (15)

To reproduce the correct equal time commutation rela-
tions, we must also have

B,(x)=m(x), (16)

where m; is canonically conjugate to y,;. Of course, the
field y; is determined by Eq. (15) only up to a gradient of
a scalar function. The transformation

Xi—X; T0o;A (17)

is generated by 9;B; and is in fact a magnetic gauge sym-
metry associated with the constraint

3;B,=0. (18)

As in the case of the electric gauge symmetry, one should
be careful when identifying the functions A for which the
dual vector potentials connected by Eq. (17) are
equivalent. The transformations Eq. (17) with gauge
functions A that satisfy lim,_, , A(x)—0 are indeed gen-
erated by exp{if)t(x)a,»Bi(x)} and are therefore gauge
symmetries. However, if the function A does not vanish
at the spatial infinity, the transformation Eq. (17) is gen-
erated by exp{i f 9,(AB;)}. The operator of the transfor-
mation is not a unit operator on the constraint Eq. (18),
and the transformation therefore is a true physical sym-
metry. So, for example, if Ax)=ad%x —X( Vg)), where
x (V) are points inside a half space bounded by the sur-
face S, one has a global transformation generated by &g

FIG. 2. Vortex operator V(C;) which creates the magnetic
flux tube parallel to the third axis.
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of Eq. (9). The magnetically gauge-invariant operators
are the ’t Hooft loops [12] (the dual analogue of Wilson
loops) or infinite ’t Hooft lines

V(C)=exp [ig fcdl,xi ] . (19)

In a theory of a free photon, the constant g is not quan-
tized.
In the interacting theory Gauss’s law is

a"E,‘ _J0=O . (20)

We can now define the dual potential in the following
way. Since the electric current is conserved, it can be po-
tentiated:

JyzeyvlpavKlp . (21)

The tensor potential K, is defined up to a Kalb-Ramond
gauge transformation

Km,—>KW+a[#MV] . (22)

Let us fix this Kalb-Ramond gauge symmetry by requir-
ing that, for any surface S,

fsds"e,.ijjk =en(S), (23)

where e is the electric coupling constant and n(S) is an
integer which depends on the surface. In QED this is an
admissible gauge fixing, since the divergenceless part of
€% K;; can be changed arbitrarily by a choice of M; and
the charge inside any closed surface is an integer of e.
The dual vector potential is then defined by

E,—€Kj=€30;Xx - (24)
With this definition one has
exp [ty—n—f dl.x; t=exp ’i 2mn f _dS'E'p. (29
e Jc s:as=C
Comparing this with Eq. (14), we find
V(C)=exp ’;27” [ dx, ’ . (26)

III. GOLDSTONE THEOREM AND THE
TOPOLOGICAL INTERPRETATION OF THE ELECTRIC
CHARGE: THE CLASSICAL APPROXIMATION

A. Goldstone theorem

We have now constructed eigenoperators of the mag-
netic symmetry in 3+ 1 dimensions. The first question to
ask is whether their vacuum expectation value vanishes.
First, let us consider the classical approximation. We
will calculate the quantum corrections in the next sec-
tion. Although in the infinite system they change the re-
sults in a very important way, we will see in the next sec-
tion that in the IR-regularized system, where some of the
dimensions are compact, the classical result is indeed
qualitatively correct.

5575

In the classical approximation the electric field and the
electric charge density in the vacuum vanish. Therefore
the dual vector has a “pure gauge” form

Xi=0;A . 27

As discussed earlier, the dual potentials y; that are given
by the functions A with different values at spatial infinity
are not gauge equivalent.

Therefore in this approximation the QED vacuum is
infinitely degenerate with a degeneracy that corresponds
to global transformations generated by ®5. The expecta-
tion value of a vortex operator in any of these vacua also
does not vanish and is given by

_ .2
(V(C))=exp ‘1 ; [aix; (28)

This still does not answer the question of whether the
Goldstone theorem applies, even if ¥ (C) has a nonvan-
ishing expectation value. The problem is that V(C) is a
nonlocal operator and no local order parameters of ®,
exist. This at first sight seems to be similar to the situa-
tion with the electric charge in the Higgs phase. There
the Goldstone theorem was not applicable and no mass-
less particle existed for the following reason. Suppose
one has a spontaneously broken charge Q. For the Gold-
stone theorem to hold [13], there must exist an operator
O which satisfies the two conditions

