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Scattering in the presence of electroweak phase transition bubble walls
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We investigate the motion of fermions in the presence of an electroweak phase transition bubble
wall. We derive and solve the Dirac equation for such fermions, and compute the transmission and
re6ection coefficients for fermions traveling from the symmetric to the asymmetric phases separated
by the domain wall.
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I. INTRODUCTION

There has been much recent work which suggests that
the baryon asymmetry of the Universe might have been
produced at the electroweak phase transition [1]. If the
equations of motion of electroweak theory are quantized,
then anomalies arise which are responsible for the Chern-
Simons, or baryon number changing, currents [2]. The
rate of baryon number violation is rather small for low

temperatures but it becomes large at a temperature scale
on the order of the electroweak scale of about 100 GeV [3—
5]. Since baryon number is violated, a net baryon num-
ber will be generated if there is a mechanism that bi-
ases the rate at; the electroweak phase transition in such
a way that, as the baryon number violation shuts off in
the low temperature phase, an asymmetry remains frozen
into the system. This can happen in practice if the elec-
troweak phase transition is of 6rst order, and if there is
sufBcient CP violation at the temperature of the phase
transition.

It is expected that the electroweak phase transition
is of first order [6—9]. In a first order phase transition,
the conversion &om one phase to another occurs through
nucleation of the true phase in the false phase. This
happens when the system is either supercooled or super-
heated. The bubbles of the true phase expand rapidly,
absorbing the region of the false phase. For the elec-
troweak phase transition, this true phase eventually 6lls
the entire volume with no intermediate mixed phase [10].
At the bubble surface, there is a thin wall of microscopic
dimensions which separates the phases. It is at this bub-
ble wall that matter is strongly out of equilibrium, and
here the baryon asymmetry is generated [11—18].

To quantitatively understand the generation of the
baryon asymmetry in the bubble wall, the effect of the
bubble wall on the propagation of fermions should be
understood. Fermions passing through the bubble or do-
main wall acquire mass, generated by the Yukawa cou-
pling, which is proportional to the 6nite temperature vac-
uum expectation value (VEV) of the Higgs field. This
VEV is determined &om the equations of motion of the

Gnite temperature effective action of the bubble.
To simplify the problem, we will work in the approxi-

mation where the energy densities of the two phases are
degenerate. In practice this is a good approximation,
since in cosmology, the Universe is expanding so slowly
that the nucleation always begins at a temperature where
the amount of supercooling is very small, and the energies
of the two phases are degenerate. In this approximation,
there is a one-dimensional kink solution which separates
the phases, and the bubble wall is a domain wall which
separates the domains of different energy. This kink wall
can propagate at any velocity. In practice, the wall ve-
locity is determined by a complicated analysis which in-
volves computing the effects of dissipative processes, and
is in the range 0.1—0.9 of the speed of light [9,19—21]. In
our analysis, we will consider fermion propagation in the
presence of the wall at rest. The case for a moving wall
can be determined by Lorentz boosting to the moving
wall kame.

A plot of the domain wall is shown in Fig. 1. At
x = —oo, the system is in the symmetric phase, that
is, outside the bubble. At z = +oo, the system is in
the symmetry broken phase, that is, inside the bubble.
The approximation of the bubble as a planar interface
should be valid for bubbles which are large compared to
a microscopic size scale. This is true for most of the
evolution of bubbles produced in the electroweak phase
transition [10].

The fermions moving through the bubble wall will in-
teract not only with the wall but also with the particles
in the surrounding plasma. If the mean free path AMFp
of the fermions is much larger than the wall thickness L,
so that AMFp ~ )) L, then the collisions with the plasma
particles will have a negligible effect. The ratio ~ rep-
resents the projection on the axis perpendicular to the
wall. On average though we can estimate the width of
the wall [20] to be L &&" (15 —20)T ~ and the
fermion mean free path as AMFp (1 —10)/T. The
mean Bee path in the direction perpendicular to the wall
is therefore in most cases on the order of or less than
the wall thickness and the collisions with the plasma be-
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Symmetric Asymmetric Phase

FIG. 1. The bubble profile. x = —oo cor-
responds to the bubble's outside. The do-
rnain wall is the region where the VEV of the
Higgs field g(z) changes rapidly.

XI

come quite important. In this limit the propagation of
fermions through the wall has to be treated as a trans-
port problem. The investigation of this limit is subject of
a later analysis. The object of such an anlysis is to com-
pute the diffusion of particles scattered from the wall
and the resulting asymmetry. This diffusion problem
is rather complicated and involves solving the Fokker-
Planck equation. The solution has then to be convoluted
with baryon number violating rates.

Although for the reasons discussed in the previous
paragraph, the analysis we present has a limited scope,
it is still useful in its own right, and there may be spe-
cial theories where in fact the diffusion corrections are
a relatively minor correction to the scattering from the
wall. In most realistic cases, we expect that the diffusion
corrections will be large, and that it is probably more
accurate to use an approximate adiabatic limit. Until
the diffusion computations are performed, it is difficult
to say something concrete and quantitative.

