
PHYSICAL REVIEW D VOLUME 49, NUMBER 10 15 MAY 1994

Low energy dynamics of U(1) Chem-Simons solitons
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We apply the adiabatic approximation to investigate the low energy dynamics of vortices in the
parity-invariant double self-dual Higgs model with only mutual Chem-Simons interaction. When
distances between solitons are large they are particles subject to the mutual interaction. The dual
formulation of the model is derived to explain the sign of the statistical interaction. When vortices
of different types pass through one another they behave like charged particles in a magnetic field.
They can form a bound state due to the mutual magnetic trapping. Vortices of the same type
exhibit no statistical interaction. Their short range interactions are analyzed. Possible quantum
effects due to the finite width of vortices are discussed.

PACS number(s): 11.15.Kc, 11.27.+d, 11.30.Er

INTRODUCTION

Experiments with high temperature superconductors
seem to show no indication of parity breaking [1]. At first
sight this result seems to exclude the anionic mechanism
of superconductivity. But this is not the case as was
shown recently [2,3]. The presence of a Chem-Simons
interaction in a model does not lead inevitably to the
breaking of the P and T invariance. It is just a prop-
erty of the simplest models with only one Chem-Simons
field. When there is an even number of Chem-Simons
6elds and their coupling constants are appropriately cho-
sen the parity invariance can be restored [2,3]. One of the
simplest models of this kind is the [U(1)] model of two
Higgs fields each of them coupled to one of the two Chern-
Simons fields [4]. The model is constructed is such a way
that particles which carry one kind of charge interact
with the magnetic field of the other kind. So the ordi-
nary construction of anions as charged particles which
have at the same time attached a 6ctitious magnetic Bux
is split into two parts. Particles of one kind are carri-
ers of the charge while those of the other kind carry the
magnetic fiux. Thus the ordinary fractional statistics [5]
is replaced by the so-called xnutual statistics [2).

In this paper we investigate the Chem-Simons interac-
tions of vortices in the relativistic self-dual [U(1)]+xnodel

[4]. We apply Manton's idea of adiabatic approximation
[6] to the topological solitons of the model with correc-
tions necessary in the case of Chem-Simons vortices [7].
The topological solitons configurations satisfy the lower
Bogomolny bound on energy [4] so the moduli space ap-
proximation is justi6ed. Explicit calculations are made
in the special case of the [U(1)]2 model but the results
can be easily generalized to the case of [U(1)] . At large
separations the vortices of diferent Higgs fields exhibit
the expected mutual interactions but with a sign oppo-
site to that expected &om their Buxes and charges. It
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is very much like the case for vortices in the standard
U(1) Chem-Simons-Higgs model which exhibit ordinary
fractional statistics properties [8,7]. We derive the dual
formulation of the model to explain the sign of the sta-
tistical interaction.

When the vortices pass through one another their in-
teraction is a little more complicated. The pair of vor-
tices of di8'erent types behave like charged particles pass-
ing the Hux of magnetic field similarly to vortices in the
ordinary Chem-Simons-Higgs system [7,9]. Due to the
fact that the spin of separated vortices is equal to zero
while that of coincident vortices is nonzero there is a
kind of magnetic trapping —they form a composite state.
If the corrections to the standard adiabatic approxima-
tion are quantitative in nature there is a periodic solu-
tion with vortices circling in the magnetic field of the
trap. On the other hand vortices of the same kind do
not interact through the Chem-Simons 6eld. If the cor-
rections to the ordinary adiabatic approximation amount
only to the renormalization of parameters in the effective
Lagrangian, they would behave very much like vortices
in the Abelian Higgs model. In particular the result of
their head-on collision would be the right-angle scatter-
ing [10,12].

The paper is organized as follows. In Sec. I we derive
the general form of the e8'ective Lagrangian. Section II
is devoted to the long-range interactions of vortices and
their mutual statistics. In the next para, graph (3) we

analyze what happens when various types of vortices pass
through one another. Section IV is a presentation of the
dual formulation of the model. In the last section we
summarize and discuss the results.

I. GENERAL FORM OF THE EFFECTIVE
LAGRANGIAN

The Lagrangian of the relativistic model presented in
[4] when we restrict to such a choice of parameters that
only mutual interactions are preserved can be written in
the form
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I = """ ~'~B „+D„y*D"y+D„*D"
—V(P, x)

where the covariant derivatives are defined by

D„P = B„Q —iqivl'lP

and (2)

First we will work out the general form of the effective
Lagrangian by a direct application of the methods of adi-
abatic approximation known from the papers on slow mo-
tion of vortices in self-dual Maxwell-Higgs system [10,12]
and then we will discuss corrections to this oversimplified
version of the Lagrangian [7].

The Lagrangian (1), when we eliminate auxiliary vp

components of the gauge fields with the help of the Gauss
law

D~g —0~g —A/2 vp g )
(2)

while the Higgs potential of this self-dual model is equal
to

v(y, x) = ',' [I y I' (I x I' -c')

+
I x I' (I 0 I' -ci)'] .

