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Fractional spin and Galilean symmetry in a Chem-Simons matter system
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We study the dynamics of N nonrelativistic point particles interacting with Chem-Simons gauge field

in 2+1 dimensions. The model is canonically quantized in the Hamiltoman formalism without any

gauge fixing. While the first quantization of the particles is retained, the fields are second quantized.
The generators of the Galilean transformations are defined and shown to satisfy the requisite algebra.
Fractional spin is computed, which is related to the number of particles.

PACS number(s): 11.15.—q

I. INTRODUCTION where

Gauge field theories in 2+1 dimensions with a Chern-
Simons (CS) three-form have been a hot topic of investi-
gation for their applications to quantum field theory and
condensed matter physics [1]. For a CS term coupled to
either complex scalars [2—5] or Dirac fermions [6] suit-
able (anyon) operators displaying fractional spin and
statistics have been found. Poincare invariance of these
theories has also been exhibited [4—6]. It is quite in-
teresting to observe that, in this context, it is possible to
construct models, which are Galilean invariant rather
than Poincare invariant [7,8]. This is feasible because the
CS term does not have an elementary photon associated
with it so that the Bargmann superselection rule on the
mass can be accommodated. Purely Galilean-invariant
models are important, since these are useful to study
problems, which are dificult when analyzed within the
full formalism of special relativity.

It may be recalled that the geometrical idea of fraction-
al spin in 2+1 dimensions is rooted in the occurrence of
multiply connected spaces having the fundamental group
as the braid group (see for example Forte [9]). This gets
manifested as weight factors (which are nothing but one-
dimensional unitary representations of the associated
braid group} corresponding to inequivalent classes of
paths, when the system consisting of a jtxed number of
identical particles (say N} is quantized in the path in-
tegral formalism. The natural Lagrangian is, therefore,
Lo=g =& —,'mx, which is quantized in a multiply con-
nected configuration space. As the phase acquired by a
particle in traversing a closed loop around another parti-
cle has a universal form e' (a being a characteristic of
the species of particles}, it can be mimicked in the
manner of Aharanov and Bohm (AB) by introducing a
fictitious gauge field A„, and the corresponding Lagrang-
ian has the form

N
L = g —rnx —J d x j"(x)A„(x)

2

+efd'x W'A „a.A „,

N

j =e+5(x—x)
a=1

(2a)

and

N
j'=e g x' 5(x—x )

a=1
(2b)

are the particle and the current density, respectively.
The fully antisymmetric tensor e"" is defined such that
E' =E'p12= 1. The particles, labeled by a, have the same
mass m and charge e.

The analogy with the AB example is illuminated by
looking at the time component of the equation of motion
for the gauge field [see Eq. (8a) below]. Heuristically
speaking, the gauge field simulates the effects of multiply
connected space.

The canonical quantization (second) of the model [Eq.
(1)] has been discussed in [7], where Lo is replaced by its
corresponding Schrodinger term. Though the first and
second quantized formalisms are equivalent as far as
Galilea. n-invariant models are concerned, the second
quantized version of Eq. (1) is problematic to analyze in
the path integral scheme (as discussed in the preceding
paragraph), since there is no obvious way of incorporat-
ing the fact that the system has a fixed N number of parti-
cles. This is in contrast with the canonical second quan-
tized scheme, where one has to just restrict to the N-
particle sector. It may be recalled that there is no parti-
cle production in a Galilean-invariant field theory. Also
these N-particle states are constructed by superposing, in
terms of first quantized N-particle wave functions, the
states obtained by N-fold actions of the creation opera-
tors on the vacuum. Thus, once we restrict ourself to the
W-particle sector, while quantizing canonically, we recov-
er the first quantized N-particle wave function. Conse-
quently it is desirable to start with the first quantized ver-
sion [as given in Eq. (1)] itself. Though mentioned, the
first quantized version was neither pursued nor its Galile-
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an invariance was explicitly demonstrated in [8]. There it
was shown that one cannot solve the quantum-
mechanical problem of the N-particle Schrodinger equa-
tion. It is worthwhile to mention here that the Lagrang-
ian given by Eq. (1) does not have manifest invariance
(not even up to total time derivative) under Galileo
boosts. This can be easily seen by considering the in-
teraction term, i.e., the second term in Eq. (1).

