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The known calculations of the fermion condensate { 1) and the correlator { #)(x) Y1(0)) have been
interpreted in terms of localized instanton solutions presenting the minima of path integrals with quan-
tum corrections being taken into account. Their size is of the order of the massive photon Compton

wavelength L.

At high temperature, these instantons become quasistatic and present the two-

dimensional analog of the “walls” found recently in four-dimensional gauge theories. In spite of the stat-
ic nature of these solutions, they should not be interpreted as “thermal solitons” living in Minkowski
space: the mass of these would-be solitons does not display itself in the physical correlators. At small
but nonzero fermion mass, the high-T partition function of two-dimensional QED is saturated by the
rarified gas of instantons and antiinstantons with density «m exp{ —S"'}=m exp{ —#T /u} to be con-
fronted with the dense strongly correlated instanton-antiinstanton liquid saturating the partition func-

tion at 7=0.
PACS number(s): 11.15.Kc, 12.38.Lg

I. MOTIVATION

The appearance of instantons (topologically nontrivial
Euclidean configurations minimizing the action) is a very
common feature of many different field theories [1]. Of
particular interest are the instantons in QCD [2] which
are so beautiful that a serious hope existed [3] and still
exists [4] that, working with instantons, one can perceive
the essential features of the QCD vacuum state.

However, soon after the discovery of instantons, it was
understood that the naive instanton calculations meet
problems. The problem is that the quasiclassical approxi-
mation on which these calculations are based just does
not work in QCD—everything depends on the instantons
of large sizes where quantum corrections are extremely
important. It is impossible to calculate analytically these
quantum corrections in QCD for p~AaéD (though for
smaller p where the quantum effects are still under con-
trol and can be considered as a perturbation, it is possible
[5D.

Generally, the situation is much better, however, at
high temperatures 7 >>Aqcp. The high-T instanton ac-
tion S’=87%/gXT) is large and the quasiclassical ap-
proximation works: the amplitude of quantum fluctua-
tions is small compared to the amplitude of the classical
field. As the temperature goes up, the instantons cool
down. That allows one to perform some explicit instan-
ton calculations in high-T' QCD which are under control,
e.g., the fermion condensate in high-T QCD with one
quark flavor can be found [6].

The pure Yang-Mills theory involves, besides instan-
tons, also planar topologically nontrivial Euclidean
field configurations. They appear due to nontrivial
m[§]1=Z, where the true gauge group § for the pure
Yang-Mills theory is SU(N)/Zy rather than just SU(N)
(gluon fields belong to the adjoint representation and are
not transformed under the action of the elements of the
center—see Ref. [7] for a detailed discussion). The ac-
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tion of these configurations involves the large area factor
~L? where L is the size of the box, but, if the size of the
box is finite (as is always so in practical numerical calcu-
lations in QCD), these topologically nontrivial sectors
(known also as ’t Hooft fluxes [8]) do contribute in the
partition function.

At low temperatures, the quasiclassical approximation
does not work, and little can be said about the properties
of these configurations. But at high temperatures, it
works and the characteristic field configurations in the
path integral present the classical wall-like solutions with
the width of order of the Debye screening length
~(gT) ! and the surface action density'

SN ar(N —DT?
A 3V3Ng

and quantum fluctuations are relatively small.

These high-temperature wall-like solutions turn out to
be static (for the simple reason that, when the size of the
Euclidean cylinder f=1/T on which the theory is con-
sidered is small, higher Fourier harmonics are not excit-
ed). Originally, they were interpreted as real Minkowski
space domain walls separating distinct Z, high-T states.
However, there are serious reasons to believe that these
solutions have relevance only for the Euclidean path in-
tegral and cannot be interpreted as real physical objects
in the Minkowski space [7,10]. That means that the com-
mon assertion about spontaneous breaking of Z, symme-
try in high-T Yang-Mills theory is misleading—there is
no symmetry breaking in the physical meaning of this
word as the physical domain walls separating the distinct
phases do not appear. Note that the Euclidean quasiclas-
sical wall-like solutions exist also in high-T' QED. Their
surface action density can be found by the same token as
in the non-Abelian case [7,10].

) (1.1

IThe result (1.1) has been derived in Ref. [9]. The authors of
that work tried to calculate also the next-to-leading term o« gT?
in the action density, but it was shown in Refs. [7,10] that this
calculation is not infrared stable.
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We want to emphasize that the narrow wall-like solu-
tions appear only as the solutions for the effective action
(after adding the logarithm of the one-loop determinant).
At the pure classical level, walls do not appear—the non-
trivial ’t Hooft fluxes still exist, but they are delocalized
[8,11].

II. SCHWINGER MODEL

Our main remark here is that the full scope of ques-
tions (of the relevance of the instanton vacuum picture, of
applicability of the quasiclassical approximation, and of
the physical meaning of the high-T wall-like solutions)
can be effectively studied in the Schwinger model (SM)
(two-dimensional massless QED). The SM is exactly
soluble so that practically every reasonable question can
be given an exact and exhaustive answer and, on the oth-
er hand, resembles QCD in all gross features. The action
of the model reads

S=[d**[—1F2, +i9D,y 4],

where £,=d,—ig A, and g is the coupling constant hav-
ing the dimension of mass.

The SM involves confinement—as in QCD, the spec-
trum involves only “mesons” with the mass

=8 (2.2)
vV '

but not free fermions and photons. The axial vector
current is anomalous:

(2.1)

- 1
a‘ulﬁ)}’pysd}: —ZTT_eaBFaB . (2.3)
And, what is most important for us here, it involves topo-
logically nontrivial Euclidean gauge field configurations
with integer topological charge

=8 2
v=oo JExd*x, (2.4)
where E =F,, (v is the two-dimensional analog of the
Pontryagin class), and hence the instantons,
configurations with v==1 realizing the minimum of the
action.

