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Improving the efFective potential, mnltimass problem, and modiSed mass-dependent scheme
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We present a new procedure for improving the effective potential by using the renormalization group
equation (RGE) in the presence of several mass scales. We propose a modification of the mass-

dependent (MD) renormalization scheme (MD scheme) so that the scalar mass parameter runs at most
logarithmically on the one hand and the decoupling of heavy particles is naturally incorporated in the
ROE's on the other. Thanks to these properties, the procedure in the MD scheme turns out to be very
simple compared with the regionwise procedure in the modified minimal subtraction scheme proposed
previously. The relation with other schemes is also discussed both analytically and numerically.

PACS number(s): 11.10.Hi, 11.15.Bt, 11.30.gc

I. INTRODUCTION

Recently, there has been renewed interest on how to
sum up large logarithms in the effective potential to in-
vestigate the standard model and beyond. Basically,
large logarithms such as ln(M/p), which makes the per-
turbation expansion unreliable, appear when one deals
with a system possessing a large mass scale M compared
with the scale p at which one discusses the physics. In
this situation one considers resumming the perturbation
series by using the renormalization group equation [1].
When one is concerned with the functional form of the
effective potential, one considers its renormalization-
group (RG} improvement. This has been well known
since the work by Coleman and Weinberg [2] for massless
A,P theory, although the complete description even for
massive A,P theory has been given only recently [3-5].

In many realistic applications, one often has to deal
with an additional mass scale m with the hierarchy
p «m ((M. In the supersymmetric standard model, for
instance, one can regard p, m, and M as the weak,
supersymmetry-breaking, and unification scales, respec-
tively. When we discuss such a system, we face the prob-
lem of multimass scales [6]: There appear several types
of logarithms, in(M/p) and ln(m/p), while we are able
to sum up just a single logarithm by using the RG equa-
tion (RGE).

In Ref. [7] one way to improve the effective potential in
the presence of multimass scales was described in the
modified minimal subtraction (MS} renormalization
scheme. The point was to make use of the decoupling
theorem [8—12] and to divide the energy region (region of
field space) so that in each region there remains essential-
ly a single logarithmic factor. Although there is nothing
wrong in principle, such a regionwise procedure may be
cumbersome in practice. So it is desirable to have an al-
ternative way to handle multimass-scale systems.

In this paper we propose a simple modification of the
conventional mass-dependent (MD) renormalization
scheme, which we call the modified MD scheme (MD
scheme), and apply it to improving the effective potential
in the presence of several mass scales. Basically, in the

MD scheme, the RG coefficient functions (P and y func-
tions) depend on mass parameters and hence the decou-
pling of heavy particles is taken into account in the form
of RG runnings [13]. In addition, the proposed MD
scheme has a property that mass parameters run at most
logarithmically while keeping the "automatic" decou-
pling in the RGE's; namely, it enjoys simultaneously that
(i} the quadratic running of the scalar mass parameters is
absent and (ii} the decoupling effects of heavy particles
are naturally built in. Based on these properties (i} and
(ii}, we show, by adopting a simple model with two mass
scales, that the same condition asin the single mass -scale-
case [4] is enough to achieve the RG improvement of the

effective potential over the whole region ofjkeld space.
We should remark that property (i) is crucial to prove

the above statement. Generally, in the MD scheme,
there appear nonlogarithmic and powerlike corections
proportional to p, which are potentially large in the
high-energy region. Such nonlogarithmic corrections
cause trouble in summing up the leading logarithms. We
modify the renormalization scheme in order to cure this
point.

The existence of nonlogarithmic corrections is related
to the scheme dependence of the RG-improved potential.
(To examine this point is another motivation of the
present work. ) Note that it is not trivial at all that the
RG-improved potentials in the MS and MD schemes
coincide with each other. Of course, the full effective po-
tential is independent of the renormalization scheme:
The effective potentials in various schemes are related to
each other pimply by changes of variables. The effective
potential correctly calculated up to a certain loop order is
also scheme independent since the loop expansion has a
scheme-independent parameter, the Planck constant A'.

In general, however, once one makes an approximation to
the full theory, it is quite possible that the results are
different scheme by scheme; some schemes give better ap-
proximations than the others.

In our case we approximate the full effective potential
by resumming "logarithmic" parts of the perturbation
series so that it satisfies the RGE. Then the scheme in-
dependence becomes nontrivial: The RGE relates "loga-
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rithmic factors" at different loop orders, but the "loga-
rithmic" structure will differ scheme by scheme. More-
over, there may appear nonlogarithmic corrections as
mentioned above. This is why there is no a priori relation
between the RG-improved potentials in various schemes.
Do they give the same approximations? This is the prob-
lem of the scheme dependence. Our result will support to
some extent the naive expectation that it is scheme in-
dependent.

