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Process of fermion level crossing in the electroweak instanton
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The whole process of the fermion level crossing phenomenon in the background fields of the elec-
troweak instanton is demonstrated by numerically determining the fermion eigenvalues along Euclidean
time. %e assume that the fermions of a doublet are degenerate in mass and there are small-size instan-
tons in the steinberg-Salam model. The difference in the critical values of the Chem-Simons number at
which the fermion level enters the positive and negative continuum in the level crossing process is ob-
tained and we find that the fermion level crossing appears only in some part of the instanton
configuration space.
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C. H¹-aODUCrI.ON

Modern theories of elementary particles are based on
the principles of local gauge symmetry for the Weyl fer-
mion. It is now clear that the dynamical content of
gauge theories is not exhausted by perturbation theory
even in models with weak coupling. The nonperturbative
aspects of gauge theories, such as the complex structure
of a vacuum and the consequent nonconservation of fer-
mion quantum number and the existence of solitons, be-
come very important for further study.

In the standard model the baryon and lepton number
are not absolutely conserved due to the quantum anomaly
[l]. The process for baryon and lepton number noncon-
versation is spontaneous fermion number violation due to
instanton-induced transitions between topologically dis-
tinct vacua. Strictly speaking, there is no instanton solu-
tion in the Weinberg-Salam model, because the Lagrang-
ian of the Higgs field breaks the scale invariance of this
theory. However, the small-sized instantons (or con-
strained instantons) may still exist in this model, which
give the effects for baryon and lepton number violation.
Direct observation of the processes with baryon and lep-
ton number violation in electroweak theory is impossible
at low energies, but there are a number of situations in
which the rate of anomalous processes with nonconserva-
tion of the baryon and lepton number may not be small
[2], such as at high temperatures [3] and high energies
[4].

How can baryon and lepton number change by the tun-
neling of an instanton? It will be directly shown in the
fermion level crossing picture. I.et us now consider a sys-
tem in an external gauge field A (x, t) which changes adia-
batically from A(x, t, ) to A(x, tz). At each intermediate
time t, we can calculate the fermion spectrum as a set of
eigenvalues of the Dirac Hamiltonian in the external field
A (x, t) for fixed t. The spectrum varies in the course of
time, and some of the levels cross zero from above and
some from below. The difference n+ —n between the
number of levels crossing zero from above (n+ ) and the
number of levels crossing zero from below (n ) is, in
general, nonzero. For each value of A (x, t), the ground

state of the fermion system is a state in which all
negative-energy states are filled, whereas positive energy
states are unoccupied. A real fermion corresponds to a
filled positive level, and an antifermion corresponds to a
free negative level. The net effect of the level crossing
phenomenon is that the number of real fermions will
change. The difFerence (n+ —n ) is due to the difference
between the Chem-Simons numbers of the gauge field.

The level crossing phenomenon in the background
fields of an instanton have been intensively investigated
after the works of 't Hooft. The zero mode of a massless
Euclidean Dirac operator in the presence of an instanton
of Yang-Mills fields was first given by 't Hooft [l]. A
more intuitive discussion of the physics involved has been
given by Callan et al. and Kiskis [5]. The zero modes of
fermions in the instanton of Weinberg-Salam theory are
considered by Krasnikov et al. [6] and the explicit ex-
pressions are given by Rubakov [7). Recently, the gen-
eral zero modes were discussed by Kastening [8] and An-
selm et al. [9] when there is no custodial global SU(2)
symmetry in Weinberg-Salam theory to ensure degen-
erate fermion masses. However, all of these works only
consider the zero modes of a fermion in the background
field of an instanton. By following the zero mode, the
continuity and chiral symmetry imply that the level
crossing phenomenon will exist.

To understand fully the mechanism of baryon and lep-
ton number violations in the standard model, it is neces-
sary to investigate the detailed process of fermion level
crossing. In this paper we will demonstrate the whole
process of fermion level crossing in the background field
of an electroweak instanton by numerical calculation.
We work in the Ao(x ) =0 gauge and focus upon the Eu-
clidean time parameter xo. As xo changes from —00 to
+ 00, the one-instanton field evolves from one pure gauge
configuration to another topologically distinct pure
gauge. The three-dimensional Dirac Hamiltonian in the
presence of such a field depends parametrically on xo
through A;(xo, x). The spectrum of the eigenenergy of a
fermion as a function of xo gives information about the
behavior of the quantized Dirac field in the adiabatic ap-
proximation. We assume that the fermions of a doublet
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are degenerate in mass which allows for a spherically
symmetric ansatz for a11 of the fields when the Weinberg

mixing angle dependence is neglected. Recently, Kunz
and 8rihaye [10] have presented the level crossing
phenomenon for fermions in the background field of the
sphaleron barrier along the rninirnal energy path from

one vacuum to another [11].
The remainder of this paper is organized as follows.