The object of this paper is to systematically analyze the
canonical quantization of Eq. (1), using the gauge-
independent formulation of Dirac s constraint Hamiltoni-
an analysis [10]. This has been exploited by one of us

[4,6] to discuss the quantization of relativistic field
theories with a CS term. There are definite advantages of
this approach over the conventional [7] gauge fixed
analysis. Ambiguities related to gauge fixing conditions
[11] are avoided, just as the proof of the equivalence of
(physical) results in different gauges can be dispensed
with. Moreover, the method of quantizing (1) by elim-
inating the gauge degrees of freedom cannot be general-
ized to the non-Abelian case. Our approach, on the con-
trary is completely general and can be applied to models
with non-Abelian CS term [12]. The model [Eq. (1)] we
are considering in this paper provides in fact the simplest
example, in a "quantum-mechanical" context, where the
power of this gauge-independent analysis can be exhibit-
ed.

We find that the fields and particle variables transform
canonically, so that there are no anomalies. In [7], how-
ever a rotational anomaly was reported —which could be
shifted away by a redefinition of the angular-momentum
operator. Such redefinitions are not allowed in our
analysis, where the angular momentum is defined unam-
biguously using Noether's theorem. Furthermore, in [7]
Ao was found to transform as a covariant vector under
Galileo boosts, whereas we find it to be a Galilean scalar,
as expected. We also show that the full Galilean algebra
(including boosts) is reproduced acting on the physical
state, though the action defined through [Eq. (1}]does not
seem to have the desired manifest invariance under
Galileo boost. Finally the computation of the angular-
rnornentum operator reveals the occurrence of "fractional
spin. " This spin is related to the number of particles and
agrees with the result quoted by Boyanovsky, Newman,
and Rovelli [13]. The issue of statistics, in the context of
second quantized field theory, is naturally, not covered,
as the matter sector of our model has been first quan-
tized, disallowing particle creation or annihilation from
the vacuum.

The plan of this paper is as follows: Section II de-
scribes the model introduced in Eq. (1); an analysis of
constraints leading to a gauge-independent quantization
is done in Sec. III; Sec. IV shows that the Galilean alge-
bra is satisfied by the various symmetry transformations;
fractional spin is computed in Sec. V, while the con-
clusions are given in Sec. VI.

II. THE MODEL

The Lagrangian L in Eq. (1) can be rewritten in the
standard form as

1 N

I. =—m gx +e g [x A(x ) —Ao(x )]
a a=1

The canonically conjugate momenta for x is given by

p =mx +e A(x )

and the Euler-Lagrange equation for x is

dp BA(x ) BA (x )=e x
dr Bx Bx

which on further simplification yields

mx ' =e (E'+ e'~x J B)
:—e(F' +e"u'F, 2),

where

F""="d"A"—8 A" .

The Euler-Lagrange equation for the gauge field is

28m"" (B„Aq)=j" .

In component notation this becomes

28F» =20B =j
—28m'JE'= j' .

(6)

(7)

(8a)

(8b)

Equation (8a}, as shall be shown subsequently, is the
Gauss constraint.