What is the explicit form of these configurations? If we
proceed along the same lines as people usually do in QCD
and look for the configuration which minimizes the pure
bosonic Euclidean action

1l
Sp=- [ d’xE (2.5)
with the constraint v=1, we are led to the constant field
strength solution

2
E eA
where A is the total area of the Euclidean manifold on
which the theory is defined. Introducing the compact
manifold is necessary in this approach to provide for the
infrared regularization of the theory.

Different choices for this manifold are possible. In
Ref. [12], the Euclidean functional integral on the two-
dimensional sphere in different topological sectors has
been calculated. But, bearing in mind the parallels with
four-dimensional theories and also the generalization of
the results for the finite temperature case, it is more in-
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structive to consider the theory on the two-dimensional
torus with the spatial size L and the imaginary time size
B [13]. Here we always assume that L >>u~!. When
also B>>u !, the boundary effects become irrelevant for
physical quantities.”> When B<u~!, they are relevant
and should be interpreted as the effects due to finite tem-
perature T =81,

The constant field strength solution presents a fiber
bundle on the torus. Bearing in mind the subsequent dis-
cussion of the high-T case and the parallels with four-
dimensional gauge theories we are going to draw, it is
convenient to choose the gauge A4,=0. The solution
then takes the form

2T
Aylx,7)=———x . (2.6)
° gLB

It satisfies the twisted boundary conditions (BC’s)

Ag(x,B)= A4(x,0) ,

Ag(L,7)= A(0,7)— éa“aon ) 2.7)
where

Q(r)=exp(—2mit/B) (2.8)

is the gauge transformation matrix. In finite temperature
applications, the corresponding B.C.’s for fermion fields
in imaginary time directions are antiperiodic, and the
B.C’s in the spatial direction involve an extra gauge
transformation

WYL, 7)=Q(m)¥(0,7) .

The transition matrix (2.8) satisfies the self-consistency
condition Q(B8)=Q(0) which is the reason for the topo-
logical charge (2.4) to be quantized. The solution (2.6) is
the direct analog of the four-dimensional 't Hooft toron
solutions [11].

The configurations with v==1 are responsible for the
formation of the fermion condensate in the Schwinger
model

(T o= —Loe, 2.9
where y is the Euler constant. There are many ways to
get this result. The easiest way is to employ the bosoniza-
tion technique [17,15]. But bosonization rules are specific
for two dimensions, and it is more instructive to extract
the condensate from the Euclidean path integral in the
sectors with v==1. This has been done in Refs. [12,13].
In particular, Sachs and Wipf [13] considered the SM on
a two-dimensional torus and calculated the functional in-
tegral over the quantum fluctuations around the constant
strength solution (2.6). The amplitude of these quantum
fluctuations turns out to be large [the characteristic field
configurations contributing to the path integral are rather
far in Hilbert space from the classical bosonic solution
(2.6), and the quasiclassical picture does not work]. The

20n the large torus, the boundary effects are always exponen-
tially suppressed [14—16]. On the large two-dimensional sphere
with R >>u "}, they are suppressed only as a power due to finite
curvature of the manifold [15].
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calculation is still possible, however, due to the fact that
the functional integral is exactly Gaussian.

The result (2.9) is obtained in the limit when both di-
mensions of the torus B and L are large compared to u ™/,
the finite boundary effects bringing about exponentially

small corrections.

III. PATH INTEGRALS AND THEIR SADDLE POINTS

In this section, we shall be concerned only with the
large torus S~L >>p~!. Finite B and L should be
thought of then not as quantities of physical relevance
but rather as tools of infrared regularization to be
disposed of at the end of the calculations. In our discus-
sion, we rely heavily on the results of Ref. [13]. As not
everybody may have access to the journal where the pa-
per by Sachs and Wipf was published, it makes sense to
outline here in some detail the method they used and the
results they obtained.

Any field in the topological sector v=1 can be decom-
posed as

A,=A3 +40 —€,3,6+3,x,

vy

(3.1)
where

2w 21

0) — | £ “7
A= | Sgho g |+ (0Sho SD) (3.2)

is the constant part of the potential, 4" is the classical
instanton solution (2.6), d,x is the gauge part, and the
part —¢,,0,¢ carries nontrivial dynamic information. To
calculate the partition function, one has first to do the in-
tegral over fermion fields i.e., evaluate the fermion deter-
minant det|iD—m|| in an external field (3.1) (m is the
small fermion mass, m <<g), and to integrate over gauge
fields afterwards. It is convenient to find first the deter-
minant in the “reference field” ¢=0. The spectrum and
eigenfunctions of the Dirac operator for the field
A+ A4 can be determined explicitly (as the deter-
minant does not depend on the gauge part d,Y, we set it
to zero here and in the following). Actually, this problem
is exactly the same as for electron moving along our two-
dimensional torus in the magnetic field B(x)=E(x)

j

ef
Zloimed¢fd2xe_23¢(")exp —%fd)(Az—;LzA)dezy dzfndqseXP{"Seﬁ[d’]} .

Derivation is tricky but the result is rather simple and
its interpretation is straightforward. ¢A%¢/2=(A¢)*/2
=E?/2 is the classical part of the action density, the
term «pu’@¢As in the effective action is the local part of
the fermion determinant and gives mass to one photon,
and the factor m f d*xe ~ %% comes from the fermion
zero mode: m is the eigenvalue and the integral
f d?xe ~%8%*) is the normalization factor of the zero
mode (3.3). The functional integral (3.7) is Gaussian and
has been explicitly calculated in [13]. To get a clearer un-
derstanding of the dynamics, it is desirable, however, to
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which is normal to the surface and has the unit flux (2.4).
In the strictly massless case, the index theorem dictates
the presence of one zero eigenvalue in the spectrum and
the determinant vanishes. For small but nonzero m, the
determinant det|iD—m| does not vanish but, when
mgPBL << 1, the only source of the mass dependence in
the determinant is the former zero mode which gives rise
to a common small factor m (see Ref. [16] and also Sec. V
of this paper for more detailed discussion).

