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Currents, charges, and canonical structure of pseudodual chiral models
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We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which
have an in6nite number of conservation laws but allow particle production, at variance with naive
expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as
transmutations of the symmetries of the usual chiral model. We re6ne the conventional algorithm
to more efBciently produce the nonlocal symmetries of the model, and we discuss the complete
local current algebra for the pseudodual theory. We also exhibit the canonical transformation which
connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual
theory.
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Many integrable models in two dimensions have the
limiting feature of no particle production. There is a
variant of the o model for which this is not so, however,
the so-called pseudodual chiral model of Zakharov and
Mikhailov [1], for which all interactions are distilled into
a very simple, constant torsion term in the Lagrangian.
The essential quantum features of the model were Grst
identified by Nappi [2], who calculated the nonvanish-

ing 2 ~ 3 production amplitude for the model, and who
also demonstrated that the model was inequivalent to the
usual chiral model in its behavior under the renormaliza-
tion group: The pseudodual model is not asymptotically
free. Although these were lowest order perturbative cal-
culations carried out for a massless theory, and are sub-
ject to the well-known interpretation problems inherent
to a Geld theory of massless scalar particles in two di-
mensions, it is nonetheless clear that the physics of the
pseudodual model is very different from that of the usual
chiral model, and therefore a full comparison between the
two theories is warranted.

The models were previously compared within the
framework of covariant path integral quantization by
Fridling and 3evicki, and similarly by Fradkin and
Tseytlin [3]. However, the focus of those earlier com-
parisons was to exhibit dualized o. models, with torsion,
which were completely equivalent to the usual cr model.
Indeed, it was shown that a model fully equivalent but
dual to the usual chiral model could be constructed,
provided both nontrivial torsion and metric interactions
were included in the Lagrangian.

In this paper, we focus on the differences between the
pseudodual model and the usual chiral model without
enforcing equivalence. We investigate the pseudodual

model at the classical level and within the framework
of canonical quantization, with emphasis on the sym-
metry structure of the theory. We consider both local
and nonlocal symmetries, and compare with correspond-
ing structures in the usual chiral model. We exhibit a
canonical transformation which connects the usual chiral
model with its fully equivalent dual version, further clar-
ifying the inequivalence of the pseudodual theory. We
provide a technically refined algorithm for constructing
the nonlocal currents of the pseudodual theory, an algo-
rithm which is particularly well suited to models with
topological currents for which the usual recursive algo-
rithm temporarily stalls at the lowest steps in the re-
cursion before finally producing genuine nonlocals at the
third step and beyond. We also consider in some detail
the current algebra for the full set of local currents in
the pseudodual theory, thereby providing an extension
of several recent studies [4]. Other related, more recent
investigations can be found in [5].

II. PSEUDODUAL CHIRAL MODEL

The familiar two-dimensional chiral model (CM) for
matrix-valued fields g is defined by

Cy = Tl O~gO g

whose equations of motion are conservation laws

(2.2)

Here, J„=g O„g and L„=gag, the right- and left-
rotation Noether currents of Gleff x G„gh&, respectively.
E.g. , for G =O(N), these currents are antisymmetric N x
% matrices. We may consider this particular case in the
following discussion without essential loss of generality.
Note that I i ———Tr (J„J")= —Tr (L„L") From the.
pure-gauge form of the local currents, it follows that the
appropriate non-Abelian field strength vanishes:
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B„J„—B„J„+[J„,J„]= 0 (2.3)

Jp = spvB 0 (2.4)

This, of course, is conserved identically. On the other
hand, the curvature-free condition above may now serve
instead as the equation of motion

B"B„$—2is„„[B"p,B p] = 0, (2.5)

and likewise for L„. In this sense, the local currents are
curvature Eree. Curvature-&ee currents generally under-
lie nonlocal-symmetry generating algorithms, as will be
reviewed in a forthcoming section.

Alternatively, the roles of current conservation and
vanishing field strength may be transmuted. Consider
a remarkable transformation [1,2] of the "pseudodual"
type (in the language of [3]) which leads to a drastically
di8'erent model for an antisymmetric matrix field P. For
conserved currents, one may always de6ne

is these currents, and not J„, which generate (adjoint)
right rotations in the PCM.

Moreover, as remarked by Nappi [2] in footnote 7, the
action speci6ed by the integral of Z~ is also invariant
under the nonlinear symmetries P ~ P+( whose Noether
currents are 2

Z„=J„+2[J„,Q] = B„$+2s„„[Bp, p]. (2.9)

Indeed, the conservation law for these currents simply
amounts to the equations of motion (2.5) for the PCM,
originally introduced as a null-curvature condition for the
topological J„currents of the model. Thus the equations
of motion have been transmuted &om conservation of
J„ for the chiral model to conservation of Z„ for the
pseudodual model. These Z„currents are not curvature
free, however, but are instead J-covariant curl free:

which follows from the Lagrangian of Zakharov and
Mikhailov [1]:

1~ gp, + 1 gp (2.6)

This is the de6nition of the pseudodual chiral model
(PCM). Having transmuted the conservation and curva-
ture conditions obeyed by the local currents under the
interchange CM~PCM, let us also consider the trans-
mutation of the fundamental symmetries generated by
these and other currents.

Consider first the charges for the local J„,

(2.7)

R~ = (& 4]+ s [& [4 &]] = (& B~&]+ s&~-(& [B"& Wl

(2.8)

For the currents of the chiral model, the time variation of
Q vanishes for field configurations which extremize l:i by
Noether's theorem, while for the currents of the pseudo-
dual model, Q are time independent for any configura-
tions with fixed boundary conditions by merely suppos-
ing the local field P is temporally constant at spatial in-
finity. For the PCM, Q = P(oo) —P(—oo) is just a topo-
logical "winding" of the 6eld onto the spatial line, and
thus invariant under the continuous flow of time [6].