The outline of this paper is as follows: In Sec. II we de-
scribe how to obtain the equation of motion for fermions
in the presence of a domain wall in the minimal standard
model. We obtain the Dirac equation with an effective
mass proportional to the VEV of the Higgs Geld. We
solve this equation in Sec. III, and compute the fermion
wave function we obtain transmission and reflection coef-
ficients. In Sec. IV, we present the normalized solutions
of the Dirac equation. We Gnish by summarizing our
results in Sec. V.

model is invariant under SU(2) x U(1) transformations
and the fields are therefore eigenstates of weak isospin
and hypercharge I . The SU(2) x U(1) invariant vacuum
state of the Lagrangian exists only in a high temperature
phase above the electroweak phase transition. The sym-
metry is broken spontaneously once we cool the system
below the transition temperature T, .

The Lagrangian is

~gauge field + ~Higgs + ~fermion + ~Yukawa + ~GF ~ (1)

The gauge Geld, fermion, scalar kinetic energy, and
gauge-fixing terms are all written in the standard way
[24]. For the potential energy of the Higgs field, we take

V(Cr) = A(at@ —v /2), (2)

so that the vacuum expectation value of the Higgs field
is

(4)

To describe kink solutions and a first order phase tran-
sition, one has to include the modiGcations of the effective
potential for the Higgs Geld due to interactions with the
heat bath. Including effects of both one-loop diagrams
and the sum of ring diagrams, the effective potential can
be written to a good approximation as

II. MOTION OF FERMIONS
IN THE PRESENCE OF DOMAIN WALLS

In this section we show how to obtain simplified clas-
sical equations of motion for fermions in the standard
model scattering &om and interacting with the elec-
troweak domain walls. We use the classical mean-Beld
approximation in which the bosonic Geld operators are
replaced by their classical expectation values.

We will briefly review the notation which we will use
throughout the paper. The Lagrangian in the standard

where P = ~2(4tCr) i~2. The dimensionless parameters p
and b are approximately given by

5—g16
1

16 ''
when M~ Mz Mq, where these are the masses of
the W bosons, the Z boson, and the top quark, respec-
tively. b is small and is responsible for generating the
first order phase transition. At some value of T, there
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are two degenerate minima of this potential and a kink
solution exists.

Of course the above evaluation of the effective potential
may not be such a good approximation for realistic values
of the Higgs mass. If the effective potential is greatly
modified, then the kink solution, estimates for bubble
wall velocity, and the considerations we present will all
have to be modified. Nevertheless, our procedure should
be instructive.

As the scalar field evolves through the kink solution,
no current is generated for the vector 6eld, so that no
expectation value of the vector fields is generated. We
are therefore justi6ed in truncating the system to only the
Higgs Beld degrees of &eedom. The equation of motion
is just the classical Higgs field equation of motion with
zero background vector 6eld.

To get the effective potential for the Higgs 6eld into
more transparent form [19],we introduce the dimension-

less temperature ( = &~ [1—(~& j ] and the dimensionless

field strength g =
&& P and obtain

&.tr(g) = ~T
( I i

g' —g-'+ -g' I.gA) g2 4

The potential V,ir(g) is plotted in Fig. 2 for different val-
ues of (. For large positive values of ( we are in the high
temperature phase with the VEV of the Higgs field be-
ing zero. Decreasing ( we develop at ( = 2.25 a second
relative minimum which for ( = 2 becomes degenerate
with the first one. For smaller values of (, the high tem-
perature phase at g = 0 becomes unstable with respect
to the new absolute minimum at g g 0, the first order
phase transition sets in, and bubbles of the broken phase
start to nucleate. If we supercool to ( = 0, the system
spinodally decomposes.

Since the expansion rate of the Universe ( 10
s) is rather slow compared to the electroweak timescale
(= 10 2s s), we cannot strongly supercool and the phase
transition will roughly proceed at ( —2 where the min-
ima of the efFective potential are degenerate. The steady
state solution describing the domain wall is thus given

approximately by the solution of the Higgs 6eld g for a
transition between the degenerate minima at tempera-
ture ( = 2.

The equation of motion for the kink is mathematically
identical to treating the amplitude of the Higgs 6eld g as
a spatial coordinate for the inverted potential of the pre-
vious equation and taking the spatial coordinate of the
kink as the time variable [23]. The mechanical analogue
to this system is a &ictionless ball rolling from the top
of one hill through a valley to the top of another hill.
For degenerate minima the tops of the two hills have the
same height and there exists a solution where the ball
starts at the top of one hill &om rest and ends on the
top of the other hill again at rest. Such a solution is the
kink. Energy conservation for the kink reads

which for a transition between degenerate miniina (E =
0) and a kink bubble with dimensionless position z =
~Tr can be rewritten as

dg—= —g(g —2).
dx

We can integrate the above equation implementing the
boundary condition that at the center of the nucleated
bubble (z ~ +oo) the system is in the broken phase with
a finite VEV while outside the domain wall (z ~ —oo) it
approaches a zero VEV in the high temperature phase,
treating the domain wall as effectively flat and separating
two semi-infinite domains. We obtain

g = 1+ tanh(z).