Vlim ([Qy,0])#0, (29)
Jim ([Qy(1),0])=0. (30)

Here Q,= f ya DxJ,(x) is the spontaneously broken
charge in the volume V. To satisfy Eq. (29) it is sufficient
to find any order parameter of Q with a nonvanishing ex-
pectation value. It is less trivial to satisfy the second
equation. If the operator O is local, Eq. (30) is satisfied
automatically:

Vlim ([Qp(1),0(x)])

= lim fs:aV

Voo

=Sds"< [Jiy,2),0(x)])
=0, (31)

since in the limit ¥ — o the points x and y are infinitely
far apart and the commutator vanishes for any finite time
t. However, if O is nonlocal, in general it need not com-
mute with J; at spatial infinity and Eq. (30) need not be
satisfied. This is indeed the reason why the spontaneous
breaking of electric charge is not accompanied by an ap-
pearance of a Goldstone particle.

In the case of magnetic symmetry, it turns out, howev-
er, that the Goldstone theorem is indeed applicable even
though the order parameter is nonlocal. To see this let us
consider the charge ®;, the magnetic flux in the z direc-
tion. The corresponding order parameter is ¥ (C;) of Eq.
(13). The regularized flux operator ®4(L) is defined as in
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Eq. (10), but without taking the limit L — «.? For any
finite L, V' (C;) is still an order parameter. Therefore, if
(V(C;))#0, Eq. (29) is satisfied. Furthermore, only the
boundary of the volume V in which ®5(L) is defined
which is perpendicular to the axis x5 is crossed by the
fluxon created by V' (C;3). Therefore the only vanishing
contribution to Eq. (30) can arise from the commutator of
V (C5) with the third component of the magnetic current.
However, the third component of the current is F3; and
vanishes identically at all times due to the antisymmetry
of F uv- Therefore Eq. (30) is also satisfied and the Gold-
stone theorem is applicable. The corresponding Gold-
stone boson is the linearly polarized photon with the
magnetic field in the x; direction.

Clearly, the same argument applies to all the changes
®d, if one chooses V(C;) as the corresponding order pa-
rameters. In this way photons with any direction of the
wave vector and polarization should have a gapless
dispersion relation, e.g., to be massless.

B. Topological interpretation of the electric charge

Let us now show that the electric charge has an expli-
cit topological interpretation in terms of the vortex
operators. First, let us explain what we mean by this. As
we mentioned in the Introduction, the electric current is
trivially conserved. In the usual representation of the
electrodynamics via gauge fields, the charge, however, is
not explicitly given as some “winding number,” but rath-
er as a surface integral of the electric field.

Consider a state with a pointlike charged particle at
the origin. We know that if we place an infinite magnetic
vortex somewhere in space and move it adiabatically
around the charge, no matter how large the distance be-
tween the vortex and charge is, the Aharonov-Bohm (or
rather the Aharonov-Casher) [14] phase will be accumu-
lated. In order for that to happen, the vortex must com-
plete the rotation around the charge. This means then
that, although locally the charged state at spatial infinity
is indistinguishable from the vacuum (for example, F,,,
J s and T#V all vanish), there exists some global charac-
teristics which do distinguish between them.

Remembering that the QED vacuum is in fact degen-
erate, the natural possibility is that locally at every point
at infinity the charged state is similar to one of the vacua,
but moving from point to point we actually move from
one vacuum to another. If this is the case, then when the
rotation is complete, one should, of course, come back to
the same vacuum. If this closed path in the manifold of
the vacuum states is not contractible, there should be a
topological winding number associated with it. Given
the fact that the electric charge in QED has features
characteristic of a topological charge (trivially conserved
and quantized), it is natural to expect that it is identical
to this winding number.

20ne can also restrict the integration in the perpendicular
directions x; and x, to a finite domain, but this is irrelevant to
our argument.