Previous Hamiltonian analysis of similar models was
done by eliminating the gauge field by using equations of
motion [7]. Naturally it is mandatory to choose a gauge
in order to do this elimination. Since the structure of the
gauge field is very different in different gauges, it becomes
quite nontrivial to establish the equivalence of (physical)
results in various gauges. We bypass these difficulties in
our gauge-independent formalism. Besides this, the very
method of tackling the quantization of [Eq. (1)] by elim-
inating the gauge fields, using the classical equation of
motion is conceptually problematic. This is because the
constraints associated with the gauge field are lost and
remain unaccounted. This may lead to an inequivalent
theory at the quantum level. In the functional integral
language the (classical) elimination of gauge fields just
corresponds to doing the "naive" (i.e., ignoring the pres-
ence of constraints) Gaussian integral over the gauge field
leading to an effective theory of the original model [Eq.
(1}]. Effective theories of models (particularly those
affiicted with constraints, as in this) are known to differ
field theoretically from the original model. A dramatic
example being the large N limit of the CP ' model [14].
In this model it is possible to eliminate the gauge fields
completely and obtain an effective theory comprising the
complex fields z and z* only. On the contrary it is possi-
ble to directly compute the one-loop partition function.
It yields a remarkable result —the generation of Maxwell
term, which never appears in the effective theory [14]. In
our analysis we dispense with any effective theory and
work with the original model [Eq. (1)] retaining all the

dynamical degrees of freedom.
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III. CONSTRAINED HAMILTONIAN ANALYSIS

The various canonically conjugate momenta of the sys-

tem, given by Eq. (1) are

leads to the secondary constraints

N

(=28B —e g 5(x—x )=0. (15)

BL
~ l

Xa

=0,
Ao

. . =He" AJ .
A'

=mx' +eA'(x ),

(9)

The physical content of this constraint, which is the
generator of gauge transformation, is that the support of
the CS magnetic field B is only (weakly} at the site of the
particles and that too with the same strength (say) Bo.
Thus the profile of B (x) can be written as

Here X is the CS term in Eq. (1). Thus, according to
Dirac's classification [9], the primary constraints of the
system are

B(x)=BO g 5(x—x ),
a=1

which gives a (weak} relation between Bo, 8, and e as

(16)

F0=0,

y; =n; —8e;, A'=0 .
(10)

To find the secondary constraint, the canonical Hamil-
tonian H, is first computed by a Legendre transformation

N

H, = g p x,+ J d x(niA'+iris' )——m g x
a=1 a=1

N—e g [x, A(x ) —Ao(x )]
a=1

8J—d x e"" A B„A&,

which on simplification yields

N

H, = g [p —eA(x )]2+eAO(x )
2772

—28 xAoe'J; A. (12)

The primary Hamiltonian is

H =H, + x uom. o+u; (13)

where uo and u, are arbitrary multipliers. Time conserv-

ing the primary constraints with H and using the basic
Poisson brackets

28Bo=e . (17}

is first class. We can now classify the constraints. The
two constraints no [Eq. (10)] and y [Eq. (18)] are first
class, while y, [Eq. (10)] are second class. It is possible to
eliminate the second class constraints completely from
the theory by using Dirac brackets when y becomes equal
to g [Eq. (18)]. Thus Gauss constraint ultimately emerges
to be a first class one, as it ought to be.

The physical state ~g) of our model are defined to be
those states that are annihilated by the constraint g [Eq.
(15)],

We observe that Eq. (15) is identical to Eq. (8a), on sub-
stitution of j from Eq. (2a). Since y, [Eq. (10)] and g
have nonvanishing Poisson brackets, these constraints are
second class. One may be surprised to observe that the
constraint g in Eq. (15) is second class, since it is the ana-
log of the Gauss operator, which is known to be first
class. This happens, since we have. not yet extracted the
maximal set of first class constraints of the theory [15]. It
is simple to verify that the combination

I x'. ,p j j =5'J5,

[ A'(x), m (y) j =5'5(x —y),

[ A 0(x), n 0(y) j =5(x—y)

(14)

28B —e +5(x—x ) ~1()—:0. (19)

The Dirac bracket (DB) between any two variables is
defined to be

[ U(x), V(y) ]DB= I U(x), V(y) jpn
—fd z d z'[ U(x) g;(z) jp~j '(z z') Ig, (z'), V(y) jpB, (20)

where

y,, '(z, z') = e,,5(z —z')
20 I (21)

is the inverse of the matrix of the Poisson bracket (PB)
[y, (z),yj(z') j . The DB, which differ from their corre-
sponding PB are given explicitly as

1
[ A;(x},A (y) jDB

—
2

[m.;(x),m (y) joeg2

e;~5(x —y),1

[ A,.(x),m. (y) ]Du= —515(x —y),1

(22)
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which are compatible with setting the second class con-
straints y; strongly zero.