This solution, commonly called the "kink, " is depicted
in Fig. 1. It represents the classical, steady state, finite
temperature solution to the equations of motion.

Given a background scalar 6eld, we can solve the Dirac
equation in the presence of this Geld. Rewriting the coor-
dinates in terms of ordinary dimensionful length scales,
the Dirac equation is

Ef fective Potential V

0.5--
FIG. 2. The dimensioaless effective po-

tential for the Higgs field V(g, () in
units of bT( z ) for different values of
( = 0, 2, 1.75, 2.25, 2.75.

-0 5--
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B(z)
l
@(z) = o

( 8T
(10)

Recalling that the dimensionless radius x is x = ~Tr
we obtain from (12), in dimensionless variables,

where 4 is any fermion field, and ( is twice the ratio of
quark to Higgs mass at zero temperature. The solution
to this equation describes the motion of a fermion in the
presence of a kink. To this order of approximation for
the standard model, CP violation plays no essential role
in this equation.

2 2 2

dx2
+ its( —g(z) —( g (z) + e C (z) = 0.z

dx

The dimensionless energy parameter e is given in terms
of the energy E and the momentum parallel to the bubble
wall p& by

III. SOLVING THE DIRAC EQUATION

In this section we study the solutions to the Dirac equa-
tion (10). We start by explicitly showing how to solve this
equation analytically for the fermion wave function. The
second part is devoted to deriving the transmission and
reHection coefficients from the wave function.

~ = (v 2A/bT) E' —p,'.

We write the spinor 4'(z) in the basis (15),

4(z) = ) P~(z)u~. (18)

The spinors (15) are linearly independent and thus writ-
ing (18) into Eq. (16) we get two difFerential equations
for the functions P+,

A. Wave function

We will solve the Dirac equation by looking for eigen-
states of momentum in the plane of the wall, pq, that is,
the momentum perpendicular to a normal vector on the
surface of the wall. The Dirac equation (10) is then a
differential equation in one dimension and the only rele-
vant variable (r) is the one along the direction normal to
the domain wall. The degrees of freedom in the plane of
the domain wall effectively decouple. This can be used

by substituting the ansatz

+ b
—g(z) —b'b'(z) + z') b+(z) = o

dz2 dx
(19)

To further simplify Eqs. (19), we factorize the singu-
larities. With the change of variable z = 2[1 —tanh(z)j
we substitute

&+( ) = ( — ) &+( ) (2o)

and examine the behavior of the resulting differential
equations near the singular points z = 0 and z = 1.
Assuming that the functions y~ are slowly varying near
the singularities, this yields two algebraic conditions from
which we get

into Eq. (10), finding

p —
l

(g(r) I
+ P, (g(r) C'(") = 0. (12)

r ~T &' ~z

t 2& ) 2A

The + and —signs in Eq. (11) correspond to the positive
and negative energy solutions, respectively.

The commutator in Eq. (12) picks only a contribution
from the direction normal to the wall and therefore it is
proportional to just one of the p matrices and we choose
this to be p3. We will use the ordinary representation for

p matrices where

=+-V'" —4(',
2

= + —E
2

(the choice of signs for u and P is discussed later). With
the values of n and P at hand, the difFerential equation
for the functions yy is the hypergeometric differential
equation

E

d

z(1 —z), + [z —)1+ zz + bz)z] ——zzzbz lxz

o o' 't

~ 0,
The eignestates of p3 are

+3ug = +'tu~) (14)

with the parameters a+, 6+, and c given by

1 1
a = a+p+ ——

2 2
'

= 0, (22)

where 8 = 1, 2 and u+ are 1 1=~+p+-+ (+-,
2 2

'

1uy and u+ ——2

0

0
k+')

(i5)
c= 2o. +1. (23)

Each of the equations (22) has two independent solu-

tions [22]
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'(z) = 2Fi(&+»+ c z)

(z) = z ' 2Fi(a+ + 1 —c, b+ + 1 —c, 2 —c; z).

(24)

The hypergeometric equations are expressed here as ex-
pansions around z = 0. The superscripts (+n) are ex-
plained below.

The general solutions to Eqs. (19) are

S(8) = exp( —pops()). (32)

To finish this section, let us work with the
independent part of Eq. (29) and evaluate

(
d+'n —+ (g (E)) @(*)

using 4 given by (18) and (25); with u+ given by (15),
the above equation becomes

with

ye (As)( ~)y( ~) + (As)(+~)y(+~) (25)
with

) p+u+&

s (As )(—n) (—~) + (As )(+a) (+~)

(34)

—z (1 —z) 2Fi(a+, b+, c; z),

P(~+ ) = z (1 —z)~ 2Fi(a~

+1 —c, b++ 1 —c, 2 —c;z), (26)

where we have defined, using (by given by (25) and (26),

dv+—: w —,+tg(*)) 4+(*).
dz

where we have used (20). The superscripts (+a) indicate
the behavior of these solutions at z ~ +oo or correspond-
ingly at z = 0 since

ka(1 )P
~ +~ P2az

a(1 —z)+~ ~ ~ —,~ a2Pe

(27)

(28)

d+(*)= (E.~+E~E—+(g(*)j ~(*),
dx

(29)

where we have set

and sFi(a, b, c;0) = 1. The behavior of the solution in
these limits will be needed in the next section to imple-
ment boundary conditions.