When v=1, the massless zero mode is left handed. It
depends in a nontrivial way on the constant part of the
potential 49, and, if $5<0, also on ¢:

Yr(d)=exp{—gd(x)}¥,($=0) .

To find the determinant at nonzero ¢, one has to make
use of the property (3.3) and also of the fact that the
Dirac operator on an arbitrary two-dimensional Abelian
background is related to that on a reference background
with =0 as

N 5
D=e?tDpe’t .

(3.3)

(3.4)

Then one has to consider the one-parametric family of
operators
5
D=e? #P e ¢ (3.5)
which interpolates between 2D, and D as a changes from
0 to 1. The derivative of the determinant over a can be
evaluated using {-function regularization and heat kernel
technique, and the integration of that derivative over «
gives the final result

det||iD—m|=—m [ d’xe “2#99D_ (ho,h,)

2
X exp f;—f¢A¢d2y ., (3.6)

where ® is some nontrivial function of the constant har-
monics of the potential. The only thing we need to know
about it here is that [d*h®, (hy,h,) is a constant
which does not depend on x and 7 but only on the
geometry of the box. Thus, the partition function in the
sector v=1 can be written as

(3.7)

[

not only know the bulk answer but also what field
configurations ¢(x) are mainly responsible for it and, to
this end, to try to find the saddle points of the integral
(3.7). Unfortunately, for the integral (3.7) as it stands, it
is not so easy. The equations of motion determining the
minimum ¢,(x) of the effective action Sf[ 4] are

e —2g¢y(x)
(A2—p2A)y(x)= —2g——————— .
fdzye 28¢4(y)

The problem here is not only that Eq. (3.8) is highly

(3.8)
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nonlinear and complicated, but also that it is ill defined
on the infinite plane. As we shall see soon, the fermion
mode (3.3) is only quasinormalizable—the integral
J d*xe ~%%4*) diverges logarithmically at large |x|. To
find the solution, one should recall that the theory has
been defined in the first place on a large but finite torus,
take the proper account of finite size effects, etc. As, for
large B and L, characteristic fields in the integral (3.7) de-
viate essentially from ¢q(x) due to significant quantum
fluctuations, as finite size effects which affect ¢y(x) do not
affect physical quantities, and also as the solution ¢y(x)
can anyway be found only numerically, it is not obvious
that this complicated problem is worth the effort which
must be spared for its solution.

We shall see later that the situation is much better at
high temperatures. Speaking of the large B,L case con-
sidered in this section, we may do the following trick.
Let us substitute in Eq. (3.7)

fdzxexp{ —2gd(x)} >Aexp{ —2gd(x,)} ,

where A =BL is the total area of our Euclidean manifold.
We arrive thus at the new functional integral which has,
however, the same value as the former due to translation-
al invariance. This new integral also has a direct physical
meaning. The fermion condensate (¥, (x,)) is deter-
mined by [13]

(Prvp(x0)) < [Tdde

—2g¢(x0)

X exp —%fq&(Az—pzA)quzx

(3.9)

without a troublesome [d’x, integration. We shall
define the effective instanton (e.i.) as the stationary point
of Eq. (3.9) or else of the modified path integral for Z,
which involves compared to Eq. (3.9) the overall factor
mA. It satisfies the equation

(A2—p?A)g%  (x)=—2g8(x —x,) .

Thus, ¢%" is just the Green’s function of the operator
O =A2—u’A. 1t has the form®

(3.10)

6% (x)=—[Ko(ulx —xo|)+In(u|x —x4|)]+const .

0 |

(3.11)

[The possible linear in x part of ¢*'(x) can be absorbed in
the constant component of the gauge field in the decom-
position (3.1).] The solution (3.11) is regular at zero. At
large |x —x,|, only the logarithmic piece survives, which
means that the fermion zero mode ~exp{—gd(x)}
~|x — x| —lis only quasinormalizable as was mentioned
above. The electric field

3The notion of effective (or “induced”) instanton in the SM
was introduced long ago [18], but seems to be very well forgot-
ten since that time.
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Ee'i‘(x)=A¢e'i'(x)=%Ko(ylx —xo) (3.12)
falls off exponentially at large distances. The topological
charge (2.4) of this solution is equal to 1 as it should be.

We see that, in contrast to the delocalized classical in-
stanton (2.6), the effective instanton (3.11) is localized —
quantum effects changed the properties of the solution
drastically. The parameter x, may be thought of as the
collective coordinate of the center of the instanton.

Let us forget for the moment about a not yet fixed con-
stant in the right-hand side in Eq. (3.11) and find the ac-
tion of this instanton. Setting const=0, we get,

Sel=ggei(0)=In2—7y . (3.13)

Then the exact result for the partition function (3.7) in
the sectors with v=x11 can be presented as
Z,=Z_,=mA {;exp{ —SeiZ, . (3.14)
The factor m comes from the fermion zero mode, the
factor A arises due to integration over collective coordi-
nates d’x,, and the factor u appears for dimensional
reasons. The hard (in this approach) part of the problem
is to determine correctly the numerical factor (27) 1.

To do it, one should proceed more accurately. First of
all, the exact proportionality coefficient in Eq. (3.7)
should be found—more exactly, the ratio of this
coefficient to the corresponding coefficient in the func-
tional integral for the partition function in the topologi-
cally trivial sector v=0. This ratio depends on the par-
ticular method of the infrared regularization and thereby
on the size of our torus. Second, Eq. (3.10) as it stands
has no solution at all on a compact manifold. The
correct procedure is to project out the zero modes of the
operator A?—pu?A by substituting 8(x)—8(x)—1/A and
imposing the constraint

[¢xdx=0. (3.15)
Thereby the constant in the right-hand side of Eq. (3.11)
is fixed. This constant (and hence the instanton action)
also depends on the size of the torus.* For large L, B, this
dependence cancels exactly the similar dependence of the
normalization constant, and the finite result (3.14) is ob-
tained [13].