Note that, although the notion of topology of the man-
ifold of the vacua originates in the classical field theory, it
has a precise quantum meaning. Suppose one has a vacu-
um degeneracy in the quantum theory due to spontane-
ous breaking of some symmetry group G. The different
vacuum states will differ not only in the expectation value
of the order parameter O, but also all its correlators and,
in fact, all operators which are nontrivial representations
of G. However, since the vacuum degeneracy is only due
to the spontaneous breaking of G, the VEV of any opera-
tor O;, on which the action of G is free unambiguously
determines the values of all the other correlators. There-
fore the possible values of this order parameter O can be
taken to parametrize the manifold of the quantum vacua
and the topology is identical to the classical one.

Analogously, one defines a notion of a topological soli-
ton which “interpolates between different vacuum states”
at spatial infinity. Usually (when the broken symmetry
has a local order parameter), this is a state with the fol-
lowing properties. Consider a chunk of space T of linear
dimension a at a distance R from the soliton core, so that
a/R —0. Then the expectation value of any local opera-
tor O(x), x €T, and any correlator of local operators
O,(x,) - 0,(x,), x,,...,x,ET, will be equal to their
vacuum expectation values in one of the vacua. In anoth-
er chunk T, which is also very far from the soliton core
but also far from T so that [x; —x7 [=o(R), the values

of these correlators are given by their expectation values
in another vacuum state. So in this soliton state at each
“point” at infinity one has a vacuum state in the sense
that all local and quasilocal operators (operators with
finite support) have expectation values equal to their
VEV’s in a vacuum. These vacua are, however, different
at different points at infinity, and the mapping from the
spatial boundary into the vacuum manifold is not homo-
topic to a trivial map. The soliton charge in this case is
equal to the winding number corresponding to the homo-
topy group I, (M), where D —1 is the dimension of a
spatial boundary and M is the manifold of the vacua.

This was precisely the picture in QED in 2+1 dimen-
sions. The vacuum manifold was S, corresponding to the
phase of the VEV of the vortex operator V(x). In a
charged state with charge n, the configuration of the vor-
tex field looked asymptotically like a hedgehog:
V(x)—, ..e™® and the electric charge was equal to the
winding number corresponding to the homotopy group
n,(shH=z.

The situation in QEDj, , is slightly different. The vac-
uum (at least in the classical approximation) is still degen-
erate. However, the broken symmetry group is
represented trivially on all local operators. The only
operators that carry the broken charges and whose
VEV’s therefore distinguish between different vacua are
the infinitely long magnetic vortex lines ¥V (C). It is clear,
therefore, that in any solitonlike state (if it exists) all
quasilocal operators will have the same VEV at all points
at spatial infinity. The soliton is not characterized by
II,(M) or rather II,(M)=0. To see the difference be-
tween different regions of space far from the soliton core,
one has to calculate the VEV of ¥ (C). One therefore has
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to divide the spatial infinity not into quasipointlike re-
gions, but rather into quasistringlike regions, and com-
pare the VEV’s of V(C) and their correlators (which fit
into one such region).

The set of all the vortex operators is overcomplete. As
in the case when a local order parameter exists, it is
enough to pick the minimal set of operators so that every
group element of the spontaneously broken group by
represented nontrivially. In our case the set of broken
charges is {®¢}. The most convenient choice for { V' (C)}
is the set of all straight lines.

The operators whose VEV’s one compares should be
transformable into each other by translation. The opera-
tion of translation does not change either the orientation
or the form of a string. Moreover, all the points on a
string should be far from the soliton core. Therefore for
a given straight vortex line the set of operators to which
it should be compared can be chosen as the set of all
straight vortices having the same direction and the same
distance from the soliton core in the limit where this dis-
tance becomes infinite. We see therefore that the relevant
homotopy is the first rather than the second homotopy
group II,(M). As we have discussed earlier, the vacuum
manifold is infinitely dimensional, corresponding to an
infinite number of broken charges ®g, and therefore this
homotopy group is huge. However, if we only consider
rotationally symmetric solitons, things simplify consider-
ably. Since the straight lines in different directions can be
all transformed into each other by a rotation, for the ro-
tationally symmetric soliton the winding numbers for all
sets of straight lines are the same. Since the vortex
operator creating a straight line in a given direction takes
values in S!, we see that for rotationally symmetric
configurations the soliton charges must take values in
n(sh=z.