We now proceed to find the fermion wave function.
We begin by rewriting Eq. (11) (in units of ~T) in a
slightly different form

and thus

follp = ll~. (37)

Recall that each of the four terms in Eq. (18) is by
itself a solution to Eq. (16) and so for a given sign of the
energy, Eq. (29), with e'(z) replaced by any of its four
components, represents four solutions &om which only
two should be independent. In the Appendix we show
that py are related to P+ by

To construct the full wave function we set e = ~Eb'T

and p = po in (29) and boost then the so found solu-
tion in the direction along the domain wall. We need to
know therefore how po operates on the spinors u. In our
representation,

( I 0&
0

p = pocosh8 —pqsinh8,

TE = e„cosh 0,
2A

T
pq —— e„sinh 8,

2A

r = 1, 2 and e„ is given by

E ) r=l)
r=2)

(30)

~(—~) 2(( y ~)y(
—~)

~(+~) 2((L ~ ~)y(+~) (38)

e„' = (A')( )[e„(b u' + 2((+ cx)y u']

We also notice that P~+ (z) can be obtained &om

(z) by exchanging n with —a. From Eq. (29) to-
gether with (35), (37), and (38), we get the four inde-
pendent solutions to the Dirac equation labeled by the
indices s and r,

with e given by Eq. (17). The parameter 8 is related to
the particle velocity in the direction parallel to the wall,
vz by vz ——tanh8.

From now on, we set pq ——0, that is, e = E (in units
of ~T) so that the fermion moves along the direction
normal to the domain wall. From (30) we also see that p
becomes po. The general case for which the fermion has
a nonvanishing pq can be obtained by Lorentz-boosting
the solution along the direction of the wall by means of
the transformation

+(A')(+ )[e,P++ u' + 2(( —n)P+ u+], (39)

where the constants (A') ( ) and (A') (+ ) replace
(A')+ and (A') ++, respectively, and have to be fixed
by normalization and the choice of initial conditions.
Again the general case for which the fermion has a nonva-
nishing pt, can be obtained by Lorentz boosting (39) along
the direction of the wall according to (32). Starting &om
the solution (39) we will discuss in the next section the
scattering states of fermions traversing the domain wall.
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B. Scattering states

At the electroweak phase transition the temperature is
larger than the typical particle masses such as that of the
Z boson or light mass quarks and although it can be of
the order of the top quark mass, most of the fermions will

pass by the domain wall with energies above its height.
To understand the interaction of fermions of such energies
with the wall we proceed to study the scattering states
of the fermion wave function and to derive reHection and
transmission coefBcients.

The two physical processes of interest here are either
a fermion leaving the bubble or a fermion falling into
the bubble. We call the solutions corresponding to the
boundary conditions of these processes the type I and
type II solutions, respectively. Both processes are de-
picted in Fig. 3.

For the type I solution we have an incident fermion
from the right (z ~ +oo) with an energy parameter
t which is always larger than the height of the wall
(e2 & 4(2). At the wall this fermion is scattered into
an reflected wave going to the right and a transmitted

inc.

Trans.

Ref.

Type l.

wave going to the left (x ~ —oo). Overall the fermion is
therefore represented by an incoming and reflected wave
to the right of the wall and by a transmitted wave to the
left.

If a fermion is incident from the left (type II solution),
it can approach the wall with energies above its height
(e & 4( ) or below its height (e & 4( ). In any case
there will be again the reflected wave running now to the
left and the transmitted wave running to the right. But
for energies below the barrier (e & 4( ) the transmitted
wave has to tunnel through the wall leading to a decaying
instead of an oscillating wave.

In this section we start out by constructing the wave
function corresponding to the boundary conditions of the
type II solution and determine then the transmission and
reHection coeKcients for this case. We show then that
we need to rewrite the hypergeometric functions as ex-
pansions around z = 1 to obtain the wave function for
the boundary conditions of type I. It turns out that the
transmission and reflection coefBcients for this case are
identical to the ones obtained for type II.

For a given pair of indices s and r, Eq. (39) con-
sists of two terms with diEerent asymptotic behaviors
as x i +oo. In this limit, according to Eq. (27), t.he

First term proportional to P+ behaves like exp( —2nz)

whereas the second term proportional to P+ behaves
like exp(2o. z). The boundary conditions appropriate to
the description of particles crossing the wall from the
symmetric to the asymmetric phase are as follows: At
x = —oo, corresponding to z = 1 (outside the bubble),
we require the solutions (39) to describe two plane waves,
one moving towards (incoming wave i''"') and the other
away from the wall (reflected wave @"f). At x = +oo,
corresponding to z = 0 (inside the bubble), we impose
that for energies such that e & 4( there is only a sin-

gle plane wave moving away from the wall (transmitted
wave ili" "'), while for e & 4( the solution dies out
exponentially.