Section II introduces the Weinberg-Salam model La-
grangian with the approximations employed and the
anomalous current equation for ferrnion number viola-
tion. The instanton solution and the form of the gauge
transformation are given in Sec. III. There the Chern-
Simons number and the static energy of the instanton are
presented as a function of Euclidean time. In See. IV we
derive the radial equations for the fermions and rescale
the instanton solution in this equation. %e present the
fermion level crossing picture in the background of small
size instantons by numerical calculation in Sec. V. Final-

ly, in Sec. VI a brief discussion is given.

where qL denotes the left-handed doublet (ul, dl ), uz
and dz are the right-handed singlets, with the covariant
derivative

l
D„qi =(8„— g~—'A„')qL,P

(2.7)

and 4=i~24'. The fermion mass is given by

1
m„=md =mf = f u . (2.8)

The gauge-invariant current of the doublet J"=qL y"qL
is conserved at the classical level, but is anomalous at the
quantum level [12].

2

g Jp g &pvpcrFa g a
P 16 2 P P&

(2.9)

The integration of the right-hand side of Eq. (2.9) is an
expression of the topological charge of a gauge field

configuration:

II. LAGRANGIAN OF WEINBERG-SALAM MODEL Q= d4xe""P F'g'
16m

P P~ (2.10)

Let us consider the bosonic sector of the Weinberg-
Salam model in the limit of the vanishing mixing angle.
In this limit the U(1) field decouples and can consistently
be set to zero:

2

1
2

F'g""'+—(D 4) (D"4)—A,b 4 p p 2

The topological current is

2E"= d" Tr(A„B A i'gA—A A ) . (211)

Equation (2.9) indicates that the number of fermions may
not be conserved, the changes of baryon number B and
lepton number I. are given as

with the SU(2)L field strength tensor

F' =a A' —a A'+g~'"A'A'
PV P V V P p v

and the covariant derivative for the Higgs field,

D„4= (d„g~'A „' )4——,

(2.1)

(2.2)

(2.3)

b,B=AL =nf Q, (2.12)

where nf is the number of generations. All gauge field

configurations can be classified by the Chem-Simons
number given by

Ncs= J d'xEC (2.13)

where g is the gauge coupling constant and in elec-
troweak theory we employ the value g =0.67.
A„'( )(xa=1,2, 3, ) are real vector fields and can be de-

scribed as a matrix field A„(x)= —,'gw'A „'(x), v' being the

isospin Pauli matrices.
The SU(2)L gauge symmetry is spontaneously broken

due to the nonvanishing vacuum expectation value v of
the Higgs Geld,

The Chem-Simons number Ncs may be regarded as a
coordinate in gauge-orbit space which measures the posi-
tion of topologically inequivalent vacua. Pcs is invariant

under all "proper" gauge transformations (transforma-
tions continuously connected to the identity), but changes

by an integer under topologically nontrivial gauge trans-
formations. For the vacua the Chem-Simons number is

identical to the integer; for a nonvacuum it may take on

arbitrary real values.

(2.4)

leading to the boson masses

Mii =M, =
—,'gu, MH = u &2k, . (2.5)

Lf =COL lf D QL+Qglf 8 Qg +dg lp

f qL (Cued +4dz ) f (—d~ 4t+ p~ @t)q~, —
(2.6)

For a vanishing mixing angle, considering only fermion
doublets degenerate in mass for simplicity, the fermion
Lagrangian in the chiral representation reads

III. INSTANTON AND GAUGE TRANSFORMATION

The SU(2) pure Yang-Mills fields have solitonlike solu-

tions of the classical Euclidean equation of motion that
are localized in time as well as space and dubbed instan-

tons [13],which connect two topologically distinct vacua.
The instanton may be viewed as a solution of the Euclide-
an gauge field equations in which a vacuum at xo= —~
evolves by propagation in imaginary time to a diferent
vacuum at xo =+~. For an SU(2) gauge field, an expli-

cit solution with a topological charge Q =1 in the regular

gauge is given by
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l'f I
Ao(x) =-

x +p
(3.1)

i(rxo+~Xx)
X +p

where x =X0+x and p is some arbitrary scale parame-
ter, often referred to as the instanton size.