Let us now calculate expectation values of the magnet-
ic vortex lines in the third direction in a state with an
electric charge at the origin. We again do this in the clas-
sical approximation. The vortex operator which creates
a fluxon parallel to the third axis with coordinates
(X,,X,)is

2T oo o
V(XI,X2)=eXp l_e—f‘de3 fxldxlEz(xl,Xz,X3)

(32)

In the classical approximation the phase factor is propor-
tional to the electric flux through the half plane (x,=X,,
x;>X,). For the spherically symmetric configuration of
a pointlike electric charge, this is proportional to the
plane angle ® between the vector (X;,X,) and the axis
x;. Since the total flux is equal to e, we find

(V(R,0))=exp{i®]} . (33)

For a pointlike electric charge, this expression is valid for
any R. If the charged state has some charge distribution,
the expression (33) will be still valid asymptotically for
R — . In the state with an electric charge eN, one
clearly has

(V(R,0))=exp{iNO] . (34)
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We see, therefore, that electrically charged states real-
ize the nontrivial windings of the vortex operators. The
electric charge is equal to the winding number.

It is quite easy to construct states with winding num-
bers corresponding to more general elements of II;(M)
and not only IT,(S". For example, consider a charged
state which is not spherically symmetric, but has all the
electric flux lines asymptotically parallel to the (x;x;)
plane. In this case all the operators considered earlier
will have a unit expectation value, since no flux crosses
the (x,x;) plane. However, the fluxons in the direction
X,, for example, will still have a winding number 1. So
this state has a nonzero winding with respect to transfor-
mations generated by ®,, but is trivial with respect to
transformations generated by ®;.

However, the mere fact that one can construct a state
with a given topological charge does not mean it is neces-
sarily realized in the theory. It must also pass the test of
having a finite energy. Electrically charged states which
are not asymptotically rotationally invariant have infinite
energy and are of no interest in QED,.

As a final comment in this section, we note that in the
classical approximation the Higgs phase cannot be stud-
ied. Since the vortex operator is defined as a unitary
operator, classically its VEV cannot be zero, and there-
fore we are always in the Coulomb phase. This is similar
to the nonlinear o model, where in the classical approxi-
mation one does not see the unbroken phase. Quantum
corrections, of course, induce the phase transition there.
In the present case, as we will see in the following section,
the same phenomenon occurs.

IV. QUANTUM CORRECTIONS
AND THE INFRARED REGULARIZATION

A. Quantum corrections to { V(C))

We will now calculate (¥ (C;)) taking into account
the lowest-order quantum fluctuations.

Let us start with the Coulomb phase. The lowest order
in the e correction to the classical result is’

2
_ 1 |27
(V(Cﬁ)—expl—; ~ fd4ka,~(k)aj(—k)
X G, (k) ’ : (35)
where
a,(k)=8,,——8(ks) (36)
k,

and G;(k) is the propagator of the electric field,

k2 k.k;
G~~(k)=i[ 2 1s e

ij k2 i k2

—aij] : (37)

3Since the calculation is analogous to the corresponding one in
2+ 1 dimensions, we skip the details, which can be found in [3].
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The integral in Eq. (35) is both ultraviolet and infrared
divergent. Introducing the ultraviolet cutoff A and the
infrared cutoff (in real space) L, we find

2

2T AL

<V(C3)>=exp{— . (38)

The reason for both divergences is intuitively clear.
The ultraviolet divergence appears since the vortex line
created by ¥ (C) has zero thickness. It can be dealt with
by either regularizing the vortex itself (making it finite in
cross section) or by multiplicative renormalization [11].
The infrared divergence comes about because of the
infinite length of the vortex line.

So we find that in one very important respect the quan-
tum corrections change the classical result. Now in the
limit L — « we have { ¥(C))—0. The situation is simi-
lar in a certain sense to (1 1)-dimensional field theories
with a continuous global symmetry. There, too, in the
classical approximation one can have a nonvanishing or-
der parameter, which, however, is found to vanish when
quantum fluctuations are taken into account. As a result,
a continuous symmetry is never broken in 1+1 dimen-
sions. We further discuss the similarities as well as
differences between the realization of the magnetic sym-
metry in QED, and continuous symmetries in 1+1 di-
mensions in the Appendix.