Noether's procedure does yield results for the pseudo-
dual model, but says nothing about the previous Q. In-
stead, the G„si,i-transformation invariance of Z2,
0+QO, yields the (on-shell conserved) Noether currentsi

s""B„Z„+s""[J„,Z„] = 0 . (2.10)

In some contrast to l'.1, we note further that Z2

i2Tr J„(J"+ 2Z") .

We will demonstrate in Sec. IV below that these "new"
local conserved currents Z„and R„are actually trans-
mutations of the usual first and second nonlocal currents
of the chiral model, respectively. All three sets of cur-
rents, J„,Z„,R„, transform in the adjoint representation
of O(N)„si,i (the charge of R„). By inspection of the
transformation on the field P, it would appear that the
charges for the shift symmetry commute among them-
selves. This is not quite correct, however, as we shall see
in the results of Sec. V below. In anticipation of those
later results, it turns out that the shift charges induce
a transformation of the P conjugate momenta which de-
pends on the topological charge Q: This only vanishes
on states with trivial winding. We shall therefore refer
to these shift charges as "pseudo-Abelian. "

In Ref. [2] it was demonstrated how the PCM is radi-
cally diferent Rom the chiral model, as the former, unlike
the latter, is not asymptotically &ee, and it allows par-
ticle production already at the tree (semiclassical) level.
For 0 models such as the above chiral ones, the suppres-
sion of particle production has been argued [7] on the
basis of the nonlocal conservation laws of Liischer and
Pohlmeyer [8]. Nevertheless, we will show that the yet
higher (third and beyond) transmutations of the nonlocal
charges of the chiral model are, in fact, genuine nonlo-
cal charges for the PCM, and thus the pseudodual model
rather remarkably exhibits both particle production and

where J„=e„„J".In contrast to the chiral model, it

Occasionally it may be useful to recall the identities

This transformation preserves the constant-at-infinity
boundary conditions in the PCM, as always in spontaneous
symmetry breaking and, even when the values of the con-
stant field at x = koo dier, will not change the value of the
winding Q.
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an infinite sequence of nonlocal charges.
Further note that, properly speaking, the left invari-

ance Gi,rt has degenerated: For the field P, left trans-
formations are inert, and thus right, or axial, or vector
transformations are all indistinguishable. The G~,gt x
G„.ght symmetry of the chiral model, the axial generators
of which are realized nonlinearly, has thus mutated in the
PCM. On the one hand it has been reduced by the loss
of G~,gt, but on the other hand it has been augmented by
the nonlinearly realized pseudo-Abelian Qz charges.

The reader may wonder then how the conserved left
currents i„of the chiral model are realized on the solu-
tion set of the PCM. They actually do not generate left
rotations on the fields P, any more than the J„generate
right rotations. By analogy to the phenomenon detailed
in Sec. IV to follow, in the PCM the left currents may

I

be realized nonlocally. This follows by a direct construc-
tion. Upon identifying the right currents with s„„O P,
one may write B„g = g E;„0"P.That is,

l9ig = g Op/, (2.11)

which may now be integrated at a fixed time to obtain

( OO

g(z, t) = go P exp
~

dy Boiti(y, t)
~

(2.12)

assuming the boundary conditions g(oo, t) = go. The left
currents are now realizable as explicit nonlocal functions
of P as obtained from using expression (2.12) for g(z, t)
to similarity transform the right currents:

Lp =gOijg = —g (g Bpg) g = —g Jp g = —&p~ g o Pg = &pgB (—g Qg )+g [~pQ, Q] g (2.13)

The first term is trivially conserved while the second
one resembles a similarity transform of the right cur-
rents R„and, in fact, to leading order, likewise gener-
ates adjoint right rotations sandwiched within the ar-
bitrary boundary-condition go similarity transformation.
These nonlocal currents transform in the adjoint of G~,~t,

albeit somewhat speciously, since these transformations
only serve to rotate the arbitrary boundary conditions

go, and do not afFect the dynamical fields P of the ac-
tion at all. They thus commute with the right rotations.
As a consequence, removing go &om the above currents
banishes G~,gt from the theory altogether.

As is evident &om the equivalent status of left versus

right in the chiral model, none of the above results hinges
crucially on the difference between left and right currents.
Left~right-reHected identical results would have followed

the above pseudodual transmutation upon interchange of
left with right.

III. CANONICALLY EQUIVALENT DUAL o
MODEL

The above expression for g(z, t), as an explicitly non-
local function of oreg(y, t) up to boundary conditions,
would seem to suggest that the two versions of the chiral
model are equivalent, providing as it does an invertible,
fixed-time map relating all g and P field configurations.
Nevertheless, the point is that this map is not a canoni-
cal transformation. Hence, the g and P theories are not
canonically equivalent. The quantum theories for Zq and

I

C2 are thus inequivalent, if effects are computed in the
standard way, say, in perturbation theory, which assumes
canonical variables.

One direct way to see this point would be to compare
Poisson brackets for various expressions in the g and P
theories. This is done below for the currents of the P
theory.

It is instructive, however, to take an indirect approach
and construct a canonical transformation which maps the
usual chiral o model onto an equivalent dual cr model,
with torsion, which is different &om the PCM. The
transformation identifies conserved, curvature-&ee cur-
rents difFerently than in (2.4). Such a construction is

the canonical, fixed-time analogue of the Lagrange mul-

tiplier technique, and accompanying change of variables,
employed by Fridling and Jevicki [3] in the covariant path
integral formalism. We exhibit here such a transforma-
tion.