In the %'einberg-Salam model, because of the presence
of the Higgs field, strictly speaking, for v%0, there does
not exist a finite action solution of the classical Euclidean
equations of motion, since there are no combined solu-
tions of the Higgs and gauge field equations of motion.
However, as long as the size of the instanton p is not too
large compared to the inverse size of the order parameter
v in the Weinberg-Salam model, as pv « 1, one can find a
good approximate solution in the 4'einberg-Salam model.
This approximate solution still has the gauge field

configurations given by the SU(2) instanton of (3.1), while
the scalar doublet field takes the form [1]

A(x) =—

X l'7'X
—40,&x'+p' i 2

(3.2)

where Co is a constant SU(2} spinor and we can take
4o=(i) and 4o=(o).

To cast the vector potential A„(x) given in (3.1}to the
form of the Ao(x)=0, we make a gauge transformation
V(x) on A„(x) into the temporal gauge,

A
' (x)= V '(x) A (x)V(x)+ V '(x)B V(x) =0, (3.3)

and define

A'(x)= V '(x) A(x)V(x)+ V '(x)VV(x) . (3.4)

Under this gauge transformation, the Higgs field 4 can
be transformed accordingly as

be constant:

8=(n+ —')ir, n =0, 1,2, . . . . (3.8)

By substituting (3.1) and (3.2) into (3.4) and (3.5), re-

spectively, we obtain the general spherically symmetric
form for the gauge field A'(x }and Higgs field 4'(x) as

a (r) =— (r cos2f +xo sin2f )—1 sin f
X +P T

b (r) = — (xo cos2f —r sin2f )—1 . sin2f

x 2+p2 2f

Xoc(r)=-
x +p

1h(r)= ( rsinf+—xocosf),
x +p

(3.10)

1k(r)= (
—r cosf —xo sinf ),&x'+p'

where x =xo+r, r =+x and x is a unit three-vector in
the radial direction given by x=xlr.

By using (3.9), the Chem-Simons number Ncs in (2.13)
can be given by

Ncs(xo)= —J r dr[2c a +b +—a +(ba' ab')]—

A'(x) =—[a(r)(r Xx)+b (r)[r—(~.x}x]+c(r)(r.x}x],
(3.9)

4'(x) = [h(r)+is xk(r)]Co
2

with

4'(x) = V '(x)4(x) . (3.5)
(3.11)

From Eq. (3.3), we can find the solution for V(x) by in-

tegration as

V(x)=exp[i' xf(x)]

with

(3.6)

1 Xof (x)= arctan +8(x), (3.7)
xz+p x +p

where 8(x} is a tiine-independent residual gauge freedom
with respect to the Ao(x) =0 gauge. We can choose it to

where the prime means differentiation with respect to r
Because of the xo dependence of the functions a (r), b (r),
and c(r), the Ncs is the function of xo. We do not now
attribute any physical significance to the variable xo and
regard A(x, xo) and 4(x,xo) as a path in the
configuration space, xo being simply a parameter along
this path. In this way xp can describe the configuration
space path as the same as the Ncs.

The total static energy of gauge and Higgs fields for the
configurations at some fixed value of the parameter X0
can be obtained by using (3.9):

'2 2

E(xo)= i dr 2 a +b +—a + a'+ —a+2bc + b'+ b ——(1+2ra—)c
4 1

g 0 r r r r

+2(k +h )[1+2ra+r (2a +2b +c )]

2

+2(1+2ra)(k h) Srbhk+2r —(h' +—k' ) 4r c(k'h —kh')+ —
z (h +k —1)

g
(3.12)
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IV. THE EQUATION FOR FERMIONS

05 ——

Let us now consider the fermions in the background
fields of the electroweak instanton with the form of (3.9).
To retain spherical symmetry we consider only fermion
doublets degenerate in mass. From the fermion Lagrang-
ian (2:6), for each value of Euclidean time xo, we obtain
the time-independent Dirac equations for the left-handed
doublet,

J'o

FIG. 1. x0 dePendence of Chem-Simons number Xzs for the

size of instanton p =5 {in arbitrary unit) and n =0 for 0.