(q) ]aB2

eB
g2vp Bi&2 27

can be rewritten in the form

(4)

I, = -~s' v,'"B,v,
'" + —"B(2lBi~i+ —&(iiBi~2+ (Bi141)'+ (Bilxl)'

gz g2
2 2 2 2

—
I
Dx

I

—V(4' x)
K B(2) K B(~) 2 2

4v'
l 0 I' 4~'

I x I'
(5)

where we have introduced magnetic fields corresponding
to the two different gauge fields: BI = PiB;v~. ill's
are the phases of the Higgs fields. We have separated
terms containing time derivatives &om those with spatial
derivatives of the fields. In this form of the Lagrangian
we can make replacements due to the identity

I

Eq. (6). Further simplification can be achieved with a
help of the remaining static field equations

2

&(,i
———2oi ','

I X I
(1/1' —c',),

—
I

D& I'= —
I
(Di+'oiD2)& I' -oi~i&(il I & I'

+io is"B,(/*DI P —c.c. ) (6)

2

B(2l ———2o'2
2 I ~ I (I x I cz) (10)

and an analogous one for the field y. The constants crq, a.2
which take values from the set (+1,—1}have the same
sign as the topological indices of field configurations P
and y, respectively.

In the Manton approximation we assume the fields to
have the same form as in some static solution and thus to
satisfy the static field equations at every instant of time.
In our case the fields satisfy the self-dual equations

Neglecting terms which are constant in a given topologi-
cal sector we obtain the form of the effective Lagrangian

L.~ = d'z (Bi I g I)'+ (Bi I x I)'+ B2Bi~i—
g1

+—By Og(d2
q2 )

(Di + ioiD2)$ = 0 and (Di + io2D2)X = 0,

so the first term on the right-hand side (RHS) of Eq. (6)
vanishes. The assumed static solution depends in general
on some finite set of parameters which will play the role of
collective coordinates. To derive an effective Lagrangian
we have to integrate out the spatial dependence of the
fields in Eq. (5). Assuming the Coulomb gauge condition
for the static solutions, which implies that the gauge po-
tentials can be written as

Kim and Lee [7] taught us that it is important to take into
account corrections to such direct application of adia-
batic approximation which is oversimplified in the case of
Chem-Simons vortices. Namely, even in the slow-motion
approximation the fields cannot be taken just as static
solutions with time dependent parameters. We also have
to take into account corrections to those fields which are
linear in velocities.

v, = c~O~U{I) (I)

with some regular functions U~ ) we can remove first term
in the first line of (5) and third term on the RHS of

because they give additional terms to the effective La-
grangian. It is a kind of complicated I orenz transforma-
tion.

We can show that corrections affect only this part of
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effective Lagrangian which is quadratic in velocities. Let
us take a closer look at the Lagrangian in the form of
Eq. (5). The second line of the above formula is man-

ifestly of at least second order in velocities. The third
line is minus static energy density, so the static solu-
tions are its stationary points. Thus the third line also
gives only quadratic terms. The only contribution to the
linear part can come &om the first line. Any replace-
ments of the form (12) will produce only extra second
or higher order terms. So we have to take the first line
as it stands —only with static fields with time-dependent
parameters. As it has been shown the first term of the
first line gives no contribution, so the linear part of the
Lagrangian remains as

L ~ = K d Z Bg(di + Bgld2
(1) 2 ~ +(2) B(1)

q.2 )

Another representation of L,&, useful for further discus-(~)

sion can be obtained with use of the identity

d ) Arg(x —R„,)

= OI ) s;,R', B~ ln
] x —Rp, i

PI

(14)

and certain integration by parts

') 'g„* v,'."(R„,)+ (I a+2) . (15)
gz

R, (t) are positions of vortices of type "I," I = 1, 2.
Prom this representation one can obtain general form of
the orbital part of angular momentum

J„b = ) ) cvR„', .'. = 2m~ —) R', s;,v( )(Rp, ) + (1 w 2)

The form of L,& can be extracted from (5) after replace-(2)

ment (12) and making use of static equations satisfied

by "static" fields. It gives correction to the efFective La-
grangian (11)

bL,g [fields, b.fields] (17)