The total Hamiltonian can be written as

Hr =Hp+ fd x up(x)mp(x)

+ dxux x (23)

where up and U are arbitrary parameters reflecting the
gauge invariances of the theory. There are now two
methods of proceeding further with the quantization pro-
gram. The conventional method is to choose two gauge
conditions to convert the first-class constraints ~p and
(=0 to second class. A new set of Dirac brackets are
computed, compatible with putting expand

.
g strongly

zero. The freedom in the Hamiltonian is thus eliminated.
Alternatively, we may fix the multipliers to obtain the
Heisenberg equation

[A„,H, j =a,A„,
[x,Hr j =Bpx

They are reproduced with the choice

Qp —BpAp

(24a)

(24b)

(25a)

(25b)

Henceforth we put A =0. Thus, both A and Kp

disappear from the subsequent analysis, as these are not
the true dynamical degrees of freedom. It has to be men-
tioned that putting A =0 is not a gauge-fixing condition
[10,16].

However, it is interesting to note that, A being a
Galilean scalar, A =0 preserves manifest Galilean co-
variance here in contrast to the Maxwell case, where this
choice destroys manifest Lorentz covariance. This is be-
cause A" transforms contravariantly under Galileo
boosts. To see this, it may be noted that the transforma-
tion properties of A "s can be identified by looking at Eq.
(4), where the first term represents the mechanical
momentum. In the absence of the CS gauge field, when
the situation corresponds to a free-particle case, the
canonically conjugate momentum for x is just this
mechanical momentum. Now it is well known that the
nonrelativistic expressions for energy and momentum for
a free particle can be obtained from the corresponding
relativistic one in the limit c~ ao, provided the transfor-
mations are taken to be contravariant in nature. In other
words, only the contravariant components of the energy-
momentum 3 (=1+2)vectors can be identified with ener-

gy and momentum of a nonrelativistic particle in the
Galilean limit. Thus it is naturally expected that the

Exactly as happens in usual gauge theories (e.g., in
Maxwell's theory), the variable A p is not of any physical
significance and its time derivative up is also completely
arbitrary. This variable is, therefore, of no interest and
may, without loss of generality, be taken to be an arbi-
trary constant c, which implies that

up=0,
(26)

U=O.

term involving A' in (4) should also transform contra-
variantly when the CS gauge fields are present. This in
turn implies that the component A also transform con-
travariantly under Galileo boosts. Unlike the relativistic
case, here we cannot construct a corresponding covariant
object, since there does not exist any such metric in
Galilean space time. Thus both A" and A„ transform
contravariantly under Galileo boosts, but A ' and A; are
really the contra and covariant counterparts, as far as
spatial rotations are concerned, because the two-
dimensional space has a natural Euclidean metric. This
has to be contrasted with Hagen's [7] case, where the CS
gauge fields were found to transform as a covariant vec-
tor.

IV. GALILEAN GENERATORS AND THEIR ALGEBRA

In this section, we shall use Noether's theorem to iden-
tify various generators of symmetry transformations.
These generators will be shown to satisfy the Galilean
algebra.