In the next section we will perform an infrared regular-
ization of the theory which, without explicit breaking of
the magnetic symmetry, yields a finite expectation value
for the vortex operator. In this regularized theory the ar-
guments concerning the Goldstone theorem and the to-
pological interpretation of the electric charge presented
in the previous section in the classical approximation will
be valid also on the quantum level.

Before doing that, let us calculate (¥ ) in the Higgs
vacuum. The most convenient way to do this is using the
Euclidean path integral formalism. The expectation
value ( V(C;)) can be written in the following form [15]:

(V(Cy)

1 - .

:f:Z)AHZMSexp [— [Z—?(Fuv—fw)z
e

+|D 61>+ U(d*d) ] ] , (39)

where
Fun(x)=8,1,8,138(x()8(x,)6(x,) ,

with 6(z) a step function. For any given x; the field f
satisfies

3,y =83,8(x) . (40)

If we now view x; as the Euclidean time, f is the magnet-
ic field of the Dirac string of a static magnetic monopole
propagating in time. At the tree level therefore the VEV
is given by a Euclidean action of a static magnetic mono-
pole in the Higgs phase. In the Higgs phase magnetic
monopoles are linearly confined and the energy of a single
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monopole diverges linearly with the dimension of a sys-
tem. The action therefore diverges quadratically, and we
obtain

—alL,L

(V(Cy))y=e 7, (41)

where a is a dimensional constant and L and L; are in-
frared cutoffs on the first and third directions, respective-
ly.

We see that the VEV vanishes much faster in the in-
frared than in the Coulomb phase. In fact, even if we
make the system finite in the direction of the vortex line,
the VEV still vanishes in the limit L, — . So even
though in the infinite system the VEV of the vortex
operator vanishes in both phases, there is a qualitative
difference in the dependence on the infrared cutoff. This
difference will be reflected in the VEV of a closed vortex
loop ('t Hooft loop). Evidently, the large loops in the
Coulomb phase will have a perimeter law behavior, while
in the Higgs phase, the area law. This result of course
coincides with ’t Hooft’s discussion of the expected
behavior of vortex loops [12]. This means that in the
Coulomb phase there is a condensate of 't Hooft loops of
arbitrarily large radius, whereas in the Higgs phase there
is no such condensate. *

B. Infrared regularization

Let us now describe the simplest infrared regularized
theory which has a finite VEV of the vortex operator in
the Coulomb phase. Consider QED defined on a spatial
manifold which is compact in the direction of the x; axis.
This means that all the gauge-invariant fields (B;, E;, J,,
etc.) must at all times obey the periodic boundary condi-
tion

O(x,,x5,x3)=0(x,x5,x3+L) . (42)

In this theory the magnetic flux ®; is still a conserved
charge. We will concentrate on it and on its order pa-
rameter V(C;). As previously, V(C;) is a well-defined
operator, except that now the vortex line it creates has a
finite length L. The calculation of (¥ (C5)) is the same
as previously. The only alteration is that the photon’s
propagator must be modified according to the new
boundary condition, so that k; in Eq. (37) takes discrete
values Ky;=2mn /L. The exact form of the propagator,
however, does not matter as we have seen earlier, and we
obtain

(V(Cy))=e A, (43)

The proof of the Goldstone theorem goes through in
precisely the same way as in the unbounded case since the
dual field strength tensor remains antisymmetric. The

4This consideration applies only to loops with integer flux ’t
Hooft loops that carry noninteger flux do not condense even in
the Coulomb phase because of their nonlocal properties (see the
Appendix).
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Goldstone bosons that appear due to spontaneous break-
ing of @, are linearly polarized photons with a magnetic
field pointing in the direction x;.

Note that in the Higgs phase ( ¥(C;)) =0 because of
the infinite extent of our system in the direction x,. The
Higgs-Coulomb phase transition therefore is attributed to
the spontaneous breaking of ®;.

One also immediately realizes that an electrically
charged state has a nonzero winding of V(C;). The
configuration of the electric field of a point charge near
the location of a charge is the same as in the unbounded
case. However, since the electric flux cannot escape
through the boundary due to periodic boundary condi-
tions, near the boundary the electric flux lines get
squeezed and become parallel to the x,x, plane, so that
all the flux escapes to infinity (Fig. 3).

