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Large-1V analysis of the (2+ 1)-dimensional Thirring model
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We analyze the (2 + 1)-dimensional vector-vector type four-Fermi interaction (Thirring) model
in the framework of the 1/N expansion. By solving the Dyson-Schwinger equation in the large-
N limit, we show that in the two-component formalism the fermions acquire parity-violating mass
dynamically in the range of the dimensionless coupling a, 0 & a & a, = —,

' exp( —Nz /16). The
symmetry breaking pattern is, however, in a way to conserve the overall parity of the theory such that
the Chem-Simons term is not induced at any orders in 1/N. a, turns out to be a nonperturbative
UV-fixed point in 1/N. The P function is calculated to be P(o.) = —2(o; —a, ) near the fixed point,
and the UV-fixed point and the P function are shown to be exact in the 1/N expansion.

PACS number(s): 11.15.Pg, 11.15.Ex

Recently, there has been a resurgence of interest in the
four-Fermi interaction partly due to the extraordinary
heaviness of the top quark, compared to other quarks and
leptons [1]. One of the key ideas in this approach is that
the four-Fermi interaction, introduced in the standard
electroweak theory as a low energy effective interaction,
becomes a relevant operator as the ultraviolet cutoff, A,
goes to oo, due to a strong interaction among fermions.
When the four-Fermi coupling is larger than a critical
value, the four-Fermi interaction induces the condensa-
tion of the top quark, as shown in the original Nambu-
Jona-Lasinio model [2]. Thus the top quark gets a large
mass, and the electroweak symmetry breaks dynamically.
As described below, similar dynamical behavior occurs in
the (2 + 1)-dimensional Thirring model.

The (2+ 1)-dimensional Thirring model is given in the
Euclidean version by

& = iV; A'+ 2N (0;~P&*) (&,~"&s)

where g; are two-component spinors and i,j are summed
over from 1 to N The p matr. ices are defined as

'73=0'
~

'YI=& ) 'Y2=& )
3 1 2

(2)
where o's are the Pauli matrices. Since the four-Fermi
coupling g has a mass-inverse dimension, the model is not
renormalizable in ordinary (weak) coupling expansion.
But it has been shown to be renormalizable for (2+ 1)
dimensions in the large flavor (N) limit [3]. It is therefore
sensible to analyze the three-dimensional (3D) Thirring
model in the large-N expansion.

There are at least two ways of viewing the 3D Thirring
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model in treating the dimensional coupling constant g.
One is taking g as a genuine dimensional parameter that
sets the natural scale of the theory; for exainple, the dy-
namically generated fermions, if any, will be proportional
to this scale, mg„1/g. The other one is to take the di-
mensional parameter 1/g as the UV cutoff of the theory,
g = —&, where A is the UV cutoff and n is a dimensionless
coupling. Therefore, in this case, the only dimensional
parameter in the model is the ultraviolet cutoff. In the
continuum limit, the four-Fermi operator (together with

the ultraviolet cutoff) —
& (gp„Q) becomes a relevant

operator in the large-N approximation. In this approach,
if dynamical mass is generated, it will be independent of
the ultraviolet cutoff A; it will be the one introduced in
place of the dimensionless parameter a by the so-called
dimensional transmutation, which happens in any renor-
malizable theories.

The first viewpoint is taken by several authors. For
instance, it has been shown in [4] that the 3D Thirring
model is UV finite at all orders of 1/N since the scale
1/g is negligible in the deep UV region. And also Gomes
et al. [5] found in this viewpoint that the model be-
haves similarly to QED2+i [6], which also has a dimen-
sional parameter e, the electric charge; in both models,
the fermion mass is generated when N ) N . But, as

C

we shall see later, it is in the second viewpoint that
the 3D Thirring model is similar to the 3D Gross-Neveu
model [7]. Namely, the 3D Thirring model has a two-
phase structure, parity broken and parity unbroken, and
the fermion acquires dynamical mass for strong coupling,
g ) g, (or 0 & a & n, ). Though the model is still UV
finite perturbatively in the 1/N expansion, there exists
a nonperturbative (in 1/N) renormalization for n. The
coupling is running, P(n) = —2(o. —a,), for the same
reason as in the Gross-Neveu model. The UV-fixed point

Nn, is found to be is exp( —is ) in the 1/N expansion.
The UV-fixed point and the P function do not change
at all, even if one includes higher order corrections, due
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to the Ward-Takahashi identity and the UV structure of
the theory. This is in contrast with the result in [4] pre-
senting a vanishing P function. Therefore, we see that
the two viewpoints are in many ways different from each
other.