Let us first consider the generator of translation. In
the absence of CS term, i.e., when the theory is analogous
to the coupling of particles with a background gauge
field, this generator is given by p [Eq. (4)] [17]. The
contribution from the CS term can be easily computed by
Noether's theorem, so that the full translational genera-
tor is

P'=g p', +8J d x e I, (d'A~) A" . (27)

a=1

+9 x e "e"x A; k AI —A'A' (28a)

G'= tP' mg x~— (28b)

yielding the following transformations for the physical
(gauge independent) degrees of freedom of the theory:

[xu~~jna ~ Pa ~

[x',6']nB=t5",

(29a)

which are the normal transformation properties without
any anomalies. Note that we have omitted the corre-
sponding algebra for the gauge fields, since these are not
gauge invariant. Indeed under gauge transformations
generated by the Gauss law constraint g(x),

5A;(y) = J d x a(x) [g(x), A;(y) ]na=B;a(y) (30)

the A, 's are modified in the usual way with a(x) being

Again one has the freedom of adding a linear combina-
tion of first-class constraints to the P'. Exactly as hap-
pens in the case of the Hamiltonian the multipliers are
found to vanish, so that [ 'x, 'Pj n=ii5" and

[ A'(x), P'
j na='d'A ~ are satisfied.

Proceeding analogously, the generator of rotation J,
and Galilean boosts 6' are found to be (see the Appen-
dix):

N
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the gauge parameter. Our results may be compared with
previous analysis [7], where an additional rotational
anomaly was found in both radiation and axial gauges.
Since this anomaly was found to differ in two gauges, we
feel that it is an artifact of gauge. Though this anomaly
in angular momentum could be defined away in [7] by ap-
propriate shifting, the same cannot be done in our case,
as the expression of angular momentum here has been de-
rived unambiguously through Noether's theorem (see the
Appendix; where we have also shown the gauge invari-
ance of this operator on the physical states).

We also observe at this stage that f A, G')Du=0, cor-
roborating the fact that A is a Galilean scalar. Indeed it
should be of the form t (a A 'tax '), but this vanishes as
we have AD=0. This may be contrasted with the result
of [7], where a noncanonical term in the transformation
law for A was obtained.

Using the various generators Hz, P', O', J, and the
Dirac brackets, we 6nd after an extensive computation

fP', P') ={P',H )
=

f J,H )
= fG', G') =0,

(31a)

We note here that, but for the last relation [Eq. (31e)],
all other relations satisfy the Galilean algebra. But this is
not serious, as it can be easily seen that on the constraint
surface [Eqs. (15) and (17)] the momentum P is equal to

m x . Thus even this relation also conforms to the
Galilean algebra, when acting on the physical states ~f)
[see Eq. (19)]

f O', H) lg) = —P'IP), (32)

which proves the validity of full Galilean algebra.
One difference between the Galilean algebra with that

of Poincare is that in the former case f
O', GJ)Ds=0 but

in the later case fO', GJ)DB-J. Thus, redefining J by
making a constant shift will not affect the Galilean alge-
bra unlike in the Poincare case. However, the shifted J
will be different from the canonical J obtained through
Noether's theorem, as we have emphasized above.

Quantization can now be done by converting the DB's
into commutators using i f A, B)Ds~[A,B]. Moreover,
operator symmetrization is implied whenever products of
operators occur.

f J,P')DB=e'JP~,

f J,G')DB=e'JGJ,

f P', G') D~ =5"mN,

f G'») DB

(31b)

(31c)

(31d)

(31e)

V. ANGULAR MOMENTUM

This section is devoted to the revelation of fractional
spin by the computation of angular momentum [Eq.
(28a)] acting on the physical state

~ f):

J~g)= g6 x+1 +ef d' (~ "J,x'eA, a„A, A'A'—) ~P) .
a

(33)

The first term J,=g e'Jx ~~ is just the canonical contribution coming from the particle sector. As pj = i (ala—x J )

is the generator of the translation for the particle sector, the canonical angular momentum J, can be written in polar
coordinate as g i (away. ) [17—]. The state

~ g) in (polar) coordinate basis (r„P ) can be written as

P(r r It' ) Wr "1 41 ''' rN 4N)