Repeating now the calculation of a previous section,
we find that the surface associated with V' (C;) collects
the electric flux proportional to the planar angle, and
therefore Eq. (33) is still valid.

For free (as opposed to periodic) boundary conditions,
part of the electric flux would have escaped through the
boundary and the wind of ¥ (C;) would not be complete.
However, in this case the electric charge would also not
be conserved, since charged particles would be able to
leave the system freely through the boundary. And, of
course, if a charge is not conserved, it cannot be topologi-
cal.

Other infrared regularizations are possible. For exam-
ple, one could take the system to be finite in two dimen-
sions x3; and x,. Then both (¥ (C,;)) and (V(C,))
would be nonvanishing in the Coulomb phase. The mass-
lessness of photons with two linear polarizations would
then follow by Goldstone’s theorem. If the boundary
conditions preserve the /2 rotations around the first
axis, the finite energy electrically charged states will car-
ry a unit winding of both V' (C,) and ¥V (C;). Note, how-
ever, that the regularization in which all three directions
are made compact is illegal since in this case V' (C) can-
not be defined. The reason is that the surface of singular-
ities associated with ¥ (C) must be infinite and there are
no such surfaces in a completely finite system. The same
is true in 2+ 1 dimensions where one cannot define the lo-
cal vortex field V(x) in a finite system with periodical
boundary conditions.

We see, therefore, that any sensible infrared regulariza-
tion leads to a nonvanishing VEV of the vortex operators.
Goldstone’s theorem for the photon and identity of the
electric charge with the winding number holds for any
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FIG. 3. Schematic distribution of the electric flux lines of the
field of a pointlike charge in a box of a finite height L with
periodic boundary conditions.

finite value of the infrared cutoff. In this sense both re-
sults are also true in the unbounded theory, although the
actual VEV of the order parameter vanishes.

Note that QED, differs from a typical field theory in
the following respect. Usually, the tendency of a smaller
system is toward a restoration of any broken symmetries,
since the potential barrier between the degenerate vacua
becomes smaller. In a certain sense this is why the high-
temperature phase is usually the one where all the sym-
metries are restored. In QED,, as we have seen, the op-
posite happens. Because of the nonlocality of the order
parameter, its expectation value is actually larger for a
smaller system. This might be connected to the fact that
in QED, the high-temperature phase is the Coulomb
phase, in which the flux symmetry is broken, whereas the
low-temperature Higgs (superconducting) phase has the
symmetry restored.

V. DISCUSSION

In this paper we approached QED from an unconven-
tional point of view. Instead of concentrating our atten-
tion on the standard degrees of freedom such as photons
and charged particles, we have analyzed the behavior of
the dual variables: the magnetic vortex lines. The pic-
ture that transpires from this point of view is somewhat
similar to (2+ 1)-dimensional electrodynamics.

In the Coulomb phase the operators creating infinitely
long vortex lines V' (C) have “finite expectation value per
unit length.” What this means is that the expectation
value of such an operator in a system with a finite in-
frared cutoff in the direction of the vortex line behaves as
e %L in the Coulomb phase. The operators V(C) are
eigenoperators of the magnetic symmetry generators ®g.
Therefore in the Coulomb phase the magnetic symmetry
group is spontaneously broken. Although the only order
parameters for @ are the nonlocal vortex operators, the
Goldstone theorem is still applicable and the spontaneous
breaking of this symmetry leads to exact masslessness of
the photon.

The electric charge in this picture is topological and
corresponds to the homotopy group IT,(S! of possible
string configurations.

In the Higgs phase, the VEV (¥ (C)) vanishes. The
magnetic symmetry is restored and no massless excita-
tions are present. The Higgs-Coulomb phase transition is
driven by condensation of the magnetic vortices.