We cannot suggest in this respect anything new com-
pared to the calculation by Sachs and Wipf, but the final
result (3.14) looks so suspiciously simple that one is
tempted to guess that an easier way to derive it may exist.
Differentiating Eq. (3.14) over the fermion mass and add-
ing the equal contribution from the sector v=—1, we

4To be quite precise, the fixing of this constant requires also
taking into account the modification of the solution to Eq. (3.10)
due to finite size effects which are essential when |x —x,| is
comparable with the size of the box. The solution has the sim-
ple form (3.11) only at the vicinity of the center of the instanton,
|x —xo| <<B,L.
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reproduce the result (2.9),

(W)= === (Z,+Z_ ==t |
m

AZ, am (3.16)

There is however, a simple indirect way to fix the
coefficient in Eq. (2.9). To this end, one should consider
the correlator {¥y(x) ¥(0)) in the topologically trivial
sector v=0 [19]. It can be calculated rather straightfor-

J

(P(x) Pp(0)) ,—o=—Z ' [ [Tddexp {~%f¢m2—y

=#Zo_lfnd¢expl—%f¢(1&

2mix?

where we substituted cosh{ } —exp{ } as odd powers of
&(x)—¢(0) give zero after integration.

The integral is Gaussian. Its stationary point is the
solution to the equation

(A2—p?A)¢™2(y)=2g[8(y —x)—8(y)], (3.19)
which is
¢stat(y)=¢e.i.(y)_¢e.i.(y _X) (320)

with ¢%¥(y) being taken from Eq. (3.11). ¢%*(y) presents
an instanton-antiinstanton configuration. Note that the
free constant in the right-hand side of Eq. (3.11) cancels
out completely in the difference.®

The calculation is standard. Introduce a new integra-
tion variable

e(y)=d(y)—¢™(y) . (3.21)
We have
(P(x) (0)),—
- 1 sta stal
=Z, IWCXP{&’N’ #(x)—¢**(0)]}
1
XfHd(pexp —Ef(Az—,uzA)(pdzy . (3.22)

The integral f I[Id@exp{. ..} exactly cancels out the
identical functional integral for Z, and the result is

_ - 2
(¢¢(x)¢¢(0))v=o=L8 2e2”exp{—2K0(;m)} . (3.23)
T

2A)pd?y

Z—uzA)d)dzy

wardly using the exact expression for the fermion Green’s
function in any gauge field background

S4(x,y)=exp{ —gy’°d(x)}Sy(x —ylexp{ —gv>d(»)} ,
(3.17)

where Sy(x —y) is the free fermion Green’s function.’
We have

Tr{S,(x,»)S4(y,x)}

exp{2g[d(x)—¢(0)]} , (3.18)

At large x, this correlator tends to a constant. One may
be tempted to extract the square root of this constant and
call it the fermion condensate, but that would not be
quite correct. Only the full correlator (the contributions
of all topological sectors being summed over) enjoys the
cluster decomposition property. One can show [12] that,
besides the sector v=0, only the configurations with to-
pological charge v=x12 contribute to the large x asymp-
totics of the correlator in the small mass, large volume
limit. The following relation is valid:

lim (Jyix) §9(0)),—,= lim (Fx) $%(0)),,— _,
=1L lim {(x) PY(0) ), —, -

— ®©

(3.24)

The result (3.24) follows from Ward identities which dic-
tate the particular form of 6 dependence of the partition
function. It holds both in the SM [19] and in the QCD
[16]. In our language, it can be interpreted quite natur-
ally. Large x asymptotics of the correlator acquire
equal contributions from instanton-antiinstanton and
antiinstanton-instanton configurations taken into account
in (3.23), and also from two-instanton (v=2) and two-
antiinstanton (v= —2) configurations. Adding together
all contributions and extracting the square root, we arrive
at the result (2.9). What is attractive in this derivation is
that the effects due to finite 3,L play absolutely no role
and can be safely forgotten not only in the final stage but
right from the beginning.

There is an important point which we want to em-
phasize here. In the zero-temperature SM as well as in

5The result (3.17) as well as the results (3.3) and (3.4) are specific for the SM. Unfortunately, no similar simple formula is known for

four-dimensional theories.

The antiinstanton-instanton configuration — ¢**(y) plays exactly the same role (we could substitute cosh{...} —exp{—...} with
equal ease). A quite precise way would be to present cosh{. ..} as the sum of two exponentials and split the path integral (3.18) in
two equal parts. The stationary point of one of them [which describes the correlator {1, ¥z (x) ¥z, (0)) ] is $**(y) while the sta-
tionary point of the other corresponding to ¥, (x) ¥, Pg(0)) is — ¢ (p).
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zero-temperature QCD, the quasiclassical picture does
not really work— the quantum fluctuations are large and
the characteristic field configurations in the path integral
have nothing to do with either classical (2.6) or effective
(3.11) instanton solutions. We have shown in Ref. [20]
that all essential properties of the characteristic vacuum
fields in the SM are well reproduced in the model of a
vortex-antivortex liquid. The basic ingredient of this
model was a vortex configuration

5 (3.25)
It carries unit topological charge (2.4) but does not mini-
mize either classical nor effective action. The full field in
our model presented a stochastic superposition of vor-
tices and antivortices with certain correlation properties.
All results of Ref. [20] (in particular, the results for the
fermion condensate, Wilson loop average, and topological
susceptibility) can be, however, rederived using the solu-
tion (3.11) rather than (3.25) as a basic ingredient. The
form of the instanton is anyway distorted by quantum
fluctuations and, for modeling purposes, the config-
urations (3.11) and (3.25) are equivalent. The really
essential feature of characteristic vacuum fields is fluc-
tuating local density E (x) of the topological charge (2.4).
Both vortex (3.25) and effective instanton (3.11)
configurations model such local fluctuations well. We
think also that all spectacular results of the instanton-
antiinstanton liquid model in QCD [4] can be reproduced
if we choose as a basic ingredient not the BPST instanton
but any other localized field configuration carrying topo-
logical charge. At large temperatures, however, the situ-
ation simplifies a lot and it is very instructive to analyze
the SM in the T >>pu region.