For specificity, consider the standard O(4)
O(3) x O(3) SU(2) x SU(2) chiral o model,

parametrized in the usual way, g = p + i v ~ y~, with
coordinates y, p~ (j = 1, 2, 3), subject to the constraint

(p ) + p = 1, with y—:P. (&p~)2. Resolve the con-

straint and substitute p = +pl —p, to obtain the
standard form for the defining chiral Lagrangian

(3.1)

We now show that this model is canonically equivalent to
the dual o model (DSM) defined by the Lagrangian

[2 (b" + 4Q'Q') 0„$'8"g' —E:" s*'"vp'8„@'B„g"j . (3.2)

Up to normalizstions, this is essentially the Lagrangian of Fridling and Jevicki, as in Ref. [3], although the reader will note

some signiTicant sign differences from their Eq. (13).
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Of course, this Lagrangian is different than that for the
PCM, Z2, since it contains both a nontrivial metric and
torsion on the field manifold. Nonetheless, the reader is

invited to compare the two to leading orders in the fields

Q and P, respectively, i.e., to examine the weak g field
limit in the above and in what follows.

As we shall verify in detail, a suitable generator for

I

a canonical transformation relating &p and g is simply
given by a spacelike line integral of an O(3)-invariant
bilinear g'J,."[p,m], where J," is either the left or the
right, conserved, curvature-free O(3) current for the p
theory. Choosing here the right current (V + A), at any
fixed time our generator is F[Q, p] = f dx Q'J, [p]., as
given explicitly by

(3.3)

Note that left rotations on y alone do nothing to this F.
It is then consistent to assume that the new field vari-
able g is a left-transformation singlet, just like its con-
jugate quantity Ji[p], and that F[g, y] is left invariant.
On the other hand, the effects of right rotations (or sepa-
rate axial or vector rotations) on rp must be compensated
by appropriate isospin transformations of g analogous to
the ones generated by R„ for the PCM in the previous
section. 4

By construction, F is linear in g, but nonlinear in p.
Note that integrating by parts just gives back the original
F, without any surface term. Also, while we have writ-
ten koo as the limits of x integration in the expression
for F, the reader should be aware that finite limits of in-

tegration are also acceptable with appropriate boundary
conditions. For example, z could be a circle, with both g
and y satisfying periodic boundary conditions. Finally,
note that the weak y field limit of the generating func-
tion reduces to the well-known duality transformation
between &ee scalar and pseudoscalar fields, as generated
by Fo[0 V] = jd*4'&'.v'

Having exhibited the canonical transformation which
relates the chiral model to its fully equivalent dual, we

may now allow modifications in the form of F to see
if it is also possible to connect the chiral model to the
PCM. The results of such an investigation are negative:
The nontrivial metric of the chiral model cannot be con-

verted into the trivial metric and constant torsion of the
PCM through canonical transformations which equate
the curvature-&ee currents of the two theories. This fol-
lows &om explicit calculations similar to those below.
It should not be difficult, in principle, for a sufficiently
motivated reader to see this, say, by allowing arbitrary
invariant functions to appear in F. Nevertheless, the de-
tails can be tedious, and shortcuts are not available, at
present. We forego the details here and simply state the
result.

Also, in contrast to the emergent nonlinear pseudo-
Abelian Z charges in the PCM model, no such local sym-
metry appears present in the DSM. Thus, there is no local
analogue of the three axial p symmetries for the theory
L3 It is straightforward to verify this for the classical
theory, and it is best left as an exercise. (At the quantum
level, these facts are consistent with the properties of the
transformation functional discussed below. )

Let us now verify that F generates a canonical trans-
formation which identifies the curvature-free currents of
the two models defined by E~ and Z3. As a consequence,
it follows that the energy-momentum tensors for the two
theories are equal under the transformation. It is a text-
book exercise to check that F fulfills its mission at the
classical level. Classically, functionally differentiating F
generates the conjugate momenta. The conjugate of g'
is given by

K* K a*
~2

(3 4)

The generator F was, in fact, chosen to yield this result. The conjugate of y is obtained through

p2 yz +
~FX ~l & vv'

) 9*

( y y ') 2 krak

) Ox
(3.5)

Although, as discussed below, the actual curvature-free current for g is a combination of isospin and topological currents,
and so when comparing the efFect of charges for the curvature-free currents between rp and @ theories, there is a possibility of
subtle surface term contributions reminiscent of the constants of integration go that appeared in (2.12).
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a "mixed" expression involving both y and g. Now (3.4) may be inverted to replace & y in (3.5) by vr. Thust', ~~j,„„l B'jA: A:, qj
gl —&p2 ) Bx

+2(g y 7 —g p)7r&+2 gl —p2bj+ sj g sr~

gl —y
(3.6)

If viewed as classical relations, we may substitute for x, and m, , in (3.4) and (3.6), in terms of &, yj and &, @j, as
follows &om the Lagrangians Zi and Z3.

1 /', , B,,„B „l /', , p*y' ~ B

1+4g2 ( Bt Bz y I, 1 —y2) BtI (S +4y'@ ) —@ +2' "q q" —I, ~, =
I

~' + (3.7)

The resulting covariant pair of erst-order, nonlinear,
partial differential equations for p and g constitutes a
Backlund transformation connecting the two theories.
Consistency of this Backlund transformation is equiva-
lent to the classical equations of motion for y and g .