D„D"P=— V

~e"""B„v„)= iqi (PD"P* —c.c.),

and an analogous one for the field y. It is convenient
to use geodesic parametrization on moduli space. By
geodesic parametrization we mean such a set of param-

which is a functional of "static" fields, their linear correc-
tions and their time derivatives. It is a long expression
which we will not write down. To make use of this ex-
pression we have to express "b fields" in terms of "fields"

and/or positions of vortices. We have to know correc-
tions for a given trajectory in the parameter space. %e
can make replacement (12) in the field equations follow-

ing &om (1)

eters that during the time evolution of the field config-
uration their accelerations are vanishing. It is always
in principle possible to construct such geodesic coordi-
nates at least for a finite period of time. One advantage
of such a set of coordinates is that we can neglect in
Eqs. (18) terms which contain accelerations or higher or-
der time derivatives of parameters. The other one also
very important is that only when velocities in a given
parametrization are constant there is a direct correspon-
dence between the fact that kinetic energy is small and
smallness of velocities. For example in the head-on col-
lision of Nielsen-Olesen vortices the time derivatives of
Cartesian coordinates of vortices become singular during
collision [10,12], so in this case terms quadratic in such
velocities are much larger than linear terms and obviously
cannot be neglected. Nevertheless the kinetic energy is
still small —it is still a slow motion. In fact it is possible
to find geodesic coordinates good for small separations
of these vortices. So only for geodesic parametrization is
it reliable to preserve in Eqs. (18) only terms which are
linear in velocities and neglect accelerations and higher
order time derivatives.

Thus "simplified" equations read

0 = B„bf, + [qivp vp (B&~i q]vt, ) ]bfi+ 2qifi(Bi, (oi —qivt, )bv„—2qifivp (~(i) qibvp )
2 2 (1) (1) (1) 2 (1) (1) (1) . (1)

82V 82V
Bf2 fi Bf Bf f2)

0 = fi(vp + Bkbv(i)) + 2qivp fi,(&) (~) .

0 = Ke;~B;bv. —qifi (ui —qibvp ) + 2qivp fibfi,(2)

0 = ee,z(B~bvp —v~ ) + qi fibvt, —2qifi(Bxuri —qivt, )bfi, (19)
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and an analogous set of equations for the field y. We
have introduced moduli and phases of the Higgs fields:

f' e' ', y = ~e' '. An analogous set of equa-

tions was derived in [7] for self-dual Chem-Simous-Higgs
model. Neglect of second order time derivatives for any
kind of coordinates can lead to serious problems. For ex-
ample in the papers on effective string models for Nielsen-
Olesen vortices the second order derivatives on world-
sheet parameters were neglected. It was shown in [16]
that it was the reason why the string with rigidity was
obtained, which is known to possess classical tachionic
solutions [17].

With the help of Eqs. (19) bL,s can be simplified to
the form

lp = ) 'f d x

-foal(wq

—qlvo) +q&(6v)
I

fr ~f—l ql vs (~l —ql vo )
(I) . (1)

equations for any configuration of vortices, corrections to
the simple superposition of gauge potentials are negligi-
ble. Thus values of the gauge fields in Eq. (15) can be
obtained from a formula

.,'(R„,) =-—')-'"« ""',
, (1~2) (22)

RP, Rq2
q1

so the linear part of effective Lagrangian is

~1 71,2

L ~ ——2z r. ) ) —Arg(R —Rl ) (23)
gxg2

P1 ——1 P2 ——1

The Lagrangian contains only terms of mutual statistical
interaction between vortices of different types.

To obtain the kinetic term one has to evaluate the first
term of the efFective Lagrangian (21) and bL,s We . ap-
proximate the moduli of the Higgs fields by a normalized
product of the fields of isolated unit vortices:

fluff—l(&' I —qI; )ql~, (20)
I &(x) I= c, G(~ «-Rl', & ~), (24)

ff' (g ~ g + ling y + $Ll ff

&B, . a, . )
+K 8 Z (iJi + (d2

qz(q
To start the above procedure we have to make some "ed-
ucated" guesswork. To provide an appropriate basis for
it in the next two sections we investigate ordinary adi-
abatic approximation in detail. Because of mathemat-
ical difficulties [existence proof and/or explicit solution
of Eqs. (19)] we postpone calculation of corrections to
future publication.

Once we have solved Eqs. (19) we can substitute their
solutions to the above functional and integrate out their
spatial dependence. We will be left with a mechani-
cal Lagrangian which should be reparametrization in-

variant. From that point on we will be able to use
any parametrization we like. But to evaluate bL,rr we

have first to guess geodesic coordinates and then to solve

Eqs. (19). We have to try with different parametrizations
and then to check whether for a given parametrization
there exist solutions to Eqs. (19). If yes then as a matter
of fact we have found already the trajectory. The effec-

tive Lagrangian can be evaluated for consistency check
and because it is useful if we want to perform effective
quantization of the theory or to investigate its efFective

thermodynamics [13]. The efFective Lagrangian under
restrictions due to the above comments reads

P1 —1

[ y(«) (= c2 G(( x —R„', (),
P2=&

(25)

where G is a profile of a unit vortex the same for the two

types, which satisfies the equation

4 2 2 2 2

V'l G' = "'"""(G'—1)
K

(26)

with the boundary conditions: G(0) = 0 and G(oo) = 1.
The quadratic part of the effective Lagrangian reads