&'Doql +&'&'D, qL f (4—us+4da )=0

and for the right-handed singlets,

incus icr—'8;us f~4 —
qL =0,

Lclods icT 8;ds fan@ ql =0,

(4.1)

(4.2)

where the prime means differentiation with respect to r.
E is the function of xo. We can define parametrically the

energy E as a function of Pcs.
By use of the functions in (3.10), we can calculate nu-

merically the Chem-Simons number Scs and the static
energy E where we take the size of the instanton p = 5 (in
arbitrary units) and n =0 for 8. The Euclidean time xo
dependence of Xcs is shown in Fig. 1; we see that Pcs
changes from 0 to 1 when xo varies from —Do to + ~.
The topological charge is the difFerence in the Chern-
Simons number of the gauge field at xo=+ ~, as

Q =pcs(+ oo ) —Ncs( —~ ) =1, which confirms the value

of the topological charge of an instanton. The static en-

ergy E as a function of xo is shown in Fig. 2. There exists
a symmetric potential barrier, while E(xo=+oo )=0
since the gauge and Higgs fields tend to a pure gauge
configuration as xo~+~ and E(xo =0) is at the top of
the barrier. This picture suggests the interpretation that
the instanton configuration corresponds to tunneling be-
tween different vacuum states.

200 ———

where 0' are Pauli spin matrices. Wave functions qL, u~,
and ds depend on xo which enters only as a parameter.

Spherically symmetric fermion fields are described by
the ansatz

qL (r)=e '"[GI (r)+io"xFI.(r)]yh,

uz (r) =e '"[Gx(r)+i o"xFR (r)]y»

dR (r) =e '"[Gs (r)+i o"xFs (r)]g2,

with

(4.3)

1
Xh

0 0

Os1 I 1s,OI
(4.4)

1
Xl 0 s'

0
X2 g2 1

where S refers to spin, I to isospin. yz is the hedgehog
spinor satisfying the spin-isospin relation oyz+~y& =0.
y„yz are the constant spin spinors which can construct
the hedgehog spinor yh with isospin spinors 40 and 40.

By using those ansatz for Eqs. (4.1) and (4.2), we obtain
the following set of four coupled first-order differential
equations:

150
Fl + —+2a FI +(2b+V)GI —ZGL = (hG„+kFs ),—

r

GL
—2VGr +(2b c)FL +FFI —=(hFs kG&'), —

Fa+ Fs+ZGg—=(hGL kFr ), —
r

6„' —~F„=—{~F,+kG, ~,

(4.5)

0
-20 -10 10 20

FIG. 2. The total static energy E {in arbitrary unit) of gauge
and Higgs fields is shown as a function of Euclidean time xo for
the size of instanton p= 5 {in arbitrary unit) and n =0 for 0.
Here, we have made an approximation for X=O.

where r=mfr, Z=e/mf and the prime means
differentiation with respect to F. The functions N, b, 2', h,
and k come from the functions a (r), b (r), c (r), h (r), and
k(r) in (3.10), respectively, by variables replacement as

xo =mfxo for xo, r =mf r for r and p=mf p for p. There
are two parameters xo and p in these equations.

Solving the eigenvalue equations (4.5) for the fermions
in the background fie1d of an instanton requires certain
boundary conditions for the fermion wave functions.
Wave functions GL and Gz are finite and F~ and F„are
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zero at F=O and all wavefunctions GL, Ga, FL, and Fz
tend to zero in the limit F~ ao.

V. FERMION LEVEL CROSSING

We solve numerically the fermion eigenvalue equations
(4.5) under the boundary conditions for the bound state.
Giving set values for parameters Xo and p, which stand
for the Euclidean time xo and the size of instanton p, re-
spectively, for fixing the ferinion mass mf, we can solve
the equations by computer and obtain the eigenvalue Z

and eigenfunctions Fz, GL, I'a, and Gz. The results of
the calculations are given in the following sections.

qL (x)= V(x)qL (x), (5.1)

by using the expression (3.6) for V(x) and (4.3) for qL.
We obtain

GL =Gz cosf+Fz sinf,

Fz = —Gz sinf+Fz cosf .
(5.2)

Comparing the functions GL and FL with the corre-
spondillg analytical solutions given by Rubakov [7] for

A. Zero-mode solutions at Xo =0

For all the values of parameter p, there are only Z=O
solutions in the case of So =0 at which the Chem-Simons
number Ncs =1/2. In this case, the functions Fa decou-

ple and are identically equal to zero; the other normaliz-
able zero-mode eigenfunctions are shown in Fig. 3; as a
typical one, we have taken p=0. 5. In the following, we

will find that these normalizable eigenstates with zero ei-

genvalues are the zero mode of the fermion in the back-
ground fields of an instanton that have been discussed by
many authors [5,7].

To see that, we make a gauge transformation for the
left-hand zero-mode eigenfunctions

the fermion zero mode, one found that they coincide with
each other, respectively. When the mass of the fermions
vanishes, the function I'L decouples and is identically
equal to zero. The function GL also coincides with the
corresponding solution in the massless case obtained in
Ref. [5].