Note, as a consequence of (3.4), we find the mixed inner
product relation

Noether current. For instance, under the isospin transfor-
mation bg' = s'j"Qju", the conserved Noether current
of Zq is defined as usual by I," = bl:s/b(B„u') so that
Io = s'j"gjvr~. But this is not curvature free. Instead,
the conserved, curvature-free current J;.", to be compared
with J,". of the CM, is a mixture of this Noether current
and a topological current: J;." = 2I," —s""B„g. ' so that

= 7r;. In covariant form,
|9

1 —~2 (3.8)
(gag + 4yayg) PuB yg + 2 agIeggBPqk

1+4Q2-

Integrating over all x, we obtain a mixed "adiabatic"
(topological) invariant, which represents a nontrivial
global constraint obeyed by the correlated pair of so-

lutions for the two theories that are connected by the
canonical map. For example, assuming trivial or peri-
odic boundary conditions on p, we have I dz p'x; = 0.

Now, in the DSM, what is the conserved, curvature-free
current'? In contrast to the PCM, where it was essentially
forced to be a topological current, here a topological cur-
rent by itself will not sufBce. Neither will a conserved

(3 9)

So, to complete verification that the canonical I"-
generated transformation does the job, at least classi-
cally, it remains to show that the curvature-&ee currents
are equal for the p and Q theories when expressed in
terms of the respective fields and their conjugate vari-
ables. That is, we must show J,"[p, m] = J,"[@,vr]. This
requires us to establish the following:

f a j2pj+ PV' ,,„„l B

) Bz
(3.10)

. k2E @ aery
= —Ql —

&p zv~ —E p ~y = J. .
x

(3.11)

The first of these is precisely (3.4), the form for vr, given directly by the generating functional.
The second (time component) current identity takes more effort to establish, but it also follows from (3.4) and

(3.6). To see this, reduce each of the expressions involving the fields and their conjugate momenta in (3.11) to the
following mixed result involving the fields and their spatial derivatives:

00*+20'
I

v' v' —v' v' I+2s""O'
I
v—" V'1 —v' —v'1 —v' —v"

I

= J,'.
Bx ( Bx Bx ) ( Bx Ox )

(3.12)

Our normalizations here are such that "curvature-free current" means z„(B"J," + e'~"J"Jf ) = 0.
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III B p ]'t] ]
= N f d&p e'&It'~l @z~ ]p] (3.i3)

Note that we have allowed for an adjustment of the over-
all normalization of eigenfunctionals in the two theories
by including an undetermined energy-momentum depen-
dent factor N. In principle, it is straightforward to de-
termine N, but we have not.

The previous classical relations between the fields and
their conjugate momenta, or alternatively, between the
curvature-free currents, now become nonlinear first-order
functional differential equations obeyed by the transfor-
mation functional

gl ~ — i 6 eaF[g, ~] Jl [~] eiF[g,«i )

g' y, ~ —= —i,'q e'~[~« (3.i4)

Thus, the validity of our canonical transformation at the
classical level is now established. What about the ensuing
relation between the quantum theories associated with
8» and l:3?

To carry out a comparison at the quantum level, we
combine Schrodinger wave-functional methods with the
transformation theory of Dirac, as explained, for exam-
ple, within the context of Liouville theory in [9]. We find
that the energy-momentum eigenfunctionals of the quan-
tum Q theory, i'@ p[g], are related to those of the quan-
tum p theory, 4g p[@],and vice versa, by exponentiating
the classical generating function of the canonical trans-
formation to obtain a transformation functional. That
is, at any fixed time the eigenfunctionals of the two the-
ories are nonlinear (in y) functional Fourier transforms
of one another:

Presumably these differential equations are exact, and
the transformation functional provides an exact solution
of them. Imposing a cutoff on the theory, it is straight-
forward to check that this is indeed so simply as a con-
sequence of the classical equations (3.10) and (3.11). [In
this regard, we note that dimensional regularization is
particularly convenient here, as well known for the CM,
since it permits us to naively discard certain b(0) terms
which would otherwise mar the Hermiticity of F and the
currents as written, and which would also con&ont one in
comparing the energy-momentum tensors for the g and
&p theories. ] However, a nontrivial analysis is required to
remove the cutoff, that is, to renormalize the transfor-
mation in (3.13). This renormalization analysis will not
be given here.

Rather, here we take the expression (3.13) as is and
use it to gain a better understanding of how symmetries
in one quantum theory are related to those of the other
quantum theory, a technique previously illustrated in the
context of simple potential models [16]. From the trans-
formation properties of the +dependent current in F, we
expect that V and A transformations on the eigenfunc-
tionals must coincide insofar as e'+~& ~j projects onto the
left invariants. This behavior for the quantized canoni-
cally equivalent dual o model would correspond, in the
functional framework, to the degeneration of G~,ft for the
classical PCM illustrated in the previous section. Indeed,
when acting on the above transformation functional, and
consequently also when acting on the eigenfunctionals,
the axial and vector charges of the CM (p theory) pro-
duce equivalent effects on the Q theory. Both the inho-
mogeneous, nonlinearly realized axial symmetries and the
linear vector O(3) symmetry of the chiral p theory are
projected by the canonical transformation into the same
linear right-isospin O(3) symmetry of the Zs theory:

dy gl —(p (y) .
~

e' [~'+] = —
~

dy s' "&p (y) „~e'h

~~'(y) ) & ~v "(y) y(,„h
~4'(y) &

(3.15)

To take the last step, one must integrate by parts and
either cancel or discard surface contributions. The ac-
tion of the charges on the eigenfunctionals, as related by
(3.13) and its inverse, is obtained by functionally inte-
grating by parts after acting on e' [~ «. [Once again,
dimensional regularization is convenient here as it allows
us to blithely discard h(0) terms. ]

The only vestige of the difference in vector and axial
symmetries carried by the transformation functional lies
in its field parity properties. Under g -+ —Q, the gener-
ator F trivially changes sign. But under y -+ —p, not

only is the sign of F changed, but also the right current
for the CM (rp theory) is converted into the left current,
and thus F[ g, —

rp] gener—ates a canonical transforma-
tion which projects onto right invariants. Therefore, it is
possible to obtain all the effects of interchanging right ++
left currents in the transformation functional by merely
splitting all wave functionals into components even and
odd under field parity. Since this can always be done,
using one current in F instead of the other results in no
loss of information.