According to the standard lore, a theory near a phase
transition (and also away from the phase transition but at
low energies) should be describable in terms of a
Landau-Ginzburg-type Lagrangian for the order parame-
ter. In the case at hand, this would not be a standard
field theory, but rather a string theory of the vortex lines
V(C). An approximate derivation of this string theory is
given in [16]. In fact, the dual field strength tensor F v
can be expressed via ¥ (C) in the same way as F,,, is ex-
pressed via the Wilson line [17],

3

~ — T o
Fx=v'0 55,00

V), (44)

where 6/8S,,(x) is the area derivative at the point x.
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The kinetic term therefore can be rewritten in terms of
the vortex creation operator as

5 b B
5 V(C)SSW

uv

V(C) . (45)

There is an interesting possibility that the exact dual
reformulation of QED, exists. Then QED should be ex-
actly equivalent to an interacting string theory. Clearly,
the weakly interacting QED will be described by a
strongly interacting dual string theory. This must be so,
since the spectrum of a free string theory contains an
infinite number of particles, whereas the spectrum of
QED contains just the familiar excitations: the photon
and charged particles. It should also be noted that a
massless photon will arise in this string theory in a way
very different from massless gauge particles in a free
string theory, since it is massless in the phase in which
the strings are condensed.

It is clear from the discussion in Sec. III that the topo-
logical mechanism of quantization of electric charge is in-
timately related to the existence of a “line-local” vortex
operator. If a line-local vortex operator does not exist, of
course, the whole discussion of topology in Sec. III would
be meaningless. Conversely, a theory with nonquantized
electric charges does not admit a line-local vortex field.
A simple example is furnished by QED, with incommens-
urate charges. Here the Dirac condition necessary for
the existence of a line-local operator V cannot be
satisfied. On the other hand, the quantization of the elec-
tric charge in nature is a well-established experimental
fact, and therefore any phenamenologically relevant
theory must admit a topological interpretation of the
electric charge. One could thus entertain the idea that
the topological nature is a primary quality of the electric
charge, and if accepted as a basic principle, it provides a
natural mechanism for charge quantization.’ It would
also imply that a more natural setup for the generaliza-
tion of electrodynamics is the dual string formulation
(which ensures the existence of the line-local vortex field
and the correct topology) rather than the original gauge-
field theory formulation. This, however, technically is
beyond our present abilities.

There are many further questions which have been
asked in the context of (2+ 1)-dimensional gauge theories
which we did not address in this paper. For example,
what elements of the dual picture should be modified if
the matter fields are fermionic? But the most interesting
one is perhaps, can this picture be generalized to non-
Abelian theories? It would be very rewarding to have a
simple qualitative picture of confinement based on a to-
pological interpretation of the electric charge similar to
the one available in 2+ 1 dimensions [18]. There constit-
uent quarks can be understood as topological defects like
electric charges in QED, but the flux symmetry is broken

3Curiously, this explanation of charge quantization as well as
the one based on a possibility of the existence of magnetic
monopoles also use the Dirac quantization condition, but now
in the guise of quantization of the vorticity of a fluxon.
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explicitly (by the nonperturbative monopole instanton
effects). As a result of this explicit breaking, the vacuum
is nondegenerate (or has a finite degeneracy) and the to-
pological defects are linearly confined. In non-Abelian
theories in 3+ 1 dimensions, there are also nonperturba-
tive effects due to magnetic monopoles (which now are
particles rather than instantons). The appearance of the
monopoles again breaks explicitly the magnetic symme-
try since the dual field strength is not conserved anymore.
It is interesting to see whether this explicit breaking leads
to linear confinement of the topological defects as in 2+ 1
dimensions, although the defects now are of quite a
different nature. It is also worth noting that in SU(N)
theories with adjoint matter fields only the monopoles
carry N units of the elementary Dirac quantum. There-
fore the discreet subgroup of the magnetic group will still
survive (just as in 2+ 1 dimensions). The phase transition
between the ‘“‘completely broken” Higgs phase and a
confinement phase can then be attributed to the spon-
taneous breaking of this discreet symmetry.

APPENDIX

As mentioned in Sec. IV, there are certain similarities
between the behavior of the order parameter in QED,
and in U(l)-invariant (1+ 1)-dimensional models. In both
cases the order parameter in the massless phase, although
nonzero in the classical approximation, vanishes when
the quantum corrections are taken into account.