A1 n2

Ll~~ ———M c, ) V + cz Q V„+8L,fr, (27)
P1 ——1 P2

——1

where the coefBcient M equals to

t'dG(. ) I

M =2m rdr
dp

About bI,g we know only that it is quadratic in veloc-
ities. Let us restrict to the case of two vortices of the
same type and choose the center-of-mass frame

L,s = g,, (R")R*R, g, = g, ; (29)
II. LONG-RANGE INTERACTIONS OF

SOLITONS where BA, 's are coordinates of the chosen vortex. Rota-
tional invariance restricts this form to

For sufBciently separated vortices we can approximate
gauge invariant fields: (Bi,wl —qlv&) by contributions
due to particular vortices. At the core of any chosen
vortex such fields due to the other vortices are very
smaIl they vanish exponentially with distances. Since
~1 = ol P Arg(x —R~, ) is an exact solution of static

L,~ = gi(R)R + g2(R)R 0' (30)

where B + iB = Be' . At very large B we expect
the in8uence of one vortex on another to be very small:

gi(R), gz(R) ~const as R —+ oo. This reasoning can be
repeated for any pair of vortices. Finally we obtain
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YLQ

pj. ——1 pg ——1

YL g TLQ

+2z K ) ) —Arg(Ri, ~ —Ri,~)
q&q2

P1 ——1 Pg ——1

(31)

tion reads

F( )[1+ f ( g)]
xcTyTly +'a&lil', )

H( )[1+h(, 8)] ' '"' +* ' "' ~

(38)

(39)

where M = M + hM is the effective mass with included
corrections kom bL,g. Corrections can be calculated
with a help of formula (20), since for fairly separated
vortices "8' fields" are given by ordinary Lorenz formulas
linearized in velocities. The corrected coeKcient M ap-
pears to be equal 2x, what is consistent with the original
field theoretical model since the energy of a static unit
vortex of type "I" is equal to 2+el.

We can see that when the widths of the vortices can be
neglected as compared with their separations the system
behaves like a set of free particles with mutual statistical
interactions, at least in the slow-motion approximation.
What happens if the vortices come into very close en-

counters of one another is a subject of the next section.
Let us remark here on the possibility of ordinary &ac-

tional statistics in the system if the short-range interac-
tions between vortices of difFerent types favored them to
form mixed anionic P —y bound states.

III. SHORT-RANGE INTERACTIONS

P = ciF(r)e' '"', y = c2H(r)e' '"' (32)

In this section we would like to investigate interactions
of the two types of vortices when their cores overlap. To
apply Manton's prescription we have to know at least an
approximate static solution. Let us take as a zero order
approximation the configuration of vortices sitting on top
of each other and then let us find a small perturbation of
the field dependent on a definite set of parameters.

Let the topological indices of the fields P and g be o ini
and o'2n2, respectively, where n's are positive integers
and cr's take values +1 or —1. The solution corresponding
to vortices sitting on top of each other takes the form

v(I) ——eg01V(1) + a(g), I = 1,2.8 (40)

Upon substitution of the above form of the solution to
the self-dual equations (7) and subsequent linearization
one obtains the first order equations

gsc„(r) oIg f(1)
r (41)

gsf (r)
qlc„= O„A + 01 r (42)

These equations enable us to find perturbations of the
gauge fields once flail = (f, h) and anil's are already
known.

After substitution of Eqs. (40) to the Coulomb gauge

condition, 8;v, = 0, linearization and use of Eqs. (41)
and (42) an equation determining the phases of the Higgs
fields appears:

V' o.(1)
——O

2 (43)

Similarly Eqs. (34) and (35) linearized in the perturba-
tions yield

9 f = pH [F f + (F —1)h] (44)

V'h = pF'[H'h+ (H' —1)f],
where p = 2q~q2p. From the above two equations one can
obtain a general form of the perturbation of the moduli of
the Higgs fields. Then one has to choose such a solution of
Eq. (43) so as to avoid singularities of the gauge fields, see

Eqs. (41) and (42). We will solve this problem explicitly
in two special cases.

e 8
v(z) ——egret V(z), v(2) ——eg~2V(2) (33)

A. Interaction of unit P vortex with unit y vortex

F ——F + qgFVg ——0,I ng (~)

r (34)

Upon substitution of the above ansatz to the static field

equations (7), (9), and (10) one obtains

ng ——1, n2 ——1. (46)

In this case we have unit topological indices of both
the P field configuration and the y field one

H ——H + q2HVg ——0,I n2 (~) Equations (34)—(37) can be simplified by a substitution
(»)

(~)—1 8(rVO ) H2(F2 1)Br

—1 B(rV~~ )
T Or

c2c= qipF (H2 —1) = . (37)
K

This zero order solution together with a small perturba-

V,
(1) V(2)

F(r) = H(r) =—G(r), s = s =—Ve(r),
qa qx

to the form

GG' ——+ qpq2GVg ——0,r

—1 B(rVe)

(47)

(48)