Now we start with the efI'ective theory with a UV cut-
ofI'. Introducing an auxiliary field A„ to facilitate the
1/N expansion, we can rewrite Eq. (1) as

4(z) ~ &'(z') = "'~'&(z).

One can see that the fermion mass term is parity odd.
When the number of fermion flavors is even, the model
has another obvious discrete Z2 symmetry, which inter-
changes half of the fermions with the other half: Z2 mixes
the fermion fields as, for i = 1, . . . , 2,

r. = iy, Pq, — X„(q,~„q,) + -~AX„',
g;(z) m Q~+, (z),

g~+, w g, (z). (6)

Q, mQ,' = g,'g, , forge U(N), (4)

and under parity P, z = (z, y, t) ~ z' = (
—z, y, t), the

fermion fields transform as

where nA = —. As was mentioned in [5], the theory is

consistent for positive a. As we shall see later, for neg-
ative n, the theory is unstable, showing tachyons in the
four-point fermion Green s function. Equation (3) is not
gauge invariant under the usual gauge transformation on

Q and A„. However, as was claimed in Ref. [5], Eq.
(3) with a gauge fixing term has a restricted gauge sym-
metry. In this paper we choose to work in the Landau
gauge. The Thirring model with N two-component com-
plex spinors has U(N) global symmetry and parity also.
Under U(N),

We define a new parity P4 which combines the parity
for the two-component spinor with Z2, P4 = PZ2 [8).
As described below, in the (2+ 1)-dimensional Thirring
model, it is P (not P4) that is spontaneously broken.
The fermion mass is dynamically generated in such a way
that P4 is conserved. When I4 is not broken, the Chern-
Simons term is not induced.

Now we will examine the pattern of the spontaneous
breaking of parity. An order parameter for the spon-
taneous breaking of parity is the vacuum condensate of
the fermion bilinear, (gg(z)), which will be determined
once one finds the (asymptotic) behavior of the fermion
propagator [9].

In the 1/N expansion one has the following Dyson-
Schwinger gap equation:

—[Z(p) —1] gt+ K(p) = — D„(p —k)p, „, , I'„(k,p —k; p),
Z(k) g-Z(k)

(7)

(8)

where IIi and II2 are given by

ox+ II,
(aA+ II,)2/p2+ II2' (9)

where D„„is the photon propagator, Z is the fermion self

energy, Z is the fermion wave function renormalization
constant, and I'& is the vertex function. In the Landau

gauge, the photon propagator is given by

( A + rl, )2/p2 + II2 (10)

The resummation technique of the 1/N expansion results
in the nontrivial photon propagator as given above. II,
[II ] in Eq. (9) [(10)]is the even (odd) part of the vacuum
polarization which will be determined once we solve the
above coupled Dyson-Schwinger equations, Eqs. (7) and

(8)
Since Z(p) = 1 + O(1/N) and I'„=p„+ O(1/N), we

may take, at leading order in 1/N, Z(p) = 1 and I'„=p„
consistently in Eq. (7). Then, taking the trace over the

p matrix, we get

1 d k 21li(p —k) Z(k) 1 d k (p —k) . k II2(p —k)

(2~) (p —k)2 k + E2(k) N (2') ~p k~s k2 + Z2(k)

The magnitude of dynamically generated mass must be
small, compared to the cutoff A of the theory in the 1/N
approximation [6]. We may therefore assume Z(p) &(

p « A. The vacuum polarization tensor takes then a
simple farm

(12)
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ll, (p)
p nA+& (14)

where M; Z;(0), the mass of the ith fermion. In gen-
eral, it is hard to find M, by solving the gap equations
directly. But following the same argument of Coleman
and Witten [10], one can easily show that the magni-
tude of M; is independent of i in the large-N limit [11].
Therefore, it is reasonable to assume that M; = M for
i = 1, ..., N —L and M; = —M for i = N —L + 1, ..., N,
as is done in [6). For momenta p such that M « p « A,

II2 (p) M8 1

p 4lpl ( A+ u~)2'

where 0 = 1 —~, a parameter characterizing the parity
(P4) violation of the theory. Now we will show that 8 = 0
admits a consistent solution of the gap equation. Taking
the fermion self-energy at zero momentum &om Eq. (7)
and letting M; Z;(0), we find that

2 dk M; 1 1 dk k MO 1

N (2vr) k +M Ay Ll N (27r) k +M 4~k~ (aA+ L~" )2' (16)