8= tnlly —xo P p?)

IV. HIGH TEMPERATURES

Let us repeat all derivations of the previous section for
the case when the imaginary time extension of our torus
B=1/T is small compared to the massive photon Comp-
ton wavelength p ™! (and the spatial size is still large
L>>p™"). The partition function in the sector v=1 is
given again by Eq. (3.7), only the integral f d*x extends
now over the narrow torus. If Bu<<1, one can assume
the field #(x,7) to be static (the contribution of higher
Fourier harmonics «<exp{2mikr/B} in the path integral
is suppressed), and we can substitute [d’x—S [ ax,
A—3%/3x? (from now on x will always be assumed to be
spatial). To start with, let us do the same trick as earlier
and substitute

[ dxexp{ —2g¢(x)} —Lexp{ —2gd(x,))}

in the path integral for the partition function. Then the
effective instanton solution satisfies the equation
a4 ) 82

3 o’ Bhigh 7(x)=—28T8(x —x,) . (4.1)

The solution has the form

5485

; 7T | 1
Shign T(X)—_-“g— ;expl —plx —xg|} +1x —x,|

+const . (4.2)

The corresponding gauge field is

e.i. a e.i
A5 (x)lhigh T= a“ﬁh'ig'h r(x)— =T

=Ig—T-sgn(x —xo)exp{ —plx —xq|} —1]

_aT
.

[The gauge 4,=0 is chosen; the term —7T /g comes
from the properly fixed constant term A ;‘O’ in the decom-
position (3.1) [13].] When going from x =—o to
x =, Ay changes from zero to —2#7T /g which corre-
sponds to unit net topological charge

(4.3)

{1 —__8 -
v=on JEdx == B 4,(0)— g~ ))=1.

But the electric field

figh T=——;;A8" =TVwexp{—pulx —x,|} 4.4)
high T

is localized at x ~x, in contrast to the classical solution

(2.6).

As we have already noticed, the notion of the instanton
has much more physical content at high T where quan-
tum fluctuations are relatively small. To see this, let us
make a simple estimate [10]. Let us expand the integrand
in the path integral around the classical solution
(4.2)-(4.4) and express the fluctuating part in terms of
ay=—09/3x[¢(x)—dfign r(x)],

Z = [ [Tdaexp —g [ dx[(3,a0) +pad) @.5)

Let us expand a(x) in the Fourier series

ag(x)= 3 c,exp{2minx/L}, c_,=c},

n=-—aw

and rewrite the functional integral as the integral over
I1.dc,. Itis easy to see that

1
BL[p*+4m*n?2/L?]

Assuming stochastic phases a, for ¢, ;, we may estimate

( lcn Iz)charN

fluct V4 < cos(a,,)
ap i (x)~ LT’Z,1 VarnTraL?
s 1
ne 4min 2+ 2L
~%V T/# ’

which is much less than the amplitude of the classical
solution (4.3) ~T/u. Characteristic momenta in Eq.
(4.6) k°ha* ~n°har /1 are of order p.

. 172
~VLT

(4.6)
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If setting const=0 in the right-hand side of Eq. (4.2),
the action of the instanton is

wT

—>>1. 4.7)
u

S?ﬁgh T=g¢f{ilg'h r(0)=
We want to emphasize that, in contrast to the zero-
temperature case where the effective instanton (3.11) was
the stationary point of the path integral (3.9) for the fer-
mion condensate but not the stationary point of the origi-
nal path integral for the partition function (3.7) and
differed essentially from the latter, at high T the situation
is much better. The stationary point of the high-T path
integral for the partition function is determined from the
equation
a* 82 —2g058" Tix)
P _#

ax ™ ¢h1gh T x)= —2gT

g ghigh Ty °
fdye gdo y

(4.8)

Though Eq. (4.8) differs from (4.1) and their solutions
also differ, this difference is small. Let us solve Eq. (4.8)
by iteration. Let us choose as the zero approximation
¢'” our old solution (4.2). Substitute it in the right-hand
side of Eq. (4.8). Note that the zero mode
exp{ —g¢'”(x)}] is now normalizable and is localized at
the distance |x —xo|~(uT)™'/? from the instanton
center which is much less than the size of the instanton
|x —xq|~p~! [this is the region where the electric field
(4.4) is localized]. As a result, the source distribution in
the right-hand side of Eq. (4.8) is comparatively very
narrow and is simulated by 8(x —x,) quite well. And
that means that the corrections to the zero approxima-
tion (4.2) are going to be small.
Let us see it. The first iteration for the electric field

EMV(x)=0%/0x2¢'V(x) satisfies the equation

3 _ EW(x)= Ve ~7Tux?
) u? (x)=2gT |8(x)—V Tpue

g Sll(x)

49
2o 4.9)

[we put x,=0 for simplicity and neglected higher order
terms in the expansion of $”’(x) in x which are small in
the relevant region of x]. The solution to (4.9) is

EWx)=—-£

, 4.10
47 ( )

e_‘”"'*lﬁ(x)
u

which is much less not only than the amplitude of the
zero-approximation solution (4.4) but also than the

characteristic amplitude of quantum fluctuations
Efuct(x)~uafvct(x)~v'Tu.” The correction (4.10) is of

7One should not be worried by the 8(x) term in the right-hand
side of Eq. (4.10) because the coefficient is small and the contri-
bution of this term to the flux (2.4) is of order u/T <<1. This
contribution is duly canceled out by the contribution from the
first term so that the corrected solution E‘®+E also belongs
to the instanton topological class.