We now return to our investigation of the PCM it-

Since this is a fixed-time expression, the Schrodinger func-
tional integral f dip is over all field configurations at each
point in space, but not at any other times. That is, f dy in
(3.13) is not a path integral.

The same statement applies to interchanging northern
and southern hemispheres for the three sphere defined by
(rp ) + y = 1, since this only Hips the sign of the square
root appearing in I' which is again tantamount to y ~ —p.
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self. In particular, we systematically study the nonlocal
currents and their charges which are guaranteed to exist
for the PCM by virtue of the conservation and vanishing
curvature for J„.

(8" + C")C„=0 . (4.2)

c)~ x'(*) = -C„-x'(*) (4.3)

This serves as the consistency condition for the equations

IV. NONLOCAL CURRENTS AND CHARGES
FOR THE PSEUDODUAL MODEL

or, equivalently,

E~~B x= K (Bp+ J~) x, (4.4)

The full set of nonlocal conservation laws is neatly de-
scribed using the methods in [10] (see also [11—14]). For
any conserved, curvature-free currents such as J„, irre-
spective of the specific model considered, introduce the
Pohlmeyer dual boost spectral parameter rc to define

which are solvable recursively in K [11,10]. Equivalently,
the solution y can be expressed as a path-ordered expo-
nential (Polyakov's path-independent disorder variable)
[12,10]

Z

x(z, ~) = P exp
~

— dy Ci(y, t) ~

=— IL + )
2

C„(z,K) =—,J„—,J„,
1 —K 1 —K

where J„:—e„„J". Thus

(4.1) (4 5)

These ensure conservation of an antisymmetrized non-
local "master current" constructed as follows:

1j"(z,K) = —s""8 [X(z, K) —X~(z, r)] = ) K" J("„)(z)
n=o

(4 6)

The conserved master current acts as the generating functional of all currents J" (separately) conserved order by(n)
order in r E.g. , th.e lowest four orders yield

3P(*,~) = ~u(*) + " ~.(*)+ ) ~.(*) f~» (w)o

+ ' J„'"( )+-', (J (*) x"'+x"' J (*))

+ ' J„"'(*)+—,'(J, (*) x"'+x'" J ( )) + 0( ) . (4.7)

Integ ating the nonlocal master cmrent yields a conserved "master charge"

+oo OO

5(r) = dz Jp(z, K) = ) ~" Q( ) .
—OO n=o

(48)

Q(p) is the conventional symmetry charge, while Q(i), Q(2), Q(s), ... are the well-known nonlocal charges, best studied
for 0' models [g,7,11,12], the Gross-Neveu model [15], and supersymmetric combinations of the two [10].

For the PCM [1,2], however, it readily follows from

x"(*) = (t(*) —&(— ) (4 9)

that

(4.10)

Recall that, as stressed in Sec. II, p( —oo) is taken to be time independent, and thus each piece of this current is
separately conserved. So the CM~PCM transmutation has yielded a local current for the first "nonlocal. " Continuing,

x"'(*)= d»p&(y) + ~i4)(y) &(y) —&(z)&(—~) + &(-~)' . (4.11)

Likewise,
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&„'" = ~,.a"a+ [a,a, a[ —a ~,-a"a a+ -', ~,.a"(a x"'+ x""aI
--,'[z„,4(-~)]+ ,"„—.~"(y'y( ~-)+ y( ~-)4')

= J„—R„—i~„„a"(gp) + i~„a"(ax(') +x(') a) —~[a„,a(—cn))+ 4r„a(a a(—oo) pa( oo)a—) (4.12)

On-shell properties of the currents have been used. How-
ever, this second "nonlocal" current is also efFectively
local: The skew-gradient term, which might appear to
contribute a nonlocal piece to the charge via y~ l, only
contributes [(t)(oo), Qz)/2, i.e., a trivial piece based on a
local current.

In contrast to the first two steps, however, the third
step in the recursive algorithm gives

(4.13)

where ellipses ( . ) indicate terms which contribute only
local pieces to the corresponding charge, whereas the
term written explicitly may be seen to contribute in-

eluctable nonlocal pieces to that charge. Thus J„ap-(3)

pears, like all higher currents, genuinely nonlocal. In
fact, we will see below that the action of Q~ l on the field
changes the boundary condition at z = oo to a different
one than at —oo, and thereby switches its topological
sector, which is quantified by Q[ol.

In summary for the pseudodual model, the charge Q[ol
is topological, while Q[il generates shifts, Q[2l generates
"right" rotations, and Q~"—sl appear genuinely nonlocal.