The above equations are consistent only if 8 = 0+O(1/N)
for M g 0. Thus P is broken, but P4 is not. One can
understand this result on the basis of Vafa and Wit-
ten's argument [12]. The Euclidean fermionic determi-
nant Det(P + M + ig) picks a parity-violating phase
that depends at low momenta on the sign of the fermion
mass. This phase factor increases the ground state en-
ergy, and so the model with the lowest ground state en-
ergy should be the one in which the overall phase is mini-
mized. Since Det(P+M+ig) is the complex conjugate of
Det(P —M+ i@), the overall phase vanishes provided the
number of positive mass fermions is equal to the number
of negative ones, which is possible only when N is even.

Actually, one can show further that 8 = 0 at all orders
of 1/N using the nonrenormalization theorem of Coleman
and Hill [13]. The requirement of this nonrenormaliza-
tion theorem is the gauge invariance and analyticity of
the one-loop n-photon function, which is fulfilled in the
a & n, in this model. In this range of the coupling a, the
Chem-Simons term is not subject to the radiative correc-
tions beyond one loop; thus the one-loop result is exact.
One speculates, however, that there is a finite radiative
correction to the Chem-Simons term in the other phase
due to the lack of analyticity of the fermionic loops in
the in&ared region [14].

Then Vafa and Witten's argument ensures the can-
cellation of the Chem-Simons term generated from each
fermion and this explains the absence of the corrections
at all.

Following the Cornwall-Jackiw- Tomboulis formalism
[15], we calculate the effective potential of the operator
expectation value (gQ(x)). At the extrema it is found
to be

trivial solution.
Rewriting Eq. (16) when 8 = 0,

2 d k M 1

N (2~)s k2+ M& aA+ IJ

The above equation indicates that there is a two-phase
structure. When o. ) n„ the parity symmetry is mani-
fest, where the critical value a, is defined by the equation

2 d k 1 1

N (2')s k' A+ LJ
' (19)

n, = —exp
~

— N7r—
16 ( 16 j (20)

Prom the above equation, one sees the nonperturbative
nature in the phase transition point. The 1/N factor in
the gap equation (18) has been traded for the nonanalytic
factor N in o, A similar phenomenon can be seen in the
exponential hierarchy between the dynamically generated
fermion mass and the cutoff in QEDz+& [6]. The parity-
violating region 0 & a & a, is very small, and so the
theory has parity symmetry for almost all the positive
region of a.

The cutoff dependence of the bare coupling is deter-
mined by the requirement that the gap equation (18) be
independent of the UV cutoff A, as taken to oo. In the
vicinity of n„we get the P function for a given by

If n & o.„nontrivial parity-violating fermion mass is
generated in a way to preserve the total parity symmetry
of the theory.

From Eq. (19), one obtains

(V= dpp —ln~ 1+
~

. (17)2xz p2+ Zz
g pz y

|9AP(a)—:A = —2(a —n, ).
BA (21)

This is the same expression as in QED2+z in the 1/N ex-
pansion [6]. It can be easily seen &om Eq. (17) that any
nontrivial solution has a lower energy than the pertur-
bative vacuum solution Z(p) = 0. Therefore, once such
a parity-breaking solution is found, it is always energet-
ically favored over the symmetric one. Our solution to
the gap equation has thus lower vacuum energy than the

n increases (decreases) to a, when n & n (n ) n, ). n, is
the UV-fixed point of both phases of the Thirring model.
The above equation shows that n, is a UV-fixed point
which is again nonperturbative in 1/N (it has nonana-
lytic dependence on 1/N). Therefore, it is not feasible to
study the theory in the vicinity of n with the perturba-
tive 1/N expansion. To observe the effects of the running
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of the coupling a as in Eq. (21), one needs to go beyond
the perturbative expansion; one needs to solve, for ex-
ample, the Dyson-Schwinger equation, just as is done in
this paper.

As we shall see later, the theory is UV finite at any
finite orders of 1/N. Within the 1/N expansion the UV
behavior of the theory is more improved than the one in a
Gross-Neveu-type model. In the latter, the resummation
technique of the 1/N expansion results in the UV dimen-
sion of the auxiliary field 0 = QQ being 1 (2 classically).
This is a key point of the renormalizability of the theory.
In the Thirring model the mass of the photon propagator
in Eq. (8) should not be neglected at high momenta. It
renders the entire integration UV finite [16].