This paper is organized as follows. In the next section,
we briefiy review the basic ingredients for improving the
efFective potential by the RGE. In Secs. III and IV, we
define the MD renormalization scheme and discuss its
basic features. We show that the RGE's in the MD
scheme inherit the property (i) as in the mass-
independent (MI) scheme [14]as well as property (ii) as in
the MD one. The absence of the quadratic running is
proved directly from the renormalization conditions, and
the automatic decoupling is established by utilizing the
decoupling theorem. A detailed study of the structure of
the effective potential in the MD scheme is given in Sec.
V. We first define the leading logarithmic series expan-
sion in the MD scheme and describe how to sum up the
leading logarithm. It will be shown, by examining the
high- and low-energy regions separately, that we can
correctly sum up all logarithmic factors over the whole
region and that nonlogarithmic corrections are in fact
small. After establishing the procedure in the MD
scheme, we compare the leading logarithmic potential in
the MD scheme with those in other schemes such as the
MS and MD ones in Sec. VI. By numerically solving the
RGE's, a good coincidence will be found. The final sec-
tion is devoted to conclusions and further comments.
Some one-loop results can be found in the Appendixes.

+g(i' M—~ g—P)P V—' '(y)

+ [P—linear terms], (2.2)

where the last term is the tree potential
V' '(y)—:co+m qP/2+Ay /4! and we have introduced
the masses for the boson (() and fermion g, respectively,

2= 2 X2
M~ =m +—y, MF=gy

2
(2.3)

in the presence of the scalar background y. When y is
small, the field P may be regarded as a heavy field and g
as a light field.

The starting point is that the effective potential is in-

dependent of the renormalization point p and thus
satisfies the RGE

O=p V=2)V(y, i,,g, m, to;p),
d

p
8 8 8 8="a + "a~+ ~p Bg 8 lnm

—ym4
~&alnq " a~ '

supplemented with the RGE's for parameters such as

(2.4)

(2.5)

d 2= d
p g=P, p m= —

y m, p to= —ym
dp dp dp

(2.6)

the scalar field vacuum expectation value (VEV),
q&= (P), we make a field shift P~P+q& in (2.1) and ob-
tain

X=—(BP) ——Ms/ — A—,q)P
——kP2 2 & 3 & 4

2 2 3! 4!

II. IMPROVING THE EFFECTIVE POTENTIAL
IN THE MS SCHEME

AND PROBLEMS OF MULTIMASS-SCALES

In order to explain the basic ingredients needed later,
let us first make a review of the procedure [4,7] for im-

proving the effective potential by using the RGE in the
MS scheme. We also describe why the problem of mul-
timass scales arises in the context of RG improvement of
the effective potential.

Following Ref. [7], let us consider the Yukawa model

X=—(BP) ——m P
— A/+ f(i8—gP, )P to, —(2.1)—

2 2 4!

where P is a massive real scalar field and
g=(g„. . . , gz) are massless Dirac fields. We take the
Dirac field to be N component in order to indicate which
correction comes from the fermion loop. For simplicity,
we impose "chiral-parity" invariance, P~ —P, g~ygb,
to forbid the bare mass of fermion. The last term co

(=hm in the notation in Ref. [4]) is a vacuum-energy
term, which is usually omitted, but plays an important
role [4] in the MS scheme. In this paper we assume that
both coupling constants g /(16m } and A, /(16m ) are
small and of the same order.

In order to compute the. effective potential V(q&) for

One can immediately write down the general solution to
(2.4) as

V(y, A, ,g, m 'co;p)
= V(p(t), A(t), g (t), m (t), to(t);e'p, ), (2.7)

where the barred quantities g(t), etc. , denote the solu-
tions of running equations with a running distance t from
the initial values y, etc., at the renormalization point p.
(Here we are regarding the RGE's as a difFerential equa-
tion with respect to an independent "time" t, not p. )

The RG improvement of the effective potential consists
in solving the RGE (2.4). The RGE (2.4} by itself, how-

ever, does not determine the RG-improved effective po-
tential since it is a first-order homogeneous difFerential
equation. We should impose the suitable boundary con-
dition on the functional form of V at a certain time t. We
call the boundary "value" of the potential the boundary
function The RG-impro. ved potential is fixed by requir-
ing that the right-hand side (RHS) of Eq. (2.7) coincide at
a certain time t with the boundary function. [The RGE
(2.4) guarantees that we can make a convenient choice of
t.] It is the choice of boundary functions that determines
how well the obtained potential approximates the exact
one.