W„(z, ~) =—Z„+~Z„, (4.14)

which is readily seen to be C-covariantly conserved:

o)"W„+[C",W„] =0. (4.15)

This condition then empowers W„ to serve as the seed
for a new and improved conserved master current

It may well be objected that the above master cur-
rent construction is best suited to the chiral model, but
is not really handy for the PCM, since the procedure
starts ofF with a non-Noether (topological) current, then
"stalls" twice at the first two steps before finally produc-
ing genuine nonlocals at the third step and beyond. The
construction also produces a clutter of total derivatives
and other terms whose charges are extraneous. To over-
come some of these objections, we offer here a refined
algorithm which begins with the lowest nontopological
(Noether) current Z„ to produce an alternate but equally
viable conserved master current. This refined construc-
tion helps to reduce some of the clutter and only stalls
once. Following [14] as illustrated above, define

K„(z,~) = g 'W„y
1= Z + (T —[Z (t'( — )])+ I

& —[T 4(- )]+ -[[Z. &(- )] 4'(- )] ~+ o( ') (4.16)

where we have introduced the convenient combination

T„—:J„—2R„=Z„+ [Z„,(t)], (4.17)

and where now the terms of second order and higher are
genuinely nonlocal, e.g. ,

(4.18)

This is a refined equivalent of J„above. Note that the
terms in 9D„ involving the constant matrices P(—oo) are
separately conserved, as remarked previously.

In general, it is straightforward to see that the seeds for
such improved master currents only need be conserved
currents, such as Z~ above, which also have a vanish-
ing J-covariant curl of the type (2.10 ). For instance,
the previous nonlocal currents themselves may easily be
fashioned to satisfy (2.10), and thereby seed respective
conserved master currents.

As an aside, in some models, such as the CM, master

does not quite obey the original classical equations of
motion. Rather,

a"a„o —""a„oa.a = (,'"„.)* w"e„, (4.20)

which would seem to obviate any interpretation of
(4.19) as an auto-Backlund transformation for the PCM.
Nonetheless, (4.20) is still an evocative relation which
encodes all solutions of the PCM.

As an additional aside, it may be worth recalling with
Ref. [1] that there is also a local sequence of conserved
currents predicated on conserved, curvature-&ee currents

currents such as gD amount to the currents of nonlocal-
similarity-transformed fields, which obey the classical
equations of motion if the fields do [13], thereby allow-
ing an interpretation of the similarity transform as an
auto-Backlund transformation (quite distinct from the
Backlund transformation of the previous section). Here,
however, the corresponding transform of P,

(4.19)
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such as J„.This follows directly from rewriting

(~0 + ~1)(JG W Ji) + [JG Ji JG + Jl]

in light-cone coordinates

cty J~ ——+ 2 [J,J+],

(4.21)

(4.22)

groups such as exemplified here odd powers vanish iden-
tically by virtue of the cyclicity of the trace.

V. POISSON BRACKETS AND CURRENT
ALGEBRA

8 Tr J"=0=8 Tr J =0. (4.23)

Such conservation laws are normally nontrivial (n = m =
2 is energy-momentum conservation), but for orthogonal

which leads to the following sequence of conservation laws
for arbitrary integers m, n: Our goals in this section are to systematically work

out the canonical bracket algebra of all the local currents
for the pseudodual theory, and, through the use of these,
to also demonstrate unequivocably that the action of the
charge for the nonlocal current N„given above is gen-
uinely nonlocal. Explicitly,

iQy, d (y) i = —)M, d(y)], d(y) + 2j dT y(y —x) z)p(z), M (5.1)

will eventuate. Evidently, then, Qiv changes the bound-
ary condition on the field P at z = +oo to a difFerent one
than at x = —oo, and thus changes the topology of the
Beld configuration upon which it acts, a change which is
quantified by the charge Q.

First, observe that, for the PCM,

II+(z) ~'(~)]]™~(z —~) = —
II &(z) +"(~)]]

where we have suppressed one pair of indices, and intro-
duced the O(1V) antisymmetrizer matrix

JG(z) = d9 p(z), Ji(*) = ~(z) —
S

[~*4(z) &(z)]
1 (M ),g —= h, Hag —b ebs, . (5 4)

(5.2)

So the J current algebra follows immediately from the
fundamental Poisson brackets

Note the distinction between matrix commutators, as
given by [, ], and Poisson brackets, as given by

]] . Combining the fundamental brackets with
(5.2), we compute in succession

[I JG(z) +'(»ll = o II Jo(z) &'(&)]] = M' ~'(z-u), lI JG(*), [~,4(V), 4(W)] "]] = o,

followed by

[I Ji(*) +'(v) ll
= -~(z —u) M' = —

lI +(z) Ji '(u)]]

(5.5)

(5.6)

[[Ji(*) ~'(~)]] = - -, [JG(*) M'] ~(z —~) + —, [&(z) M'] ~'(z —~) (5.7)

[[Ji(z) [&y4(~) 4(~)]'ll = [JG(~) M'] ~(z- ~)+ [4(~) M'] ~'(z-~) =
II Ji(*) [JG(~) +(u)]'ll

Now, substitution of these results into the expressions in Eq. (5.2) leads to the "topological" current algebra

l] JG(*) JG'(V)]] = o

[[Ji(z) Ji '(u) ll
= —[JG(z) M'] ~(z —~)

[[Jo(z) Ji '(~) Il
= M' ~'(z —v) =

]I Ji(*) JG '(v) II

(5.8)

(5 9)

(5.10)

(5.11)

N.B. Recall the distribution lemma f(x, y) b'(x —y) = —8(x —y) 8 f(x, y) when f(x, x) = 0. Also note, when P is
an antisymmetric matrix, [M, p]—:p 'M —M 'p', etc. Alternatively, [M, p],d = —[M', p] b, and similarly, for
antisymmetric P and et', [[M,P], Q],z = [[M', g], P] b
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Moving right along, bracket Zo with the local 6elds and topological currents. First, act on the 6eld and its conjugate
(recall Zp ——Jq + 2[Jp, P]):

KZ, (*),4"'(y) D ™h(z —y) = —K4(*),Z (y)]] (5.12)

II Zp(*) ~'(y)l] = 6[Jp(*) M'I h(z - y) —6[+(z) M'] h'(z y)-

= -h(z —y) [Jp(z), M ] —-8 (b(z —y) [P(z), M ]), (5.13)

In the last step, we have isolated a total spatial derivative to make transparent the action of the Qz charge on x. We
will often take such clarifying steps below.