A.V.SMILGA 49

the same order as the corrections brought about by non-
static modes in ¢(x,7) and can be safely neglected.

The exact result for the partition function in the sec-
tors v==*1 at high temperatures can be written as

Z,=Z_ —STigh 12y -
The factor m comes from the fermion zero mode and the
factor L from the integral over the collective coordinate
x, describing the spatial instanton position. The numeri-
cal coefficient is just 1. From this, one can easily derive

<KZ¢)T>>#:" 1 _ar;l-[zl+z—l]

BLZ, 3
=—2Texp{—nT/u} .

1 =mLexp{ 4.11)

(4.12)

Again, the results (4.11), (4.12) look suspiciously simple
and again we cannot suggest a simple direct way to derive
them (other than to use the whole machinery of the
quantization in the box as in Ref. [13]). And again, the
simplest way to fix the exact coefficient in () ., we
know of is to study the correlator {(x) (0) )T» u i
the topologically trivial sector at large spatial x. The sta-
tionary point of the corresponding path integral is the
instanton-antiinstanton configuration

Phigh (¥

T | 1
=— | —exp{—plyl} +Iyl
p #p{ plyly+ly

—iexpi —uly —x|} —ly —x|

(4.13)

The integral over fluctuations cancels out with the same
integral in Z), and we get

<J¢(x) JIIJ(O))T»”: ( lzlﬁ(x) 'lle’(O) >free

stat

Xexp{g[dhigh 7(x
¢?1t1§h T ]} ’
where the free correlator on the cylinder (one can forget
about finite L in this method of derivation) is

(4.14)

- 2
(Jzﬁ(x)ib_lp(O))T»#:ZTz S exp{—7T(2n +1)x}
n=0
T2
B 2sinh¥ (7 Tx)

It falls off exponentially at large distances, the exponent
being given by the lowest fermion Matsubara frequency
mm_TrT
The factor exp{...} in the right-hand side of Eq.
(4.14), however, rises exponentially at large x with the
same exponent so that

Em {gih(x) Pp(0)) 155, =2

(4.15)

T?exp{—27T/u} . (4.16)
Adding the equal contribution from the sectors v==2
[cf. Eq. (3.24)] and taking the square root, we arrive at
the result (4.12).

Let us look now at the solution (4.3) more intently. As
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has been explained in detail in [7], it may be thought of as
the configuration interpolating between two adjacent
minima of the high-T effective potential V*f( 4,) in the
constant A4, background. The form of the potential is

2

A,+ 7L . 417

g

2
o 4y T
vl 4g)=L- o

mod2w T/g g

and it has minima exactly at A" =27nT /g.

Thus, the solution (4.3) is closely analogous to the
“walls” which appear in the Euclidean path integral in
four-dimensional gauge theories [9,7,10]—the planar
static field configurations which interpolate between
different minima of effective potential V*f( 4,). In Ref.
[9], they were interpreted as real walls in Minkowski
space separating different thermal Z,, phases. We argued
in Refs. [7,10] that such domain walls do not actually ex-
ist in Minkowski space and there is only one physical
phase both in QED and pure Yang-Mills theory at high
temperature.

One of the arguments comes from SM analysis—the
static solutions (4.3) can (or cannot) be interpreted as real
Minkowski space “solitons” with the mass

2
sol — praei.  — AL
Moo= TShigh =

(4.18)
exactly by the same token as the planar four-dimensional
Euclidean static solitons can (or cannot) be interpreted as
real walls.

Here we want to present some additional arguments
why they cannot. If the solitons with the mass (4.18)
really exist in some reasonable sense, this new mass scale
should display itself somehow in the physical correlators,
in particular in the correlator (yi(x)¥(0)). The
operator ¥ is in some sense “intimately connected” with
the solution (4.2-4.4)—its expectation value is propor-
tional to exp{— f,‘iig‘h r}. If trying to interpret ¢y as a
creation operator for this soliton, one could expect that
the correlator (4.14) would fall off ~exp{—M%x] at
large distances. But it does not.

The correlator (4.14) has three asymptotic regions.

(1) At very small x <<T ™!, it is not affected by the
boundaries of the box and behaves as ~1/27x2.

(2) At T 1<<x <<pu~!, it is affected by the boundary
but not yet by the fluctuating gauge fields, and is given by
the expression (4.15).

(3) At x >pu !, it starts to be affected by the gauge field
dynamics and rapidly levels off at a constant (4.16), the
preasymptotic terms being of order exp{—ux]. The
scale « T?/p is absent.

The full correlator, with the contributions from all topo-
logical sectors being summed over

(Pp(x) ¢p(0)) 1

= (¢Jp)%cosh f dke ™

‘/k2+[.t2

4.19)

5487

exhibits the same qualitative behavior. The derivation of
the result (4.19) is given in the Appendix.