The above conditions require that (A') ~ ~ = 0 in (39)
and the wave function for case II looks therefore like

(i'„')ii = Aii[e„g++ u' + 2(( —o.)P
+ u+]. (40)

Trans.
The normalization constant A~y is determined in the next
section and turns out to be independent of the quantum
numbers s and r.

To compute the transmission and reflection coeK-
cients, we need first to look at the behavior of the so-
lutions as x ~ +oo.

If we take the limit x ~ +oo of Eq. (40), we find

Inc.

Ref.

(@„')„;(@„')',; "' = A„[e„u' + 2(( —n)u+]e

(41)

Typt„ [I

FIG. 3. Sketch of the asymptotic behavior of the solution. s

of types I and II.

For x ~ —oo, we have first to evaluate the hypergeo-
metric functions in the second equation of (26) at z = 1.
Since these functions are defined as expansions around
z = 0, they are ill defined at z = 1 and we need to use
the identity [22]
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I'(c)1'(c —a —b)
2Fi(a, b; c; z) = 2Fi(a, b, a + b —c + 1; 1 —z)I' c —a I' c b—

sI'(c)I'(a+ b —c)+(1 —z)' 2Fi (c —a, c —b, c —a —b + 1; 1 —z).I'(a) r(b)
(42)

Therefore, using Eq. (42) in (26) and considering the limit z —i —oo we get from (40), after some algebra,

(ys) ~ ~ —,~ (@s)inc + (ys)ref

(@:)ii'=
A I'(1 —2n)I'( —2P) t' e„u' 2($ —a)u' )

I'(- -P+f)I'(- -P-() &
-P -( -—P+-5&

P

AiiI'(1 —2n) I'(2P) fe'„u' 2(( —n) u' )
I'(- +P+&)I'(- +P-~)&- +P-( — +P+(r

+
l

—2Pe (43)

We can check that the reflected wave can be obtained
from the incident by exchanging P with —P.

To compute the reflection and transmission coefB-
cients, we have to compute the ratio of the reflected and
transmitted fluxes to the incoming one. It is thus suffi-

cient to calculate the ratios of the normal components of
the corresponding vector currents.

The normal component of the currents associated with
the plane waves that we have found are

23 = ~~3~) (44)

The reflection and transmission coefficients R and T
are now the ratios of the reflected and transmitted normal

where 4 is any of 4' ' "',4'"', or O'" . From our solu-
tion, Eq. (40), the normal components of the incident,
reflected, and transmitted currents are, for type II,

I'(1 + 2n) I'(2p)
(jii') =

I
il'-

q(, p ()q( +p ()
I'(1 + 2a) I'(2P)"" "" r(1+n- p+g)r(n- p-g)

(jii "')s = 8IA»l'&. Inl.

(45)

currents to the incident one, respectively, projected along
a unit vector normal to the domain wall. Using Eqs. (45)
and the identity [22]

I'(*)I'(-&) = „. (,)
(46)

we find, after some simplification,

—sin 2mn sin 2+P
sin 7r (( —n —p) sin n'(( + n + p)

'

R= sin z'(f + a —p) sin 7r (( —n + p)
sinn'(f —n —p) sinn'(f+ n+ p)

' (47)

Prom the above equations we see that for states with
energy parameter e = 4(, the transmission and reflec-
tion coefficients become 0 and 1. For states with e2 ( 4(2,
n becomes negative and real. From Eq. (41) we see that
jt' "' is identically zero and therefore the transmission
coefficient T is also zero. Correspondingly, the reflection
coefficient R for fermions with e2 ( 4( is 1.

Both reHection and transmission coefBcients are the
same for positive and negative energy solutions and thus
for fermions and antifermions. They are depicted in
Fig. 4. In this and the following figures we choose two
representative values for the parameter (. The heavier

Transmission and Reflection Coefficients

0.75-

FIG. 4. Transmission and re8ection coef-
ficients for ( = 0.6, 4 which correspond to a
ratio of fermion to Higgs mass of 0.3 and 2,
respectively. The reduced energy parameter
is y = ~'&, so that the top of the barrier is at
y=1.

0.25-

1.005 1.01
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fermions are represented by ( = 4 which corresponds to
a ratio of fermion to Higgs mass of 2. It is expected that
the mass of the top quark is lying in this mass region, so
that we can consider the results for ( = 4 to represent a
top quark interacting with the domain wall. The other
fermions, on the other hand, are much lighter than the
Higgs. The corresponding value of ( will be therefore
very small. We choose a value of ( = 0.6 to represent
these particles which corresponds to a ratio of fermion to
Higgs mass of 0.3.