Next act on the topological current components:

[[Zp(z), Jp (y)]] = M b'(z —y) = [[Jp(z), Zp (y)]], (5.14)

K Zp(z) JP'(y) II
= ——[Jo M"l h(z —y) —-[&(z) M") h'(z —y)

8*(b-(z-- y) [4(z) M'B = --[J. M"l b(z - y) —
K J~(z) Zo'(y)]]

2
*

2
(5.15)

K Jq(z), Zp (y)]] = ——[Jp, M ] b(z —y) + —[P(y), M ] h'(z —y) = —[P(z), M ] b'(z —y). (5.16)

Continuing this pattern, now bracket with Zq (recall Zq ——Jp + 2 [Jq, P]):

KZ~(z) 4"'(y) II
= —2h(z-y) [4(z) M'l = K4(z) Zf'(y) l] (5.17)

II Z&(z) m (y)ll =
I

[J&(z) M ] + [4(z) [Jo(z) M ]] I
b(x y) +

I
M [4(z) [4(z) M ]) I

h'(z y)
)

= h(z- y) I -[Ji(z),M"]+ -[4(z) [J.(z) M')]+ -[J.(*) [&(z) M']]
I

I, 2
' 3 ' ' 6

+8
I

h(z —y) I

M —-[y(z), [y(z), M ]] I I,
t' ( s 1

6 (5.18)

K Zq(z), Jp (y)]l = ——[P(z), M ) b'(z —y) = b(z —y) [Jp(z—), M ]
——8 (b(z —y) [P(z), M ]), (5.19)

K Z~(z) JP'(y)]] =
I

-[J~(z) M'] + -I@(x) [Jo(*) M')l
I

b(z —y) + M" h'(z —y).
(1, 1

(5.20)

Combining these, we arrive at the pseudo-Abelian "shift" current algebra

II Zp(z) Zo'(y)]] =
2

[Jp M'] h(z —y) (5.21)

II Z, (x), Z (y)]] = h(z —y) I

'[Z„M"l + [&, [J-., [&,M'-
q2

' 4 ' ' ' )' (5.22)

K Zp(*) Z'(y)ll =
I

-[J~ M'] ——IJo [& M')l
I

h(z —y) +
I

M' —-[&(z) [&(y) M']]
I

h'(z —y)g2
' 4 4

1= —h(z —y) [Jy(z), M ]+8
I

b(z —y) I
M ——[y(z), [y(y), M ]] I2 4 r) (5.23)
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I[z (*) z'(y) II

=
I

—[J~ M']+-f& [1o M']]
I

b(z-y)+
I

M'--[4(z), [4'(y) M']]
I

b'(*-y)
(2 4 4 )

= b(*-y)
I

-[J~(z) M']+ -[0' [1o M'1]+ -[Jp, [&,M'l] I+~*
I
b(*-y)

I

M'- -[4(z), [4'(y), M']]
I I4 ))
(5.24)

Pressing onward, consider the remaining local current, T„(recall Tp = Zy + [Zp p] and Ty —Zp + [Z~, p]):

IIT.(-) &"(y)P = 2[~, M'] b(*-» = ff«*),T: (y)P, (5.25)

[[To(z), vr (y)]] = —[vr, M'
] b(z —y) +M b'(z —y) = ffx(z), Tob(y)P,

3
(5.26)

I[To(*) Jo'(y) P
= --2[&(z) M'] b'(* —y) = —

lf Jp(z) To'(y) 1]

= b(z —y) -[Jp(z), M ]
—8

I
b(z —y) —[P(z), M ] I,

3

)
(5.27)

II To(z) JV'(y) P
=

I [Zo, M'] + - [Ji,M'] + l&, fJo, M']]
I

b(z —y) +
I

M'+ - [4 (z), [+(z),M']]
I

b'(z —y)

= b(* —y) [Z„M.
] -+ O.

I
b(* —y) I

M. + -[y(z), [y(z), M. ]] I I,
3, ( t'

b 1
(5.28)

[[T.(-), Z (y» =
I

-'[Z. , M']- -'[J., [~,M']]
I
b(*-.)+ I

M'- -'[«*),[«.), M"1]
I

b'(--»
2

'
4 j

= b(z —y) —[Z , M ] + (9
I b(z —y) I

M ——[()t)(z), [()t)(y), M ]] I

3 b
)'

b 1 .b

4
' )r' (5.29)

[[To(z) Zx'(y) p
=

I 2[Z~ M"] —[Jo M'1+ 4[& [1o [& M']]]+ 4[Jo f& f»M']]] I
b(z —y)(2

+
I

-[4(z),M']+ -[4(z), [4(z), [W(y), M']1] I
b'(z —y)

= b(*-y) -[Z., M']+~*
I
b(*-y)

I
-[0(z) M'1+ -[+(z), [0(z), [+(y), M'])]

I I,4
' )) (5.3O)

[[T (z), T (y)]] = —[To(z), M'] b(* —y) (5.3i)

II To(z) TP'(y) II

I

3[T„M'] -[J„[@,M']]+ -'[y, [Jo, [y, [y, M']]]]+-[J., [4 [4, [» M']l]] I
b(* —»

+
(

M "—-(W(*), fe(u) M'l)+ -(4'(*) (4(*),(4hr), fd(w), M'Ill)) &'(* —v)

[T, Mob]+ o)
I

b(z y) I
M b ——[p(z), [p(y), M ']]+ —[p(z), [4(z), [4(y), [4(y), M']]]l I I

.