This can be checked by a direct calculation. For in-
stance, the fermion wave function renormalization Z at
O(1/N) is given by Eq. (7). It is not difficult to see that
the integration is finite. This (perturbative) UV finite-
ness of the theory is consistent with the nonperturbative
nature of the UV-fixed point a, .

As we mentioned in the introductory part of this pa-
per, the mass M is that it is not a value which can be
determined as in QED2+i [6] but a parameter as in a
Gross-Neveu-type model [3]. M is a physical quantity;
in fact it is the pole mass of the fermions, and therefore it
should be independent of A. As in the case of the Gross-
Neveu model, one may interpret Eq. (18) as fine-tuning
the coupling g in order to have M &( A. In other words,
for M « A, the coupling is tuned to be very close, or
equal, to the critical value Eq. (20).

The four-point fermionic Green s function, in leading
order, is given by the photon propagator in Eq. (8).
We see that there are no tachyons for g ) 0, and so the
theory is consistent in that region. For g ( 0, the Green's
function shows the existence of tachyons.

Finally, we show that the features of the 3D Thirring
model we have found are exact in the 1/N expansion even
if one includes higher order corrections. To go beyond
leading order, one should solve the Dyson-Schwinger
equation keeping the higher order corrections in the prop-
agators and the vertex function. But by following general
arguments, the Dyson-Schwinger equation takes a sim-

pler form. First, since 8 = 0 in all orders in 1/N as we

showed earlier, we can set II (p) = 0 in the photon prop-
agator. Second, beyond leading order, the magnitude of
M, is the same for all fiavors, iM, i

= M, which can be
seen easily by an argument similar to that of Coleman
and Witten [10]. Therefore, the gap equation Eq. (18)
becomes

(I
3N~' I, 16a ) qA)

{24)

Similarly, the even part of the vacuum polarization is, up
to the terms in 1/N,

1 k A /'1)
II,(k) = —+ const x — ln —+ 0

~

—
i

.
16 NaA M i A)

(25)

(a) Wave-function corrections

(b) Vertex function corrections

where const is a pure number. The Feynman diagrams
relevant to the corrections are shown in Fig. 1.

The above results, Eqs. (23)—(25), show that next-
to-leading corrections are either finite or suppressed by
1/A; the 1/N corrections are UV finite. By dimensional
counting, one can easily show that the 3D Thirring model
is in fact UV finite in all orders in the 1/N expansion [17].

This is the same result as in [4], but the reason is quite
diHerent. In our case, because of Q.A in the photon prop-
agator, the loop integrations are UV finite.

The dangerous terms in deriving the UV-fixed point a,
will be the terms which are not suppressed as A + oo.
But such terms do not occur in any orders in 1/N because
of the UV finiteness of the theory. Since higher order
corrections to the vacuum polarization are suppressed by
1/A, the equation defining a, becomes now

2 d3k M 1

N (2vr)s Z(k)k2 + M2 aA + II,(k)

(22)

where I'(k, 0;k) = 4g""Try~I' (k, 0;k). Keeping terms
up to O(1/N), we find by explicit calculations that

(c) Vacuum polarization corrections

Z(k)=
'

In~
' a+'~i+Oi-

3N7r2 i 16a ) (A) ' (23) FIG. 1. The Feynman diagrams relevant to the 1/N cor-

rections (wavy line —photon, solid line fermion).
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~ a'I 11=-
(2vr)' [1 —E(cr,)]k2 A + L~J

[1 —~(-.)]

+OI —[, (26)

where F(a ) = z~, 1n ( ~z'+ ) + O(1/N ).
We see that in the above equation the contributions

from the 1/N corrections in Eqs. (23) and (24) cancel
each other exactly. This is due to the Ward-Takahashi
identity of the gauge invariance in the 3D Thirring model.
The equation defining n, is therefore same for all orders
in 1/N, and the UV-fixed point and the P function we
found earlier are in fact exact in the 1/N expansion.

In summary, we have analyzed the (2+ 1)-dimensional
Thirring model in the 1/N expansion. It has been shown
that the fermions acquire parity-violating mass in a way

that conserves the total parity symmetry of the theory.
The Chem-Simons term is not generated at any finite
orders in 1/N. We have also shown that the theory has
a two-phase structure and a UV-fixed point as in the
Gross-Neveu model, albeit at nonperturbative order in

1/N. The UV-fixed point a, = is exp( —is ) and the
)9 function P(n) = —2(a —a,), which we have found by
solving the Dyson-Schwinger equation, are shown to be
exact in the 1/N expansion.
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