B. The solutions of Xo0

Giving a value of parameter p, we solve the fermion ei-
genvalue equations (4.5) for nonzero values of the param-
eter Xo which can vary from —~ to + ~. Since the
configurations of the instanton are symmetric about
xo=O at which the zero mode appears, the fermion ei-
genvalue Z should be antisymmetric with respect to the
xo =0 configuration.

In Fig. 4 we represent the fermion eigenvalues Z for the
dependence of the Chem-Simons number Ncs as the pa-
rameter p =0.1, 0.5, and 1.0. Figure 4 shows the whole
process of fermion level crossing that is from the
positive-energy continuous state to the negative-energy
continuous state. Because the p is the product of instan-
ton size and fermion mass, for the fixing value of mass

mf the lines in Fig. 4 present the behavior of level cross-
ing for different sizes of the instanton; for fixing the size
of instanton, it presents the behavior of level crossing for
fermions with dHFerent masses. Since Ncs is a function of
xo, Fig. 4 also represents the eigenvalue Z dependence of
xo as Xcs varies from 0 to 1 corresponding to xo varying
from —oo to +~ and the gauge field configurations
changing from one vacuum to another. From Fig. 4 we
observe that the level crossing appears only in some part
of the configuration space of an instanton. For small
values of p the level crossing occurs in a close region to
the axis of Ncs = 1/2, for large values of P it occurs in al-
most the full range of Ncs

In Fig. 4, for every value of the parameter p, the eigen-
value Z has two symmetric critical values of Ncs, at one
point the fermion bound state enters the continuum of
positive energy and at another point it enters the continu-
um of negative energy. The difference ENcs of the
Chem-Simons number Ncs for the two points depending

+1.0

+0.5

E
0

II

-0.5

l5 20
-1.0

0 0.5
&cs

FIG. 3. The fermion zero-mode wave function components

6L, F&, and 6& (in arbitrary scale) are shown as a function of
F=mfr for the parameter p=0. 5 and SO=0.

FIG. 4. The normalized fermion eigenvalue Z=ejmf is
shown as a function of the Chem-Simons number Ncs which
changes from zero to one for p =0.1,p =0.5, and p = 1.0.
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FIG. 5. The difference ENcs of two critical values of Chern-

Simons number Ncs at which the bound state enters the contin-

uum is shown as a function of the parameter p =mf p.

on p are shown in Fig 5. .We found that the value of
ENcs for level crossing tends to zero for small values of p
and tends to one for large values of p. Considering

p=mfp, for one size instanton (fixing the size p), the
curve in Fig. 5 presents the ENcs distribution for the fer-
mion mass mf, for a certain fermion (fixing the mass mf ),

it presents the EXcs distribution for the size of the in-

stanton. The difference b,Ncs tends to zero when mf ~0
or p~0. So, in the zero-mass limit or zero-size limit of
instanton fermions are only bound at the configuration of
Pcs =1/2 and the level crossing takes place only in one

configuration of the instanton with hÃcs =0.

VI. DISCUSSION

The whole process of the fermion level crossing
phenomenon in the background fields of the electroweak
instanton have been demonstrated by a numerical
method. The detailed behavior of level crossing for vari-

ous sizes of the instanton and various masses of the fer-
mion are presented. However, our ultimate aim is to re-
late this process to physical baryon and lepton number
violation in the electroweak theory.

In the preceding section, we found a significant fact
that the fermion level crossing appears only in some part
of instanton configuration space. In Sec. II we found
that there are only small size instantons in the
Weinberg-Salam model, p « 1/U =4 TeV '. The masses
of quarks and leptons in the standard model are under
several GeV except for the undiscovered top quark.
Comparing with the scale of the inverse of instanton size
1/p which may be larger than several TeV, except for the
top quark, all of the other quarks and leptons may be
considered as massless fermions. According to Fig. 5, the
level crossing process or the baryon and lepton number
violation process take place just in the much smaller
range of configurations around Ncs =1/2 that is the top
of the energy barrier, as shown in Fig. 2. So, the
configuration of xo =0 in the instanton gives the essential
effect for the baryon and lepton number violation.

The Minkowski space version for the instanton de-
scribes the tunneling process in potential barrier which
connects one vacuum to another vacuum. If high tem-
perature or high energy is involved, instead of tunneling
through the barrier, the field configuration may pass over
it. From the discussions above, only the configurations
close to xo =0 give the effect to baryon and lepton num-
ber violation for the light quarks and leptons. In the col-
lision of high-energy particles, it may only need to create
the xo =0 configuration of electroweak instanton to make
the baryon and lepton number violation appear.
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