Finally, consider the genuinely nonlocal current W„. (Recall ~o = 2[Zx, p]+ 2[To~ 4']+ [Zo~ Xz] and ~) =
2 [Zo~ p]+

~
[T~ p] + [Z~, ~z].) lt s~ces here to consider only the time component
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ll&o(z) d"(y)II = (Ixz yd'I —
Id Id, M"ll) d(z —y) —Iyo(z), M'] y(* —y)

This is sufficient to infer the action on P of the nonlocal charge Qiv = I dz Np(z):

5419

(5.as)

tqy, gi (y)]l = —[M', 0(y)], d(y) +2/ dzo(y —z)[Zo(z), M (5.s4)

as claimed at the beginning of this section.
Actually, it is not too difficult to extend this result for the Poisson brackets of the local field P with the first

genuine nonlocal charge to the full set of nonlocal charges as contained in the path-ordered generating functional y
of the previous section. To that end, we define the path-ordered exponential for an interval [z, y] (suppressing the K

dependence which is understood to be carried by Ci):

[z, yl = Pexp
I

— dz Ci(z, t) I,
w )

(5.s5)

and note the general relation for the variation of y induced by any variation of the matrix Ci, such as that obtained
from a Poisson bracket,

dy[z, y] = —f dz X[z, z] 6Cz(z)X[z, y]. {5.s6)

To determine the full nonlocal transformations of P and 7r we therefore utilize their Poisson brackets with y, or in
view of the last relation, with Cq. These are given by

[[C.( ) 4'(y)ll = , „,b(* - y) M" (5.a7)

K
[[C( ) 4"(y)]] =, , ~(*-y) M" (5.ss)

II Co(z), ~ (y)]] = --~(z —y) [Jo(z), M ] + ~
I b(z —y) I

™+ -[4'(z) M ] I I

—K 2 ab 1 b')'
1 —K,2 3 )) (5.sg)

[[Ci(z), vr (y)]] = ——~b(z —y) [Jp(z), M ]+8
I

b(z —y) I
M + —~[/(z), M ] I

—K 2

1 —K 3 ))
Thus, the full nonlocal transformations of the field and its conjugate momentum are given by

(5.40)

——K
g„gPb( )—:—I[Tr (ny[, — ]), IgPb( )]] = Tr (ny[, *] M g[*,— ]), (5.41)

1

b 7r (z) = Tr ny[oo, z]
I

—Jp(z) + —Ci(z), M
oo

Also note that

—-[&o(z) IM", d(z)II I
xfz, —~I) .

s )
(5.42)

I[C.(z), [a„y(y), y(y)]' ll
= , ", (S(z - y) [J.(*),M'] + a.(S(z - y) [4(z), M']))), (5.4s)

IICi(*) [&.4(y) 4(y)]'ll = ~ [[Cp(z) [~&4(y) 4(y)]'ll (5.44)

which, when substituted into by, yields the nonlocal transformation of [8 P, P] .
We may then combine all these results to obtain the full nonlocal transformation of the local currents. Vile find the

simple result (note that Ci + KJp —Kcp)

—-']c'
h„J„(z)= —[[Tr (Oy[oo, —oo]), J„(z)]]= Tr (Oy[oo, z] [C„(z),M ] g[z, —oo]), (5.45)

where all 6elds are evaluated at the same time.
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VI. CONCLUDING REMARKS [Jp Cp] = —[Jl Cl] = 2[JO, Jl]. (6.6)

b„'R =0, (6.1)

where

'R =
~ Tr JpJp+ JyJy (6.2)

since

2

[Jp, Cg] = —[Jg, Cp] =,[Jp, Jg]. (6.3)

Furthermore, (5.45) also shows that the momentum den-

sity is invariant under the nonlocal transformations:

The canonical machinery of the last section permits
us to address one 6nal point in conclusion. Davies et
al. [17] have criticized the use of Noetherian methods to
generate the nonlocal currents through nonlocal varia-
tions of fields, such as used in [15] for the Gross-Neveu
model. They argue that the proper demonstration that
the nonlocals constitute meaningful conservation laws,
even for the classical theory, must consist in showing
through canonical methods that they are constants of the
motion. That is, for the classical theory, the nonlocal
charges must have vanishing Poisson brackets with the
Hamiltonian, while for the quantum theory, they must
have vanishing commutators.

At least for the classical theory, the result (5.45) leads
to this result, and more. It immediately shows that the
Hamiltonian density is invariant under the full nonlocal
symmetry:

8„„=Tr J„J —2g„„JpJ" (6.8)

Thus we have established within the canonical framework
the conservation of all the classical nonlocal charges as
contained in the master charge generating functional.

A next logical step would be to consider the status of
this classical result in the context of the quantum the-
ory. This step will be taken in a subsequent investiga-
tion. SuFice it to say here that quantum corrections are
indeed expected in the transformation of the local energy-
momentum tensor. In particular, since the trace of that
tensor, 8„", probably does not vanish in quantum theory,
as suggested by the nonvanishing one-loop renormaliza-
tion flow, the nonlocal symmetry will probably not leave

the untraced local energy-momentum tensor invariant in

the quantum theory [18]. However, since the PCM is not
asymptotically &ee, a reliable short-distance expansion is

not within the grasp of direct perturbative methods for
this model. Therefore, a convincing analysis of nonlocal
transformations for the pseudodual quantum theory may
take quite some time.

Moreover, because the energy-momentum tensor is sym-
metric and traceless for the classical theory, these two
results lead to the conclusion that all components of the
classical local energy-momentum tensor are invariant un-
der the nonlocal symmetry:

(6.7)
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