Strictly speaking, the absence of the scale M*! in the
spatial correlators (4.14), (4.19) still leaves room for
doubt—it does not imply directly the absence of a collec-
tive excitation with mass M*! in the spectrum.! To
answer unambigously this question, one should study the
retarded correlator Ry(x,)=6(t){[¢d(x,t),$(0)]_) ;
in Minkowski space at large real times t. (At finite T,
Lorentz invariance is lost, and large real ¢ behavior and
large spatial x behavior are not necessarily related to
each other.) If such a stable soliton exists, it should
display itself in a §-function singularity in the spectral
density

p(E,p=0)=Im [ dxdt e “E'R(x,1) (4.20)
at E=M™'. This spectral density has been evaluated re-
cently [21] using a bosonization technique [22]. [As writ-
ten in Eq. (A2c), the operator ¥ is dual to the nonlinear
operator {y1).cos(V'4r¢) depending on the free scalar
field ¢ with mass u.] The result is

p(E,O)=21r(171-¢)2rsinhBTE

© 22k 2k

X 2 (Zk)' iH deqis(in__'uZ)

k=1 =1

1
X3 5
izqg sinh(Blg/| /2)

2k
P— qu ] ’ (4.21)

i=1

P=(E,0). Unfortunately, this infinite sum over multiple
integrals, each term corresponding to the
square of a particular matrix element
(nylcos( \/Zrd))imd, ), ny+m,=2k, integrated over ini-
tial and final phase space with proper thermal weights, is
difficult to analyze. Only when the function (4.21) is
directly plotted versus energy at different temperatures
shall we acquire the final and comprehensive understand-
ing of the problem. But we find it most improbable that
the sum (4.21) would exhibit a singularity at one given en-
ergy E =M.

V. PARTITION FUNCTION AND CHARACTERISTIC
FIELD CONFIGURATIONS ATHIGH T

As we have seen, instantons display themselves in the
path integrals for () and for {(x) J(0)). But it is
important to note that the path integral for the partition
function itself is not affected by instantons in the strictly
massless Schwinger model. Really, at m =0, only the to-
pologically trivial sector v=0 contributes (all Z, ., in-
volve the factor m " due to |v| fermion zero modes and
vanish in the massless limit). The path integral for Z,
has a trivial form (4.5) and no instantons are seen there.

8] am indebted to L. McLerran who brought my attention to
this fact.
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To understand better what actually happens and why in-
stantons reappear in the path integral for the correlator
(¢9(x) ¥(0)) 155, in the same topologically trivial sec-
tor, let us estimate the contribution of the instanton-
antiinstanton pair (4.13) in the path integral (4.5). The
configuration 4%*(y) is depicted in Fig. 1. Obviously,
the corresponding contribution to Z| is

21 |’

p =exp{—27Tx} , (5.1

ZB"“CXP{—%M

where x is the separation between instanton and antiin-
stanton (we assumed x >>pu " !).

Now, the suppression (5.1) can be interpreted as being
due to quasizero modes in the fermion determinant.
Really, an individual instanton (4.2) (the field
configuration with v=1) involves an exact fermion zero
mode

¥, (p)=exp{ —gd(y)} <exp{ —7T|yl} (5.2)

(where we changed the notations x —y and put x,=0).
For instanton-antiinstanton (IA) configuration (4.13), the
former zero mode (5.2) and its counterpart for the antiin-
stanton located at y =x

Yr(y) <exp{—7Tly —x|} (5.2")

are no longer exact eigenfunctions of the Dirac operator.
But, if instanton and antiinstanton are well separated,
they are almost the solutions. The true solutions and
their eigenvalues can be found by solving the secular
equation taking the functions (5.2) and (5.2') as basis and
regarding the effects due to finite IA separation as pertur-
bation. As a result, two quasizero modes with
Ax<exp{—7Tx} appear. Their product in det||iD||
brings about the suppression (5.1).

It is clear now why the IA configuration displayed it-
self in the correlator { Jy(x) ¥(0)) —the fermion opera-
tors “absorbed” the zero modes form the fermion deter-
minant, and the answer is finite in the limit x — « [see
Eq. (4.16)). The finite result (4.12) for the fermion con-
densate (1) 1, being determined by the path integral
in the sectors v==1 is obtained for exactly the same
reason.

However, the instantons reappear even in the path in-
tegral for the partition function in the high-T SM if we
allow for a small but nonzero fermion mass. It is clear
why —the determinant factor is now det||iD—m|| rather
than just det||iD)||, and the contribution of the quasizero

A(Y)

-2nT/g |

FIG. 1. Instanton-antiinstanton configuration.

modes remains finite < m? even at large IA separation.

If one chooses, one may speak of the confinement of in-
stantons in the strictly massless case and their liberation
for any small nonzero mass. The suppression (5.1) can be
interpreted as behind due to the linearly rising “poten-
tial” between an instanton and antiinstanton. At m 0,
the potential levels off at a constant value at large separa-
tions. Freely moving instantons bring about a large en-
tropy factor, and the contribution of the IA configuration
to Zy, is

Z™ =[mLexp{ —7T/u}*’Z,, - - (5.3)
If the spatial box is large enough,
k=2mLexp{—7T/u}=m|{{)|BL>1, (5.4)

the contribution of the IA configuration to Z, dominates
over the purely perturbative contribution Z,, _, given by
Eq. (4.5).

Let us find now the contribution due to N instantons
and N antiinstantons (in the sector v=0, their number
should be the same). It is

ZYA = [mLexp{ —7T/u} 12, _,. (5.5

(N1?
The factor (N!)~2 appeared due to indistinguishability of

instantons (and, separately, antiinstantons). Summing
over all N, we get
Z,= 3 zY"™W =2, _ol,(k) (5.6)

N=0

(I, is the exponentially rising modified Bessel function).
The sum (5.6) is saturated at N, ~k, i.e., when the con-
dition (5.4) is satisfied, characteristic field configuration
involve many (of order «) instanton-antiinstanton pairs.
The partition function in the topologically nontrivial
sectors v0 can be calculated in the same way. Assume
for definiteness v>0. Then the contribution of N +v in-
stantons and N antiinstantons in the partition function is

N+
Z(N,=N+v,N, =N)=F!—(Nl—+v—)—! £l Zas
(5.7
Summing over N, we get
Z,=Z, ol (k). (5.8)

The full partition function is very simple (and could, of
course, be written right from the beginning from the
most general premises):

Z= 3 Z,=Z, "= Zp_cexpl—m () BL] .