We plot in Fig. 4 the transmission and reflection co-
efficients as a function of a reduced energy parameter
y = z'&. The top of the barrier is then at y = 1. We see
that the interactions between the heavy fermions and the
wall quickly die out if we increase the energy parameter.
The light fermions on the other hand are still feeling the
presence of the wall high above the top of barrier.

The result for the reflection and transmission coefB-
cient is unchanged if we boost the solution along the di-
rection of the wall to go to nonzero pq. Since the boost
operator defined in (32) commutes with ps,

h's S(())l = o

we see that the currents defined in (44) are invariant
under S. This shows that also (47) is unchanged.

We proceed now to the solution of type I. Here the
transmitted wave has to behave like e ~* for z —+ —oo.
But the solution (39) is not regular in this limit —the
hypergeometric functions diverge. To resolve this prob-
lem we have to rewrite (39) in terms of hypergeometric
functions defined as expansions around z = 1.

There are two possible ways to obtain this modifica-
tion of (39). One possibility is to restart from (24) and
write the two independent solutions of the hypergeomet-
ric equation as hypergeometric functions de6ned as ex-
pansions around z = 1. Equation (24) becomes then [25]

g~+~ (z) =,F, ( ab~, a+ b „—c+1;1—z),{+)9)

X'-"( ) =(1- )'.-"-"
xFi(c —a+, c —b+, c —a+ —b+ + 1; 1 —z),

(48)

and (26) is now

——z (1 —z) 2Fi (a+, b+, a+ + b+ —c + 1; 1 —z),

P(
—0) ~(1 )

—P

x F, (c —a+, c —b+, c —a+ —b+ + 1; 1 —z).

(49)

Finally we repeat all steps leading to (39). The su-
perscripts in the equations above indicate the behav-
ior of these functions at x ~ —oo corresponding to
1 —z = 0. We can deduce this behavior by compar-
ing (49) with (28).

A second approach for rewriting (39) is to start out
with the four independent solutions we found in (39) and
use then (42) and the identity [25]

to rewrite the four solutions in terms of hypergeometric
functions of the variable (1 —z) instead of z.

Both approaches yield

@8 (As)(+P) (
p(+P) s 2pp(+P) 8

)

+ (A')( ~)(e P u' + 2PP u' ).

To impose the boundary conditions for the solution of
type I we have to require that for x m —oo only terms
oscillating like e 2i * survive. We thus set (A')(+i ) = 0.
The solution of type I is therefore

(@„')i= Ai(e, g+ u' + 2P(b )u+). (52)

Continuing now analogously to Eqs. (41)—(47) we find
the transmitted wave

(i'„')i '
,'(4'„')," "' = Ai(e„u' + 2Pu+)e '~* (53)

and the incident and reflected waves, for this case,

2Fi(a, b, c; 1 —z) = z' 2Fi(c —a, c —b, c; 1 —z) (50)

ys ~ ~ +,~ (@s)inc + (@s)ref

(~:)'"'=
I

" +A, I'(1 —2P) I'( —2n) ( e„u 2Pu+
r(- -p+&)r(- -p-&) &- -p-& — -p+&~

(+:)"= A I'(1 —2P) I'(2n) / e„u' 2Pu'
r(n —p+ g)r(n —p —g) (, n —p —g n —p+ (, y

+ (54)

Here we see that we can obtain the reflected wave from the incident wave by exchanging o. with —o..
As before we can calculate the currents and And

I'(1 + 2P)r (2n)
r(1+ + p+~)r( + p

0-'). =-8]A
i i-i " I'(1 —n+P+()r( —n+P —()

(j," "')s —— 4~Ai~ e,e. (55)
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If we compare these currents to the ones obtained in type
II [Eq. (45)], we see that we obtain (55) from (45) by ex-

changing n with P. Since the transmission and reflection
coefficients in (47) are unchanged under exchange of n
with P, we find that the reHection and transmission co-
efBcients for a fermion falling into the asymmetric phase
or a fermion escaping the asymmetric phase are the same
for energies above the barrier and are given by (47).

IV. NORMALIZATION AND ORTHOGONALITY

In this section we want to construct a general solu-

tion to the Dirac equation using the type I solution given
in (52) and the type II solution given in (40). The general
solution should have the form

Here tIiy represents the asymptotic limit of the wave

function at z ~ +oo, respectively, and the integrals have
to be evaluated only at the indicated limits kt. If we

let t ~ oo, the corrections of order O(b/I) vanishes and
expression (59) becomes exact. The result diverges in
this limit linearly in I, analogous to the divergence in the
volume of the plane wave normalization.

To solve Eq. (59) for the constants Ai and Aii of
4y and 4~~ we use their asymptotic expressions given

by (53), (54), (41), and (43), respectively. Using
the orthogonality of the spinors u in (15) and the fact
that integrals over oscillating functions average to zero

jdxe'"* = 0 we obtain, after some algebra,

nT 1

4/e P 1+R+ ) T'

0„' = a„'(4„')i+b„'(4'„)»,

where a, b are arbitrary coefficients normalized to 1,

1 = (a'„)' + (b;)'.

