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Chiral symmetry breaking in the Nambu —Jona-Lasinio model in curved
spacetime with a nontrivial topology
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We discuss the phase structure (in the 1/N expansion) of the Nambu —Jona-Lasinio model in

curved spacetime with nontrivial topology M x 8 . The evaluation of the effective potential of the
composite field @Q is presented in the linear curvature approximation (topology is treated exactly)
and in the leading order of the 1/N expansion. The combined infiuence of topology and curvature
to the phase transitions is investigated. It is shown, in particular, that at zero curvature and for
small radius of the torus there is a second order phase transition from the chiral symmetric to the
chiral nonsymmetric phase. When the curvature grows and (or) the radius of S decreases, then the
phase transition is in general of Grst order. The dynamical fermionic mass is also calculated in a
number of different situations.
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The study of composite fermionic fields, and effects re-
lated to them, in the very early Universe has attracted
much attention in the physical community. In order to
be able to do such kind of research, one must 6rst de-
velop an effective action formalism for composite fields in
a general curved spacetime (for an introduction to this
subject, see [1]). However, even in fiat space only very
few models are known which can be treated analytically,
when studying the composite bound states. The Nambu-
Jona-Lasinio (NJL) model [2] (for a recent discussion, see

[3]) belongs to such an interesting class. This model is
usually discussed in frames of the 1/N expansion (see,
for example, [4]), which is a very useful scheme to study
nonperturbative effects. The NJL model may be consid-
ered as an effective field theory for /CD in some region,
and it is also connected with the theory of superconduc-
tivity (related models with quite interesting properties
were studied some time ago [5]). One can explicitly dis-
cuss the dynamical chiral symmetry breaking for the NJL
model in the 1/N expansion, where a vacuum condensate

(gg) P 0 appears and a dynamical fermionic mass is gen-
erated.

Recently [6, 7], a detailed study of the NJL model in
curved spacetime has been started. The one-loop effec-

tive potential in the 1/N expansion and in the linear
curvature approximation has been calculated and the ex-
istence of a curvature-induced first-order phase transition
from a chiral symmetric to a chiral nonsymmetric phase
has been shown [7] (for a review on curvature-induced
phase transitions for elementary fields in grand unified
theories (GUT's), see, for example, [1]). However, one
might expect that the very early Universe had a nontriv-
ial topology and (or) that it was very hot. This renders
it interesting to investigate the phenomenon of dynam-
ical chiral symmetry breaking in curved spacetime with
nontrivial topology.

The present work is specifically devoted to the study
of the NJL model in a curved spacetime of the form
Ms x Si, where Si is the one-dimensional sphere and
JHs a three-dimensional, arbitrarily curved manifold of
trivial topology Here, w.e will only consider the standard
choice of boundary conditions (periodic and antiperiodic)
for the fermion on the one-dimensional sphere S [8].
However, more general choices of the boundary condi-
tions are, of course, possible [9], in particular those in
which the fermion Q acquires an extra phase exp(2wp)
with arbitrary y (see the second reference in [9]) each
time it goes along S . The y = 0 case corresponds to
periodic boundary conditions and &p = 1/2 corresponds
to antiperiodic boundary conditions.

In the next section we calculate the effective poten-
tial for the NJI model in the spacetime M x S, in
the 1/N expansion and for the linear curvature approx-
imation. In Sec. III, the phase structure of the eKec-
tive potential is discussed and the dynamically generated
fermionic mass is calculated. The existence of topology-
and curvature-induced phase transitions kom the chiral
symmetric phase to the nonsymmetric one is established
for different regions of the parameters of the theory.
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II. EFFECTIVE POTENTIAL
FOR THE NJL MODEL

Let us start the calculation of the effective potential
for the NJL model in the 1/% expansion. The classical
action of the theory in curved spacetime is given by

S= dx g ip" xV„

where N is the number of fermions and the rest of the
notation is standard [6, 7]. It is more useful in actual
calculations to work with the following equivalent action,
in which the auxiliary fields cr and m are introduced:

S= d z g tp z V~ ——0 +&

This S,~ is trivially solved by integrating over the vari-
ables g and g, what amounts to a sixnple Gaussian inte-
gration, namely,

V (o, vr) = —(o + 7r ) + i Sp
2A

x ln(z
l

[ip" (z) 7'„—(o+ ipse. )] l z) . (6)

The second term is directly related to the Green function
given by the equation

S,ir = — d z~g —(o + 7r )2A

+i ln det [ip"(z)V'„—(o + ipse )]

Moreover, S,g is the leading term in the large-N expan-
sion of the effective action I'.