(49)
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From the index theorem [4] we know that in the special
case of nz ——n2 ——1 there are only two splitting modes
for each of the two types of the fields. We can Fourier
transform f and h in 0:

Kiddo(r) = pG'io(r)

Aiu(r) = pG (2G —l)u(r)

(58)

(59)

f (r, 0) = f (r) [Ai cos(cri0) + A2 sin(cr, 0)] (50)

h(r, 0) = h(r )[p, cos(020) + p2 sin(0.20)] (51)

The 0-independent terms are neglected because solitons
have a definite size, while the terms higher than the first
would spoil regularity of the total Higgs fields. To define
the meaning of coefBcients A, p we normalize the radial
functions in such a way that

f(r)-
—1

, h(r)
1

, as r -+ 0
r (52)

Eventual higher order terms would have a stronger sin-

gularity which could not be matched by G(r) r, see

Eqs. (38) and (39). Thus Eqs. (51) and (52) present
the general form of the perturbation compatible with the
regularity of Higgs fields.

To avoid singularities in the gauge fields, Eqs. (41) and

(42) we take the perturbations of phases

The only solution compatible with normalization (52) is

u(r) = 0 and f(r) = h(r) = m(r). m(r) can be ap-
proximated for large r by the modified Bessel function

~i (p) z e, p = ~pr. Going from infinity to zero

this approximate solution is replaced by a linear com-
bination 8+ir + b i —. In the case of h i g 0, which
we think to be quite general, it is possible to rescale the
whole function m(r) in such a way that we obtain asymp-
totics of Eq. (52). The perturbations of the Higgs fields
are square integrable.

Now the effective Lagrangian (21) reads

M, ff ——4vrc (rdr) G'(r) iU'(r), (61)

and an effective "uniform external magnetic field"

Luf —2 off (R + R 8 ) + bL,ff + B,ffR 8 . (60)

R and 0 are the polar coordinates of the zero of the P
field: A = Re', while the introduced coefficients are an
effective reduced mass of the two vortices

—1
[A, cos(0, 0) —Ai sin(oz0)]r (53)

87' qy q2c
eff =

KO F02
drG (r)[—io(r)] (62)

—1
[Pz cos(0 z0) —Pi sin(0'z0)] (54)

which satisfy Eqs. (43). Now we can see that the per-
turbed Higgs Belds in the limit of small r are proportional
to

P=(z, —A), X=(z, —p, ) (55)

&if(r) = pG [G f(r) —(G —1)h(r)] (56)

where we have introduced z, = x + i+Iy and A = Aq +
iA2, p = pq + i@2. The effect of the perturbation is a
shift of the zeros of the Higgs fields to A, and to p, , up
to linear terms. To work in the center-of-mass frame we

have to choose p, = —A, together with cq ——c2 ——c.
The last condition can be suspended if we make certain
relative rescaling of the parameters A and p. Without loss
of generality in the evaluation of f(r) and h(r) we can
choose Az

——p2 ——0. Now upon substitution of Eqs. (50)
and (51) to Eqs. (44) and (45) one obtains

Let us first discuss the linear part of the Lagrangian (60),
which becomes exact for very small R. It is a term which
describes, as it stands, coupling of a charged particle to
a uniform external magnetic Geld perpendicular to the
plane. The total angular momentum in the effective de-

scription is (for 0 = 0, R ~ 0)

def 2z ro i0 z BLpff+
qiq2 00

+ B.ffR'+ O(R'), (63)

where we have shifted the scale so that for R —+ 0, J
tends to the value of spin characteristic for coincident
static unit P and y vortices. With this choice of scale we

obtain from (31) that for large R: J ~ 0. This result is
consistent with what we know from Geld-theoretical con-
siderations. Separate P or y mutually interacting vortices
carry no spin. Spin is nonzero only when their cores over-

lap. Equation (63) gives leading terms in expansion of
J(R) around R = 0.

It is interesting that Eq. (63) can be inverted in a re-
markable way:

Eih(r) = pG [G h(r) —(G —1)f (r)]

, + ———
(dr r dr

(57)

1 J(R) —J(0) i . 1 dJ(R)
a~oR

~
R

~
P~oR dR

A natural thing is to ask whether such a formula can be
generalized to an arbitrary value of R. Let us look at
L,ff in the form of Eq. (15):

We can make the replacements f(r) = io(r) + u(r) and

h(r) = iu(r) —u(r), where the newly introduced functions
satisfy the equations qy Pl

(65)
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What we see is an interaction term which couples point
particle currents to fields vI

l defined on the moduli
space. Due to this coupling vortex at R~, feels magnetic
field

B.",(R„,) = ' " 'e,,a;v,"(R„), a;= (66)

Our pair of vortices feels double this field: B,g
B,& + B,&. From the formula (16) we obtain angular
momentum, which in our case reads

J,b(R) = 2m~ —'R'e;, vI l(R)

—2m~ —Rs; v (—R)(~)

q2
(67)

Due to the rotational symmetry, in polar coordinates

J„b(R) = 2+re —'Rvs l(R) y 2vr~ 'Rv~~'l—(R) . (68)

Now we can see that

1 dJ
RdR

= B, (~R) + B,s (R) = B,g(R) . (69)

Thus Eq. (64) can indeed be generalized for any value of
R:

B,K(R) =—1 dJ(R)
(70)

where B,g(R) is a magnetic field felt by a reduced parti-
cle in our problem, while J(R) is a total field-theoretical
spin, which can be obtained numerically. It is important
that this formula is based on global properties of the field
configurations and not on local distortions of the fields,
so B, (Rir) can be calculated numerically with great ac-
curacy.