(34)

Single valuedness of wave functions demands P(t; r„P ) should be periodic in P (0 P (2n ) for all P . Thus,
Fourier expanding, one gets

f(t;r, p )=
m&, . . . , m& ——co

exp[i(m, P, + +mNP~)]f(m„. . . , m~;r„. . . , r~) (35)

where m 's are integers and f ( f m, r ) ) is some func-
tion. Thus the eigenfunctions exp[i g m P )] will have
integer ( g m ) eigenvalues corresponding to J, . We
now focus on the second 0-dependent contribution
(denoted as J&)

J
~ f)=eId x [eJV'x~ A;a„A, —A 'A ']

~ g) . (36)

Using the identity

Js I f ) = 2efd'—x e"x, A, B~g ) . (3&)

A, (x)— e,,a,"f d'y D(x —y)j,(y)
1

2g
(39)

where

Using the defining equation for ~g) [see Eq. (19)],we find

jk li gj loki gjigkl
7

Eq. (36) simplifies to

(37) V D (x)= —5(x)

is the scalar Green's function having the explicit form

(40)
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1
D (x)= — ln

~
x

~
+const .

4m
(41)

(42)

Substituting D (x}from (41), we find

(43)

This additional piece of the angular momentum is
clearly seen to be independent of the choice of origin of
coordinates. It may, therefore, be regarded as the frac-
tional spin of the system. The above equation connects
this spin with the particle number. This result agrees
with that of [13],where the nonrelativistic (Schrodinger)
matter fields were second quantized, where also no
gauge-fixing condition was used. We, on the contrary,
stuck to the first quantized version of the matter sector.
Fractional spin in an effective theory corresponding to a
model similar to (1), obtained by eliminating the gauge
degrees of freedom, was also reported in [7].

VI. CONCLUSIONS

We have showed, in a gauge-independent analysis, the
occurrence of fractional angular momentum in a system
of N nonrelativistic (first quantized) point particles with
CS interactions. Previous attempts [8,13] to discuss this
theory employed the second quantized (for the matter
sector) version, converting the Schrodinger problem to a
nonrelativistic field theory. Though these approaches are
equivalent, we do not follow the second quantized version
here. Another difference with the conventional approach
[7,8] is that the gauge-field variables have not been direct-
ly eliminated in favor of matter variables by using the
equations of motion. Although the gauge fields them-
selves are not physically meaningful (and hence are not
referred directly) the actual observables (which must be
gauge invariant} are constructed from these fields. Exam-
ples of these observables are the various space-time gen-
erators like the Hamiltonian, momentum, angular
momentum, etc. In fact the gauge independence of the
angular momentum (which involves the gauge fields) has
been explicitly demonstrated in the Appendix. A similar
demonstration can be done for the other observables too.
We may also mention that the conventional [7,8] elimina-
tion of the gauge variables in favor of the matter ones is
not conceptually clean as it utilizes the equations of
motion, which are strictly valid only at the classical level.
One can, and in this model one does, miss the constraints
involving the phase space variables. Indeed the (second
class) constraint vr, =He; A~ [Eq. (9)] remains unaccount-
ed. Furthermore, in the non-Abelian case this elimina-
tion is quite involved and cannot be done in general. It
has also led to the violation of Poincare algebra [7]. All
this reveals that, even within the usual second quantized
approach, the analysis is not well understood. We also

Using (39), we may express 8 and A, in (38) in terms of
jo to obtain

Js~g)= f d x d y j (x)x, [B,D(x —y)]j (y) g) .
1

mention that the results in different gauges differ and the
equivalence of (physical) results needs to be established
[7]. Since our approach is gauge independent, all such

problems are bypassed. The fractional spin obtained here
is, therefore, a physical finding and not a consequence of
gauge fixing. Our result also agrees with that of [13].