The effective potential V (/r, z ) is defined by V (o, vr) =
—I' (o, 7r) /(X x volume), with constant configurations for
the fields. Thus, to leading order in the 1/N expansion,
we have

—g (o + ips7r) i]/ (2) [i&"(z)7„—s] S(z, &) = b (z, 0),

Already in Hat spacetime is it known that the global chi-
ral symmetry —which is the classical symmetry of the
theory (1) or (2)—is spontaneously broken when the cou-
pling constant A exceeds some critical value A, . The con-
tribution of the external gravitational field to this effect
has been discussed in Ref. [7]. Our purpose here will be
to determine the infiuence of combined efFects, namely,
of external gravity and nontrivial topology, simultane-
ously, on the dynamical chiral symmetry breaking and
restoration. Notice that such a study cannot be done
for the most simple low-dimensional analogue of the NJL
model, namely, the D = 2 Gross-Neveu model [10],or for
the —a little more complicated —D = 2 Schwinger [11]or
D = 2 Thirring [12] models. In all those cases one can
study only the isolated effects of either nontrivial topol-
ogy (nonzero temperature [13]) or external gravity [14]
(see also [1]) on the chiral symmetry-breaking pattern.

Let us now proceed with the explicit calculations. First
of all, we introduce the semiclassical efFective action S,ir
as

Z[0, 0] = fDe Dx exp [eNS,e)

where Z is defined, in the usual way, to be the generating
functional

Z[0, 0] = f De/i Di/ De Dx exP [iS+ i0e/i i-ie/ip]

(4)

where b refers to the scalar, coordinate-independent
Dirac b functional for the given manifold. This fact can
be seen by directly applying the operator expression

(A —sll = d
1

A ) o A —r

to (6).
To calculate the second term of the left-hand side

(LHS) of Eq. (6), we make use of Schwinger's proper-
time method. First, we write

V (o, m) = —(o + z. ) i Sp ln(z
l
(ip"7—'„—s) l z),

(7)
and using the known expression for the propagator of a
&ee Dirac field in a weakly varying gravitational back-
ground (which has been obtained in terms of the Rie-
mann normal coordinate expansion [15]), we will then
write the effective potential with accuracy up to linear
curvature terms. Notice also that a summation over the
two inequivalent spin structures which are admitted by
the spacetime Ms x Si will be performed [8]. Of course,
one can consider also the corrections corresponding to pe-
riodic and antiperiodic (nonzero temperature) boundary
conditions independently. We will make a few comments
about this point later.

Thus, the effective potential is found to be

d'k 1
V(cr, 0) = —o —itr ds —) ) (p k + s)

2A I, (27r)
s k2 —s20 n= —oo p=0, 1

1 1 1——R(p k +s) 2+ R„„k"k (p k +s)—
(k —s ) & (k —s )

——p 7
(k2 —s2)

(8)



49 CHIRAI. SYMMETRY BREAKING IN THE NAMBU-JONA-. . . 5553

where 7 '~ =
4 [p, p ] and where one should integrate over k, ki, k2 and sum over the coordinate ks, which is given

by ks = (2n+ b~ i) m/L. In expression (8), tr only refers to the spinor indices. We have set m = 0, since there is a
rotational symmetry in the fields o' and n', so that it is enough to discuss the o g 0 case for the effective potential
only.

Integration over s is immediate. To perform the momentum integration, one first makes the Wick rotation (ko = i&4)
and puts then a cutofF to regularize the resulting expressions. In our case, we simply restrict

(k')'+ (a')'+ (k')' & A',

so that our cutofF is difFerent, when compared with the cutofF for the case of trivial topology [7].
From now on, we shall call Vi the contribution to the effective potential which comes from the logarithm of the

determinant of the operator which appears in Eq. (5). After carrying out the integrations over s and the momenta,
we are led to the following expression for the contribution to Vi coming from the y = 0 case, namely, purely periodic
boundary conditions [this corresponds to the contribution to V(o, 0) obtained by taking only the p = 0 term in
Eq. (8)]. Of course, we want to study Vi, which is given by the sum over the two values of y, but —as we discuss
below —Vi may be written down immediately once the p = 0 contribution has been worked out. We obtain

n=oo
p 0 1 ~ 1

V» ~ n 1+
n=-oo ( L; )