Just from the knowledge of spin dependence on R we
can obtain qualitative understanding of interactions be-
tween P and y vortices. Vortices boosted against each
other for a head-on collision will avoid direct collision.
Their initial total angular momentum is zero. For very
small separations spin itself would have to be close to
(—

" ' ') so the vortices must acquire angular momen-
Qzgs

turn of the opposite value. For ' ' positive they will

be turned by B, (Rir) to the right while for the negative
value of the coefficient they will turn left. Since B,g(R)
is short ranged, for suKciently small initial velocity it
becomes impossible to reach the center of mass for any
value of impact parameter. Analogous argument shows
that if a P vortex initially sits on top of a y vortex there
is a velocity small enough below which they cannot es-
cape to infinity. So it is a kind of magnetic trap for vor-
tices. They trap each other and form a composite. From
Eq. (31) is clear that such composites as a whole behave
like anions. Their internal reduced dynamics is that of
a particle in an external magnetic field. Upon quantiza-
tion it is probable to obtain resonances classified by the
Landau levels. The trapped vortices do not form a real

bound state —their energy is the same as that of isolated
vortices.

Now let us take a look at the quadratic part of the
e6'ective Lagrangian. If we assume that bI ~ only renor-
malizes M,H then L,H; is a Lagrangian for a planar mo-
tion of charged particle in external uniform magnetic field
perpendicular to the plane. Solutions to the equations of
motion are circular trajectories

R(t)e' ~'l = A y Be ' ' 0 =
M,g

(71)

—M,s (R)—
2 0(R)

(72)

where it is assumed that B, (Rs) is already known f'rom

(70) and O(R) has to be measured in numerical simu-
lation. An alternative analytical approach is to take 0
as a geodesic coordinate and try to find such a value of
0 = 0 for which Eqs. (19) possess a unique solution.

B. Interactions of unit vortices of a given type

In this subsection we would like to investigate short-
range interactions of say P vortices when there are no y
vortices or their inHuence can be neglected because they
are very distant. %e put y = c2 and nq ——n, o q ——+1 in
this paragraph. The configuration of n vortices splitting
&om their coincident position is of the form

P{r,0) = cF{r)fl + f (r, 0)]e'

(73)

V(i)
—= V = egV (r) + a(r, 8),

where the functions E{r) and Ve(r) satisfy equations

/ AF ——F + q~FVq ——0
r (74)

where A, B are complex constants. This solution is valid
only for small R. The trapped vortices rotate around cir-
cles (not necessarily around the center of mass if A j0).
We can also obtain qualitative understanding of scatter-
ing. Let us assume that this approximation is valid up to
say Ro, for larger R let the vortices move along straight
lines. In the head-on collision vortices cross the circle
R = Ro, move along an arc of a circle and escape to
infinity. For larger velocities, if the adiabatic approxima-
tion still works, scattering pattern evolves to a forward
scattering. %e can check whether M,g is indeed a con-
stant for small R by performing numerical simulation of
the above-described head-on collision. For example, if for
higher velocities right-angle scattering is obtained, M, ir
must behave like R for small R. From analogous sim-
ulations for Nielsen-Olesen vortices we can expect that
the adiabatic approximation can still work well even up
to 3 of the light velocity.

The eventual dependence of M,g on R or its con-
stant renormalized value can be obtained from a mea-
surement of the frequency of the purely orbital motion of
the trapped P —y pair:
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—1 0(re) = g2+c2 F —1 (75)

Following similar steps as in Sec. IIIA we obtain equa-
tions satisfied by the perturbations

qia; = B,a+ s;,B~J (76)

V' +=0, (77)

(78)

and solve them by an ansatz

f (r, 0) = g(r) [Ai cos(n8) + A2 sin(n9)] (79)

—1
n(r, g) = [A2 cos(n8) —Ai sin(ng)] (80)

where g(r) is a solution of equation

(81)

(z" —A), A = Ai + iA2 (82)