The present example may be regarded as a model,
though lacking Poincare invariance, having Galilean in-
variance. This led us to define, using Noether's theorem,
the generators of the Galilean transformations. Contrary
to earlier assertions [7] we prove that the fields and parti-
cle variables transform normally under these transforma-
tions, so that there is no anomaly. The complete Galilean
algebra was reproduced thereby proving the Galilean in-
variance of the model. It is important to stress at this
stage the Galilean algebra closes only on the physical
states. In other words the complete Galilean invariance
is restored only when we restrict to the physical
subspace —the kernel of the Gauss law operator, i.e.,
those states, which are annihilated by this constraint. It
is not there in the entire Hilbert space. So the demon-
stration of the Galilean invariance of the model (specially
under boost} is, we feel, an important result of our paper.

Here we would like to make the observation that
though it is possible to couple nonrelativistic particles to
the photonless gauge fields (like CS gauge fields) main-
taining the complete Galilean invariance, it is not possi-
ble to do the same with Maxwell's gauge field. This is be-
cause, in that case, the matter sector will have invariance
under Galileo boost and the gauge-field sector will have
the invariance under Lorentz boost. CS term on the con-
trary is invariant under any general coordinate transfor-
mation.

The present gauge independent investigation supple-
ments the earlier analysis done by the first author [4,6] to
display fractional spin and statistics in relativistic field
theories involving the CS kinetic action. It may be men-
tioned that, although fractional spin in relativistic CS
field theories have been obtained from various view

points [1—6, 18], a corresponding exhaustive analysis for
the point particle case was lacking. In this context, our
investigations have filled a gap, as well as revealed the
general viability of the gauge independent approach [4,6].
Extension of our analysis for the relativistic N particle
problem with CS interaction is under progress.
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APPENDIX

Here we first show how the rotation generator J [Eq.
(28a)] is found, and then prove its gauge invariance. In
the absence of the CS term, the translational generator is
given by p [Eq. (4)] (see Ref. [16]). Correspondingly,
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the rotation generator J, is given by

N

J,= g e'Jx~
a=1

(Al) (A7)

Substituting (A5) and (A6) in (A4) and after some alge-
bra, one finds

J&=8f d x [e~V'x A, t}t, At —A'A'] .

which is also the result obtained by an application of
Noether's theorem.

When the CS term is added, its contribution to the ro-
tation generator is obtained by considering an
infinitesimal rotation in the XY plane as 5x'=e'xi and

the corresponding variation of the CS part of the action

Scs, which can be written as

Adding (Al) and (A7) yields the full rotation generator J
J=J,+Jg (A8)

which reproduces (28a).
In order to check the gauge invariance of J, we have to

show that its Dirac bracket with the Gauss operator g
[Eq. (15)] vanishes weakly. Then from Eq. (A8) we have,

5S =—' d x e'Jd Jkf, "cs aij (A2)

Je= fd'x Stoic .

Thus, getting

(A3)

whereby the additional contribution due to this CS term
to the angular momentum J& is given by

N

I DB I 28B Js IDn e ' g ~(x—x ),J,
a=1 DB

where we have written only the nontrivial bracket.
An explicit computation shows

{28B,Je I Dn
=28m"x 't)'B

and

(A9)

(A 10)

J= x e'xT + . X'A
5(aA')

(A4}

where T„„ is the energy-momentum tensor obtained by
Noether's theorem,

a=1 a=1, DB

Combining these results with Eq. (A9},we obtain

N N
=&"x'& g &(x—x ) . (All)

& cs
Tpv ~vA A. +csgij, vgauA, )

"

=8e „t„At'd„A~ 8(e t„At'"d"A —)g„„ (A5)

which vanishes acting on the physical states
~ g)

(A12)

(A13)

and

&6 =(&kR ~i'&k } . (A6)

which shows the gauge invariance of J on the physical
states. The expression for the Galilean boost G; (28b) has
occurred earlier [7,8] and is well known.
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