(4~2n2
+ , ~'A —

(

B
3 (2n)

(2mni ( AL I+
/

arctan
l L ) l2mn)

arctan &g"'"+.*j
(4~ n A

arctan
~ ~

—
2 + o2 arctan

g2~nj I~
~/4

~ ~ +

R (2m')2 A

2(3 ) A2+ 4s n

4m n +&2
4a~n~

L~
(9)

To simplify this expression we use standard techniques drawn from complex analysis, such as the expression

): f I I

= . dJ [f(p)+-f( p)]+ -. dp
g L ) 2vri; 2 2ni; +, exp(Lp) —1

(10)

One has just to identify the function f for each term in Eq. (9) and then perform the integrals in (10). Another
remark is in order here: When computing the term

2 1
-X3. &-

t'4~2n2
arctan

(/4 ' ' y~2j

r2~ni' ( AI, )+
~

arctan
L ) (2n'n)

it is better to rewrite it as

2 1—l»m—
II' +0 L 3'jl'2-

(4~2n2

)

o A —
~

+o
~

arctan ~

Lg""+-*J

arctan

(g'"'" + -'* j
since now the expression within square brackets satisfies the properties which justify the use of Eq. (10).

As we said before, once Vi has been computed, one may write immediately Vi and Vi, which is given (by
definition) by Vi ——V~~= + Vz~, because

(1 )

and, then,

(»)
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Now it is apparent that the physics displayed by the model in the case of purely periodic boundary conditions and in
the one where we consider both spin structures will be essentially the same, since

p=O p=1 p=o+ 1 1. 1,2L,

Thus we see that both cases are related by a trivial rescaling of the length and an overall factor which multiplies V1.
That is quite an appealing result.

However, the last remark does not apply to the case of purely antiperiodic boundary conditions, where we only
take p = 1, which gives the thermodynamics of a system in three-dimensional space with trivial topology. In fact,
from the last expression we get

p=1 p=o
~j,L +1,I +j.,L ~1,L

Henceforth, we shall concentrate below only on the analysis of the case in which both spin structures are taken into
account, as they appear in Eq. (8).

The first term on the RHS of Eq. (10) may be computed without difficulty in all cases. The second term is, in
general, rather more involved. In order to simplify this contribution as much as possible in the cases which come
from Eq. (9), one should pay careful attention to the determination of the integrand along the contour of integration.
After some work, the final result is found to be

A4 3+2
(exp (2ly 1+z2) —1)

1 — 1+ z2 + —1n
l

~
exp (2l) —1 )

3 2 3, . (11gl + z2 —1 ——z gl + z2 + —z arcsinh
~

—
~

2 2 (z)
4

+3

6 (2~)'

3 (2vr)'

2 (3n.)

7 2 X2 1 73
d7 dv

exp (2lr) —1 o exp (2lw) —1

(ll
1 —gl + z2 + z arcsinh

~

—
~&z).

1 v' +*'
dT d7

exp (2lr) —1 exp (2lr) —1

1 l r 1 11— +gl+ z ) (3x) gl+ z exp (2lgl+z )
—1

1

exp (2l) —1

where z = o/A, l = LA, and r = 8/A .
The value of the field o which satisfies the gap equation

V(0, 0) = 0

gives a dynamical mass to the fermions. This last equation, when written in terms of the natural variables z, I, r,
and c (c:—AA ), reads

V'(*) *' 5 * 4 10= = —+
A4 2c 67r2 gl+ z 3+2 gl+ z2 1 —exp (

—21/1+ z )

+—z arcsinh
I

—
I

—g 1 + z2 +(z) 2vr2 pl + z2

pl+a~ (~2 z2) /
—3z d7

exp(2l7 ) —1

4 x 1+ gl + z2 exp (2l @ 1 + z ) —1

rz . (1) 1+

1 1
d7

/72 —z2 exp(2lr) —1

arcslnh
~3(2~)' (z) gl+ z' 4(3~) (1+z2)'~'

2rx 1 1 +1++2

3 (2n) gl + z2 exp (2ly 1 + z2) —1

(14)

r x 1

2 (3m) (] + z2) ~ exp (21/1 + z2) —1

2l exp (2l gl + z2)

+ z (exp (2l gl + z ) —1)
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It is not possible to produce an exact, analytical expression for the dynamically generated fermion mass. Therefore,
we will calculate it below only in a number of limiting cases.