The positions of the n vortices are nth order roots of A,
which we denote by Re'0+' ", k = 0, ..., (n —1). In the
case of only P vortices the efFective Lagrangian reduces
to

d'z
~ Big ~' + bL.rr

g(r) is normalized so that g(r): for small r. We have
taken the nth term in the Fourier transform because it
corresponds to a uniform splitting of the n vortices from
a coincident position

a hypothesis that A is a geodesic coordinate or A = 0 for
small values of A. The "fields" are regular as functions of
A in A = 0. By regularity we mean finiteness and single
valuedness. The "b fields" are defined as linear in A and
we take them as a series in the powers of A (components
Ai, A2). If we substitute such "fields" and "b fields" to the
field equations (18) we will find that because "fields" are
regular the "b fields" can also be taken self-consistently
as regular in A = 0. In the limit A ~ 0 we will obtain
equations which are linear in Ai, A2 and in the values of "b
fields" at A = 0. If there is a solution to these equations
we can use it to calculate bL,s and because "b fields" are
regular at A = 0 correction to the effective Lagrangian
amounts only to renormalization of M,g. If there is no
solution it will mean that the initial assumption A = 0
was wrong and we have to look for other candidates for
geodesic coordinates.

The following argument can restrict the set of accept-
able candidates. Let us take the head-on collision of two

P vortices. Initially they are coming to the center of mass
along the z axis. Such a configuration is invariant under
successive charge conjugation and reBection with respect
to the y axis. Since our theory is CP-invariant the time
evolution has to preserve this symmetry of the initial con-
figuration, so if the zeros of the Higgs field pass through
the center of mass there is possible only forward scatter-
ing or right-angle scattering. For the right-angle scatter-
ing A, 's are good geodesic coordinates but the forward
scattering is well described by the Cartesian coordinates
of vortices (zeros of the Higgs field). If A = 0 leads to
contradiction that means that we will have to try with
B 0

Since these calculations are a fairly nontrivial problem
we will only conclude that only forward or —scattering
are possible in the head-on collision of vortices of the
same type. Knowledge of the exact form of L,p could
be useful to effective quantization of the model and to
investigations of its thermodynamics [13].

= 7t.c~ rdr F g A~+ A~ + L,g . (83)

When we take into account that A = B"e'" we can
rewrite the Lagrangian as IV. DUAL FORMULATION

L,s 2M, ir(AA——*) + bL,s

= -'M aR ~" 'l(R + R 0 ) + bL (84)

If we neglected bL, rr in (83) it would follow that in the
head-on collision A turns to —A and it is clear from (82)
that it means scattering by an angle of —.The configu-
ration of n vortices shrinks to a coincident position and
then reappears but rotated by an angle of —with respect
to the initial one.

Let us analyze corrections due to bL 0;. First we make

In this section we derive dual formulation for mutually
interacting vortices, following similar steps as in [7] for
ordinary Chem-Simons-Higgs system. There are two rea-
sons for it. We would like to show that the dual transfor-
mation can be in a natural way generalized to the systems
with more complicated Chem-Simons terms. Second and
more important it explains why the sign of statistical
interaction is inverse to what could be expected &om
calculation of naive Aharonov-Bohm phase. We will use
Lagrangian (1) with extra couplings to external currents
and external field

2

L = KE Vl B~Up
—V(fi, 'f2) + ) [ 2 (Bp fi) + 2 fg (B~QJz —giV~ —eyA~ ) + ii J(~) ]

I=1
(85)
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where A'"~ is an external field and J" are external cur-(I)
rents. We have rewritten Higgs fields as

(cl(t, r) = ) o„,Arg[r —R„,(t)]
PI

(S9)

1
4 =

alfie'
'

The partition function is

1
X = ~f2e' ' (86) R„, are positions of unit vortices (o„, = I) and unit

antivortices (cr~, = —I) of the type "I." It is convenient
to construct out of u vortex currents

Kg (x)= —s"""B„o)g(cl2'
Z= 4I l(dI dvI I z exP t d XL.

z

(87)

= ) o„, dr "'
q) [x —Rp, (~)]

dZ„", (~)

PI

(90)

Phases of the Higgs fields can be split into multivalued
and regular parts

in a covariant fashion. By definition K satisfies the con-
servation law: t9„K" = 0 . Integration over cu can be
replaced by integration over vortex world lines

u)1(x) = url(x) + r)1(x) ,

where u's are given by

(ss)
[d(c] = [d(c][dr)] = [dR",][dr)] .

The Jacobian g& Q f1(x) can be removed by introduc-
ing pair of auxiliary fields CI".

fe(e) exp e f d e).fe (qq we —qev„—eeA'„*')
I I

(dCee] exp e f d e) — eC Ce +Ce (Seize+ Beqe —qev —eeA„' )
~

~

I I
(92)

Integration over (7's will introduce Ql b((9„Cg) to the path integral measure. These 8 functions can be removed by
introducing a pair of dual gauge fields Hg:

(dCeld(()vCe) = f (dCel(dfqeldi Ce —
qI I

and integrating over auxiliary fields C( . Now the vortex currents can be introduced by the identity

d x s"""8 (c q9 H = — d z K"Hf 1 - — 1
(94)

where integration by parts has been done and we have made use of the definition of Kg, see (90). The present
intermediate form of the Lagrangian reads

fdvA (1)g (2) + g I&fdvfeg HI
I

+ ) — HI„Hf" + HIKI + (—B„fr)2 —— e"""HIF„'&''+ul JI —V(fi, f2) (95)

and the integration measure

[dfr ][de",][de�]fdqfq~)

I
We would like to remove the gauge 6elds vI &om the
Lagrangian. Let us take a look at their classical 6eld
equations following from (95):

~s"""(9 i)( ) + s"""8H( ) +—J" = 0

Motivated by these equations we write

„(~) ~(2) + g(~) „(2)

() ~ &g ~(~)+ J Ov p 2
v p (g) (97) (99)
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where G„are extra fields due to the presence of exter-(I)

nal currents and containing quantum fluctuations around
classical solution. Thus finally the partition function
reads

I~frlf&R" if&HI]f~&ll «r (i f ~ * la)
I

(100)
where the dual Lagrangian is

,~."0&'ig.H&'& + ) — . . .II„'.el"" + 0—„'KI" + ) [-,'(&„fl)'] —[V(fi, f2)]

p p QG($ g G I Pg/4+I+ext + QI JP +(2)J+ H(~) J~.( e
() (101)

When there is no external current the fields G„decou-
ple and can be integrated out giving contribution to the
normalization factor. If in addition I"„'„"'= 0 we are left
only with the first line of the above dual Lagrangian.

Vortex current couple to the dual fields H". Since the
Chem-Simons term for the dual fields has an opposite
sign to that for the original gauge fields vl it explains why
the statistical interaction term in the effective Lagrangian
(12) has an opposite sign to that expected &om the values
of vortex Quxes and charges. The dual Aharonov-Bohm
interaction between vortices is mediated by the dual fields
and it gives rise to the correct value of the statistical
interaction.

V. CONCLUSIONS

We have made an analysis of interactions of self-dual
Chem-Simons vortices in the limit of very large and very
small separations. We have shown the existence of mu-
tual statistical interaction between vortices of different
types in [U(l)]z model but the results can be easily gen-
eralized to the general [U(1)]~ theory. The sign of the
statistical interaction is inverse to expectations based on
ordinary Aharonov-Bohm efFect. That is why we have de-
rived dual formulation of the system in which it is clear
that vortices interact via dual gauge field with the sign
of the mutual Chem-Simons term inverse to that in the
original formulation.

We have not attempted calculating corrections to the
standard adiabatic approximation but a possible method
how it could be done was discussed. If the corrections
are only quantitative in nature the qualitative picture of
short-range interactions obtained in ordinary adiabatic
approximation remains unchanged. In the head-on colli-
sion of vortices of the same type we should observe right-
angle scattering. For vortices of different types at large
separations dual Aharonov-Bohm effect is observed but
when their cores overlap they behave like charged parti-
cles crossing magnetic flux.

The analysis of the short-range interactions of vortices
in Chem-Simons-Higgs systems presented in both this
paper and in [7,9] shows the possibility of periodic solu-
tions very much like bound states of vortices. The semi-
classical quantization of these solutions [11]can give rise
to some discrete spectra of energy. The spectra can be
expected as an additional quantum effect to the statisti-

I

cal interaction due to the finite width of vortices. The
special efFects of the short-range interactions could be
expected to vanish in the limit of vanishing thickness of
vortices but we know from the studies of the string limit
for vortices in the Abelian Higgs model [14] that even
when classical vortices become very thin the quantum
fIuctuations cause that they preserve nonzero effective
thickness. So it is possible that a classical vortex of fi-
nite width is a better zero order approximation to the
full quantum theory [15].

The other topic worth of detailed study is the possi-
bility of existence of ordinary fractional statistics in the
apparently only mutually interacting system. The pair
of P and g vortices can form a composite thanks to the
magnetic trapping. If the potential of the model V(P, g)
were slightly deformed in such a way that it would prefer
energetically overlapping of the P vortices and y vortices
but it would discourage vortices of the same type to over-

lap, than we would expect vortices of different types to
form true stable bound states. If we wanted bound states
to be composed of exactly one vortex of each type we
would have to make a repulsion of the species of the same
kind to be stronger than attraction of vortices of differ-
ent types. Such a multivortex system in a sufFiciently low
temperature would be a gas of such anionic bound states.
In a higher temperature the average kinetic energy of the
anions could be large enough to split them into particu-
lar mutually interacting vortices. Thus we can construct
a system with two phases: an anionic one and a phase
with mutual statistics. The composed anions might have
an interesting internal structure. If the corrections to the
Higgs potential do not change to much the interactions
patterns at small separations the two vortices will feel
both the charge-lux interaction and an oscillatory-type
interaction due to the attractive properties of the Higgs
potential. The phase diagram of the system could be
even more complicated if the Higgs potential itself de-
pended on temperature. We think all these topics to be
worthy of further investigation.
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