There is, however, a very important physical difference
between the two cases. In the (14 1)-dimensional models,
the order parameter is local. The vanishing of its expec-
tation value therefore persists also for a finite infrared
cutoff as long as the cutoff theory preserves the symme-
try. Technically, the system is disordered by the zero
mode. If the infrared regularization is performed in such
a way that the “spontaneously broken” symmetry is not
broken explicitly, the zero mode is still present and it still
leads to the vanishing of the VEV of the order parameter.
If the regularization is such that the zero mode is given a
finite mass, the VEV can be nonzero, but the symmetry is
then broken explicitly.

In the case at hand, though, the order parameter is
nonlocal and this nonlocality, rather than the zero-mode
contribution, is the factor which leads to the vanishing of
the VEV. This can be seen explicitly by taking a massive
rather than a massless propagator in Eq. (37). The result
is still linearly infrared divergent.

Another basic qualitative difference is the absence of
the so-called symmetry enhancement in QED,. In U(1)-
invariant (1+ 1)-dimensional models, the symmetry in the
massless phase is actually larger than U(1) [19,20]. Be-
cause of the extreme softness of the interaction of mass-
less ‘“‘almost Goldstone bosons,” Hilbert space of these
models contains finite-energy states with arbitrary real
(noninteger) charges and the symmetry group actually be-
comes R. In contrast, in QED, the symmetry enhance-
ment does not occur. Even in the Coulomb phase the en-
ergy of a state with a noninteger magnetic flux is infinite
relative to that of an integer flux.

Let us calculate the energy of the state with a fluxon of
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strength ¥ /e with arbitrary y created from the vacuum
by an operator ¥V, (C;) (see Fig. 3):

ly)=V,(C3)l0) . (A1)

As was discussed in Sec. II, for y =2mn the operator
V,(C) is line local and therefore does not perturb the
vacuum state outside the line C;. On the other hand, for
arbitrary y, ¥,(C;) has a support on a half plane S;:
x;>0, x,=0. Accordingly, one expects that the energy
of the state |n ) has finite energy per unit length (E, <L),
whereas the linear energy density in |y ) is expected to
diverge. Indeed,

E,=(0lV}(CHY,(C})[0) . (A2)

Since V., is an operator of a singular range transforma-
tion, we have

V;',(C3)B,-(x)V,(C3)=B,-(x)+-eL8,-38(x -C3),

; (A3)

+Ymod2‘n'¢(x)8i282(x —S;).

The local operator O;(x) depends on the UV regulariza-
tion of the vortex operator V along the line C;, but its ex-
act form is unimportant. The energy of the state is there-
fore

2

E,=E,+ 3;— LyA2+y2L,A%(0?)
+27’L3(Ji(X)Oi(x)>+('}’mod21r)2L3L1<¢'¢> )

(A4)

where A is a UV cutoff. For ¥,.4,,—0 we have
E,—Ej=Lj, while for noninteger fluxons the last term
gives a leading contribution which is divergent quadrati-
cally if (¢*¢)70. Stated differently, this means that an
introduction of a noninteger fluxon into the vacuum
should lead to the appearance of vacuum currents which
screen the noninteger part of the flux, so that the vacuum
can only support the existence of integer fluxons. This
phenomenon indeed occurs in QED, with both bosonic
and fermionic matter [21].

In the Higgs phase { ¢ )70 already on the classical lev-
el. In the Coulomb phase classically {¢) =0, but quan-
tum mechanically of course {$*¢$)#0. Consequently, in
both phases states with noninteger fluxons have divergent
linear energy density, and are therefore not present in the
physical Hilbert space.® The symmetry enhancement in
this model therefore does not take place.’

6We have considered a particular state with a noninteger
fluxon. However, any state which carries a noninteger flux has
the form K (C;)V,(C3)|0) with K (C) an operator which has a
support on C;. It is clear from the previous discussion that this
modification of the state does not change the dependence of the
energy on the dimensions of the system.

"Very far from the phase transition, the VEV ($*¢) vanishes
since the charged particles become very heavy and for heavy
particles {¢*@) < 1/M?. In this limit the magnetic symmetry
group “decompactifies.” This behavior is the same as in any
theory with spontaneously broken compact global symmetry
infinitely far from the phase transition inside a broken phase.
This, however, has nothing to do with symmetry enhancement.
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FIG. 3. Schematic distribution of the electric flux lines of the
field of a pointlike charge in a box of a finite height L with
periodic boundary conditions.