III. SMALL-J LIMIT

One gets convinced immediately that it is very difficult to go any further without doing some simplification. In this
section we will consider the case LA &( 1, and we will treat the opposite case LA )) 1 in the next one.

Let us expand V/A4 in powers of l. Assuming now that l/1+ x2 « 1, we readily obtain

IV(z) z'
ln (1+z ) + —z + x arcsec 1+—

A4 2g 3' 2 37r Z2

F (
+ 2zarcsec 1+—+ 2 ~

—1 ~+O(l ),
3 (2vr) z 2(3n)' &1+x' j

where g = AA2//. In order to study the phase space of the model, one has to compute also the derivative of the
effective potential. That yields

lV' x 2 z 2 1 4 z2
+ —z arcsec 1+——

A4 g 3+2 1+x2 z2 3+2 1+z2

r 1
+ 2 arcsec 1 + 23 (2m) z (3n)' (1+zz)' 6m2 1+z2 (16)

A. Phase structure in the fixed-curvature case

We will here analyze the phase structure of the model
in the case of 6xed curvature. In particular, the situa-
tions of zero curvature and constant nonzero curvature
will be considered.

X. Zero-curvature case

As the validity of our results is restricted by the con-
dition r && 1, it is worthwhile studying 6rst the case
r = 0. Here it can be proven that it is impossible to
have a 6rst-order phase transition; in fact there is a
second-order phase transition at g„= s /2. For g )g„
there is chiral symmetry breaking and the symmetry is
restored for g & g„; in other words, for a given value of
A, the symmetry is restored when I grows beyond a crit-
ical point. In the broken phase the order parameter is

given by zb, = 7r
~

—,—— or, in terms of the generated

mass, ms, ————
&

. It is straightforward to study
the behavior of the value of the effective potential at zb„
for varying g or I, in this limit of small compactification
length. One finds

4vr' f21&'
V(ob. ) = —A' —

I6l i m2 g)

This last expression has the appearance of some kind of
dynamical dimensional reduction (see Refs. [16, 17]). In
our case we see that the vacuum becomes less and less
energetic as the compactification length shrinks to zero
(see Fig. 1). In this limit we obtain

4
lim LV(ab, ) = —A
Lm0 3m4

'

0.12

0 1

0.0S

0.06

0.04

FIG. 1. Plot of the function V/A for
6xed c = 0.05, r = 0, and different values
of /.
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FIG. 2. Plot of V/A for fixed g = 5.0404
(case g ) m /2) and for difFerent values of the
curvature. It shows the discontinuous char-
acter of the phase transition in this case.
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2. Inffuence of the curvature 2. Case g ) m~/2

Now we shall study the influence that the presence of
curvature has on this behavior. It is immediate to notice
that for negative values of the curvature, the symmetry
is always broken [the slope of the effective potential is
r/(247r) at the origin; see Fig. 2]. Moreover, for fixed
positive values of r (which is kept always small), as l

grows there is a first-order phase transition: It has actu-
ally lost its continuous character. Now the critical value
of the parameter g is

To finish this section, we consider the case 6 & 0 or,
equivalently, g ) n2/2. To be consistent with the re-
quirement of small curvature near the critical point, we
have to assume now that [ b, ~(& 1. In this setting one
may expect that, as r grows, there will be a phase tran-
sition &om the ordered to the disordered phase at some
positive value of the curvature (see Fig. 2). Retaining
again the first terms of the expansions only, we obtain

2
g~, = —1+—

2 3

The approximation is consistent with the small-curvature
limit. The difference between the values of the order
parameter x in the broken and disordered phases at the
phase transition is given by z = r/8 (retaining again
only the first correction coming &om the curvature) The.
inHuence of curvature on chiral symmetry breaking in
D = 2 fermionic models is very similar (see Refs. [1,14)).

B. Phase structure
in the case of Axed compacti8cation length

and the value of the order parameter at the transition is
(for the ordered phase)

IV. LARGE-I LIMIT

We shall here consider again the phase structure in
the fixed-curvature case but corresponding now to the
opposite limit, when L is large.