(5.9)

The sum (5.9) is saturated at v, ~V'k. That can be
rather easily understood. When no constraint is put on
the net topological charge, we have two independent
Poisson distributions for instantons and antiinstantons
with central values of order k. The dispersion of these
distributions and the average mean square deviation
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((N, —N_))"2are of order «'/2.

Thus, we are arriving at the physical picture of a
rarified IA gas. It is important to understand that it
arises only when the condition (5.4) is fulfilled. In the op-
posite limit k <<1, which is realized by keeping the spa-
tial box length large but fixed and tending m to zero,
there are no extra IA pairs and the partition function in
the sector v is saturated by v instanton configurations. In
this limit, Z, < m " and the only sources of mass depen-
dence of the partition function are v exact zero modes of
the massless Dirac operator (see [16] for more details).

The results (5.6), (5.8) are very general; they hold not
only in the high-T but also in the low-7" SM, and also in
QCD [16]. They can be rigorously derived by studying
the 6 dependence of the partition function [16]. It is very
instructive to see, however, how these results could be
rederived here in another way in the case where the
characteristic field configurations in the path integral are
known exactly and explicitly.

The last remark concerns topological susceptibility. It
is defined as
2

X= fdzx(E(x)E(O))=-Il7(v2) , (5.10)

g
2
where V' =L is the total Euclidean volume. As has been
mentioned, v,,,,~V k. The exact result is

(V)Y=Vy=m|{(yp)|V . (5.11)

It can be derived either from Ward identities [23] or
directly from the explicit result (5.8) and holds universal-
ly at any temperature. But the mechanism providing the
suppression < m in Y is much different at high tempera-
tures compared to that at low temperatures. At T >>pu,
the characteristic field configurations present a nonin-
teracting instanton-antiinstanton gas. The density of the
instantons is low—it involves the fermion mass
factor m (in addition to the factor exp{—Syn 7}
=exp{ —mT/u}). This factor exhibits itself in the topo-
logical susceptibility. On the other hand, at low tempera-
tures, the characteristic vacuum fields present a dense
strongly interacting instanton-antiinstanton liquid [20]
(with large quantum fluctuations distorting the shape of
individual instantons). The suppression in Y appears in
that case due to strong correlations in this liquid provid-
ing effective screening of the topological charge.

It is worthwhile to mention that the whole analysis can
be transferred without essential change to QCD with one
nearly massless quark. The fermion condensate survives
in this theory even at very large temperatures [6] and, if
the quark mass is small but nonzero and the spatial
volume is large enough, characteristic field configurations
include of order

k2P = |{ Gy )SP| BV ) (5.12)

instantons and about the same number of antiinstantons
which do not interact with each other (versus the dense
strongly correlated instanton-antiinstanton liquid at
T =0).

Note added. After this work was completed, I became
aware of Ref. [24] which also discusses instantons in the
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Schwinger model. The authors of [24] considered the
model at zero temperature = but on a small spatial
circle L <<p™'. Certainly, it is equivalent to the high
temperature B<<u~!, large spatial volume case up to a
rotation by 90°. The main difference between their work
and ours is that they restricted themselves to large
masses. The explicit results for the instanton profile and
action have been written down only in the case m > T
(mL >>1 in their approach). Then fermion zero modes
are not relevant and the analysis is ideologically much
simpler —it is just a quantum mechanical problem with a
local Hamiltonian. But the large mass case is, in our
opinion, not so interesting due to lack of analogies with
QCD.
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APPENDIX: CORRELATOR ( $(x) $%(0) )
IN BOSONIZATION APPROACH

Let us derive the result (4.19) for the full fermion
correlator {¢1(x) PP(0)) at finite temperature. The sim-
plest way to do it is to use the bosonization technique
[22]. The Lagrangian of the SM is dual to the free mas-
sive scalar field Lagrangian

2
Lbosz_;_(a#¢)2_%_¢2 ’ (A1)
and bilinear fermion combinations can be written in
terms of the scalar field ¢ as

Ip’}/plp— ,\/_;euvav¢ ’ (A2a)
T 5, g—_1

YV Y= by ¢, (A2b)
b= — _2%6 YN, cosV4r (A2c)

where N, means normal ordering with respect to
creation and annihilation operators of the free boson field
with the mass u, and the numerical constant in Eq. (A2c)
is nothing but the zero-temperature fermion condensate
(2.9). Then all correlators of the fermion bilinears calcu-
lated with the original SM action (2.1) coincide with the
correlators of the corresponding bosonized expressions
calculated with the Lagrangian (A1).

The typical graphs contributing to the correlator of
two cosine function in the right-hand side of Eq. (A2c)
are depicted in Fig. 2. Note that the tadpole loops which
describe the pairing of ¢ operators at one and the same
point and which did not contribute at =0 due to the
normal ordering prescription WV, do appear at nonzero
temperature [15]—an annihilation operator gives zero
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FIG. 2. A typical bosonized graph contributing to
(Pp(x) P(0) ) 7.

when acting on the vacuum state but does not give zero
when acting on a state from the thermal heat bath involv-
ing excited states.

Working out combinatorics and employing the Gauss-
ian nature of the path integral, it is not difficult to see
that the tadpole contributions factorize and the result is

(P(x) Y(0)) =) 3cosh{47D(0,x)} , (A3)

where D7(0,x) is the thermal Green’s function of the sca-
lar and {¢¥) ; has only tadpole contributions,

_ e?
<¢¢>r=—5;uexp{

The Green’s function of the Klein-Gordon operator
A+p? on a cylinder is

—2a[DH0)—Dr_o(0)]} . (Ad)

xkx

,,_z_mf (21rnT)2+k2+,u,

fd \/ +;L

and we arrive at the result (4.19). At T >>p, the expres-
sion (A4) for {Yy) 1 takes the simple form (4.12).

D (0,x)

Vki+pu?
2T

coth (A5)
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