(56)

(57)

In (56), 4'i and tIIii should represent then the normal
modes of the system as depicted in Fig. 3.

To obtain such a solution we have to normalize first 4'i
and 4yj themselves and then assure that the two solutions
form an orthogonal set. It will turn out that they actu-
ally are not orthogonal and we finally will show how to
orthogonalize them to obtain a solution of the form (56).

To normalize the type I and II solutions given in (52)
and in (40) we first choose an open interval (+t, —I) on
the z axis of Fig. 1. We define now the normalization
condition for a state 4 on this interval as follows:

+l
1 = lim dx4po4

l moo

+l
= lim duet@.

l-moo

For l —+ oo we recover the usual normalization condition
from (58) .

To evaluate the integral in Eq. (58) we introduce an
additional length scale b on (—l, +I) such that b (( t.
The scale b defines an symmetric interval around x = 0
such that inside [

—b, +b'] the Higgs potential g(z) changes
rapidly from its value close to zero, to its value close to
2

chest%

= + + dx@t@.

If the scale t becomes very large, we can replace the wave
function @on the intervals ( I, —b) and (+b, +l) with i—ts
asymptotic limits at x ~ goo, respectively, and obtain

l

d CtC = d 4t~ ~C~—l —l

4te2n 1+R+ T-
P

(60)

As before we can obtain Ay from Ayy by exchanging o.
with P.

To prove the orthogonality of 4p and 4'~~ we need to
evaluate their overlap integral given by the scalar product

+l
I = d~4it

—l
(61)

+ "*(~i)(--)(~ii)(--)
—l

(62)

Using again the expressions for the asymptotic wave func-
tions we find

I =8IA„A, , (P-.) I'(P —n+ ()(P —n —(+ 1)

(63)

The overlap integral is therefore nonzero; 4g and kyat are
not orthogonal. To obtain a solution containing normal
modes as it was envisioned in (56) requires therefore to
find a set of orthogonal states. This can be done using
the Schmidt orthogonalization [26].

In the Schmidt orthogonalization we start out with a
set of nonorthogonal states and construct out of these one
by one an orthonormal basis. The set of nonorthogonal
states is in our case @y and 4yy. Let us choose now 4'y as
our first normalized basis state. The second orthonormal
basis state corresponding to 4y is then obtained through
the ansatz

The integral is defined as before on an interval (—t, +t).
If the overlap integral I in (61) is zero, then @i and tIlii

are orthogonal; if it is nonzero, we still have to search for
orthogonal solutions.

Proceeding analogously to Eqs. (58)—(59) we obtain

+l
d*(@i')(+-)(@»)(+-)

+l
dh@t( )@(+ ) + O(b/1). (59)

@ortho ~(a@i + '@it) . (64)

Here N and a are constants to be fixed by the require-
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ment that 4',tg is normalized to 1 and is orthogonal to
4y, respectively.

The orthogonality condition is evaluated by forming
the scalar product of 4'o, tb~ in (64) and 4r,

dh4&@,tg, = N
~

a dh4&4g+ dh@&4'gr
~

l ):—0. (65)

The first integral on the right-hand side is 1 since 4~ is
normalized and we obtain therefore

a = — dzC, Cqq = —I. (66)

The constant a is therefore identical to the overlap in-
tegral I evaluated in (63). It is now straightforward to
normalize @,tb . The normalization condition reads

t
~,tg~@or~aor (67)

which can be solved for

(68)

e'„~b, ——K'(a'ed) + e$). (69)

It is straightforward to see that in this case a' = I*-
and ~X'~2 = ~X(2, so that up to a phase @'„z
Again we can construct the general solution of normal
modes, this time replacing 4~ in (56) with 4 „b .

V. CONCLUSION

We therefore found a general solution of the form (56)
with 4'pp replaced by 4', tb . Of course, we could have
started in (64) with the orthonormal basis state to 4r~,

—sin 2m n sin 2vrP

sin vr(( —o. —p) sin 7r((+ n + p)
' (70)

where ( is twice the zero temperature ratio of quark to
Higgs mass. With

e = (2~P/$T) E2 p2 (71)

with b and A defined as parameters in the Higgs potential
in the second section and E the fermion energy and pq

its transverse momentum, we have

limit where due to the smallness of the mean free path the
fermions scatter &om the surrounding plasma particles
and therefore have to diffuse through the wall.

Before proceeding to any quantitative questions such
as the magnitude of the generated baryon asymmetry, the
results of an asymmetry generated by scattering Rom the
wall must be convoluted with the results of a diffusion cal-
culation. Thus diffusion is a needed extra ingredient here.
In the limit where the mean free path is greater than or
of the order of the bubble wall size, such a treatment
may be justified. In the opposite, probably more realis-
tic case, an adiabatic approximation is probably a better
starting point, and in this case the problem of scattering
from the wall is probably physically irrelevant.