A. Zero-curvature case

We can now, on the other hand, study the situation
when g is held fixed and the curvature takes on different
values.

It is easy to see from Eq. (14) that, dropping expo-
nentially vanishing contributions, one may approximate
it with

Caseg&m /2 2 (v I + z' —1)

If g & vr /2, there is a continuous phase transition at
r = 0 (the symmetry is broken for negative values of r
and is restored for positive curvature). As r approaches 0
&om below, the order parameter tends to zero according
to the expression

24~A '

or mz „——
&4 &, being 4 = ———,. In deriving this

result we assume that
~

r ~&& 1 and that
~

r ~&( A.

+& & 1 + & —x arcsinh—/ 2 4 . 1
(17)

where c is, as before, c = AA .
Let us consider the gap equation V'(z) = 0. Differen-

tiation of Eq. (17) yields

V'(z) z f7r2 g 2 . 1&= —
~

——&1+z2+ z arcsinh —
~

. (18)A4 ~2 (c z)
Prom here it is trivial to see that the symmetry is broken



49 CHIRAL SYMMETRY BREAKING IN THE NAMBU-JONA-. . . 5557

when B. Influence of the curvature

Otherwise, the symmetry is respected by the vacuum.

If one takes into account the presence of a background
gravitational field, one can check that the terms missing
from Eqs. (17) and (18) are such that now

V(z) z2 1 ( 4 . 1
2

~
pl+ z2 —1 + z &1+z2 —z arcsinh—

4 2e 4x x

r 1)
+ 2 ~

1 —gl + z~ + z arcsinh —~—
6(2~')' g z) 2(3~)' i, V'1+z2y

V'(z) z m I 2 . 1 r t' . 1 1——g 1 + z2 + z arcsinh —+ —
~

arcsinh ——
A x c z 12 ( z g]+z2) 18(1+z2) &

(20)

1. Case A ( m*/As t' 12 5)
z = sinh

~

(~'/c —1) ——
~

In this situation one may expect that there will be a
continuous phase transition. After a short calculation,
expanding Eq. (20) around the origin and keeping only
the two first leading contributions to V'(z), one sees that,
very near the phase transition, the order parameter is
found by solving

5 r . 1 (',
0 = ——1 — r+ ——arcsinh —+ 0

~

z arcsinh —
~c 36 12 z i z)

Thus, in a first approximation,

(remember that this is valid for negative r) The sym. -
metry is restored for positive values of r.

Case A ) n*/A~

Here, a quick analysis of the previous expressions tells
us that in this case there is a first-order phase transition,
from the disordered to the ordered phase, as the curva-
ture grows beyond a positive critical value. Notice that
this result is very much like the one that one obtains in
the small-L limit (see Fig. 3).

-7
1 ' 5 10

-71. 10

-8
5. 10

0.01

FIG. 3. Plot of the effective potential in
the large-L limit, corresponding to the case
A ) x /A (c is held fixed at c = x +0.15) for
different values of r. The discontinuous char-
acter of the phase transition is clearly seen.

-8-5. 10

0.
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V. CONCLUSIONS

Recently there has been an increased interest in the
NJL model, in connection with the dynamical symme-
try breaking of the electroweak interactions, using the
top quark condensate as order parameter [3, 18]. Here,
we have investigated the phase structure of this model
in a curved spacetime with nontrivial topology using
the I/N expansion and working in the linear-curvature
approximation —and we have explicitly shown the possi-
bility of curvature- and (or) topology-induced phase tran-
sitions from a chiral symmetric phase to a chiral nonsym-
metric one. In our approximate analysis, we have dis-
cussed the composite field effective potential where sum-
mation over two inequivalent spin structures has been
performed. Of course, one can get the results correspond-
ing to purely periodic (or antiperiodic) boundary condi-
tions as some particular cases of the above study.

There are different possibilities to extend our analysis.

First, one can consider different topologies, for example,
x T or the hyperbolic one M x R /I'. Second, it

would be of interest to study the same problems treat-
ing the external gravitational field exactly. In particular,
one possibility is to take the de Sitter space S4 for such
a calculation. These considerations may draw some con-
nection with renormalized quantum gravity in the 1/N
expansion (see [19]) that could be certainly important for
quantum cosmology near the Planck scale. We plan to
discuss these questions in the near future.
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