The goal of this paper was to study the scattering off
of a phase transition bubble wall in the case where the
phase transition occurs close to the point where the min-
ima of the effective potential are approximately degen-
erate. In this case, the bubble wall profile is close to
that of a kink. This problem may have more general
application than electroweak baryogenesis, and in some
circumstances may have application to the electroweak
case as well.

The main result of this calculation was the computa-
tion of the reflection and transmission coefBcients for this
scattering. The transmission coeScient is

In this paper we discussed the motion of fermions un-

der the influence of electroweak domain walls. We showed
that such fermions are well described by a Dirac equa-
tion with an effective mass term. This mass term was
obtained via the Yukawa coupling in the Lagrangian ap-
plying the classical mean-field approximation. CP vio-

lation plays no role in this order of approximation. We
substituted for the finite temperature VEV of the Higgs
field the classical solution to the equations of motion of
a Higgs field in a Finite temperature effective potential.

We investigated the Dirac equation analytically and
found the wave function of the fermion. Transmission
and reflection coefFicients were derived and found to be
the same for both fermions and antifermions. It turned
out that the interaction between the wall and a heavy
fermion such as the top quark die out quickly if we in-
crease the energy of the fermion. On the other hand the
light fermions still feel the presence of the wall high above
the top of the barrier.

These results are valid in the limit where the mean
free path of the fermion is large in comparison to the
dimensions of the wall. It remains to study the opposite

and

n = —Qe2 —4(2
2

(72)
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APPENDIX

d
+(a(*) 4+ (A1)

Here, we would like to show that the (g's defined as

d d——+ (g(z) = 2(1 —z) z —+ (dx dz

and so we can rewnte p+ as
~ (— )

(—~) 2(1 ) ~( y(
—~)

dz

(A4)

(A5)
in Eq. (36) are proportional to the P's given by Eq. (26)
where g(x) = 1+ tanhx. We will prove it for one case,
show that it can be done for the others, and write the
specific relations for all cases.

Let us start by looking at one case, for example,

Let us consider

(—~)) (zC &y( —~) +
—zt

(—~) + (g(~) y(
—~)

(A2)
Multiplying both sides of this equation by 2(1 —z)z ~+~,

we obtain

where

xFi(n+ P —(+ 1,n+ P + (, 2o. + 1, z) (A3)

and z = 2(1 —tanhz). Then it follows that

2(1 —z)z ~+' —[z~ P )] = 2(1 —z) z —+ (
dz + dz +

(A6)

Comparing this with Eq. (26) and using the explicit form
for P, we have

y+ ——2(1 —z) z ~+ —[z~+ (1 —z)~ 2' (a + P —( + 1, n + P + (, 2a + 1, z)]
dz

= 2(1 —z)z + —(1 —z) 2Fq(o. + P —(+ 1, n + P + (, 2o. + 1, z)
dz

+ 2(1 —z) + z + —[z + 2'(n+P —(+ l, a+P+(, 2m+ 1,z)].dz

We now add and subtract P to the exponent of z inside the bracket in the second term above and differentiate to get

—[z +~ 2'(n+ P —(+ l, a+ P+(, 2n+ 1, z)] = z —[z + + 2'(o. +P —(+ 1,n+P+ (, 2o. + 1, z)]dz dz

—Pz + 2'(n + P —(+ 1, n+ P+ (,2n+ 1,z).

Now we use the identity [25]

—[z 2'(a, b, c, z)] = bz 2'(a, b+ 1, c, z),dz

and putting everything together, we find

y+ ———2Pz (1 —z) 2'(n + P —(+ 1, a+ P + (, 2n + 1, z)

+2(o. + P+ ()z (1 —z) + 2'(o. + P —(+ 1, o. + P+(+ 1, 2o. + 1,z).

In the second term of this equation we can use the identity [25]

c —a c —62'(a, b, c, z) = 2'(a —1, b, c, z) — 2'(a, b —1, c, z)
b —a 1 —z b —a 1 —z

and then combine the terms such that

y+ —— —2P ——[n —(P+() ] z (1 —z) 2'(o. +P —f+ 1,a+P+(, 2n+ 1, z)

+—[(o.+() —P ]z (1 —z) Fg2(n+ P —()n+ P+ (+ 1,2a+ l, z).
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Using the fact that n = P + (, we see that the
coefFicient of the first term is identically zero and that

-[( +()' P-']=2((+ )

( —~) 2(( )d,
( —~)

(+~) 2(( )y(+~)

(+~) 2((+ )y(+~) (AS)

Finally, comparing to Eq. (26),

d( '=z (I —z))',
xFg(cr+)9 —(,n+P+(+ 1, 2n+ l, z),

we see that

~(
—&) 2Py(

—&)

(+t3) 2~~(+P) (A9)

For the case when the p's and (b's are expanded around
(I —z) instead of z, we can apply the same method to
derive similar relationships. They are

( —~) 2((+ ~)y(
—~)

Similarly we can show that

(A7) These relations are used in the calculation of the
fermionic wave function to eliminate the linearly depen-
dent solution.
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