How can we find a suitable boundary function?
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—(t)4) ——MS@ +%'(if M—F )41 1 2 1

g 2 2

M
1 A, i 1 A, 44—%4%
3I g2 4f g2

V(o)(~) (2.8)

and to regard 4 and 4 as our basic quantum fields. In
this forin the parameter g is an overall factor in front of
the action just like the Planck constant fi. So the L-loop
contribution (L &1) to the effective potential clearly
takes the form

2
L

y(L) 2 4 g
16m

X function in ln, ln
p p p g

(2.9)

In the MS scheme, we have two types of logarithms
ln(MF/p ) and 1n(M&/p ) in our two-mass-scale system,
both of which can become large. Since we know the loga-
rithms appear at most to the Lth power at the L-loop lev-
el, we can rewrite Eq (2.9) as.

MF t+j
V(L)

' L —ti+ j)

v( J~ (xgy)sos) (2.10)

by introducing the variables

Let us work in the MS scheme for a moment and ex-
amine the detailed structure of loop corrections to the
effective potential. [The following arguments are valid in

any mass-independent (MI} schemes since the structure of
loop corrections does not change. ] The simplest way [4]
to see this is to rewrite our Lagrangian (2.2) by rescaling
the fields by a factor g as 4=gP and 4=gg into

Although we are assuming that the coupling constant

g /(16ir ) is small, we should regard the "Kastening
variables" SF and ss as of order 1 since the logarithms

may be large. The other variables x,y and hence the
coefficient functions v '(x,y} are also of order 1. Then
we sum up V' ' with respect to L and further rewrite it as
a summation over I =L (—i +j),

MF4
' I

V= g V' '=a)+ i g 2 f, , (2.13)
i=p g i p 16m.

fi(SF,ss, x,y): g—v j~+'+ '(x,y)sFsg,
i j ~0

(2.14)

where we have included the tree part fp =x '/2 —Sy/24
into the summation. This form of the expansion of the
efFective potential, first introduced by Kastening [3] for
the single-mass-scale case, is called the leading logarith-
mic series expansion. When expressed in terms of the
variables (2.11) and (2.12), it is the power series expansion
in the small coupling constant g /(16m ). The
coefficients fo,fi, . . . , fI, ... corresponds to the leading,
next-to-leading, . . . , 1th-to-leading, . . . , logarithmic
terms, respectively. Of course, it does not matter wheth-
er one uses A, instead of g as the expansion parameter.

Now let us return to the question of how to specify the
boundary function. The summation in (2.14) for the ith-
to-leading logarithmic term f& involves the quantities at
the (L =1,i + 1,... )-loop level. If one could set

SF=ss =0 in (2.14},then only the first term with i =j =0
would survive and the summation would terininate at
finite-loop order, L =i:

fr(0, 0;x,y)=vo(o )(x y) . (2.15)

Since v p o can be obtained by computing the L loops, this
would imply that one could use the 1-loop potential
V&= V' '+ + V'" evaluated at sF =ss =0 as the
boundary function for the 1th-to-leading logarithmic po-
tential. In other words, if one could find a tiine to such
that

g2 MF2

sF —= ln
16ir p2

MFx= , y=
M g

g2 Mg
sz =— ln

16iri p2
(2.11)

(2.12)

sF(ip ) =ss(rp )=0 (2.16)

then the desired 1th-to-leading logarithmic potential
would be given' by requiring that the RHS of Eq. (2.7) be
the boundary function VL F B

MF(to )
V(y, A, ,g, m, a);p)= VL i(qr(t), X(t),g (t), rn (t),a)(t);e'p) (,) p+ XO

s~(t) =0

1+1
g'(ro)

16m
(2.17)

sF(rp )—ss (rp )=0
16

(2.18)

As can be seen from Eq. (2.10), under this condition,

Actually, the condition (2.16} is sufficient, but not a
necessary one. For our purpose it would be enough to
find a time to at which the logarithmic factors sF(tF ) and
ss(tp ) are of 0 (g /16&), instead of zero:

I

these logarithmic factors contained at the L-loop level
reduce to precisely Lth-to-leading logarithmic order

iAs was proved in Ref. [4), one should use the RGE's at
(I + 1 )-loop order. Note also that, strictly speaking, the error in

this equation is O((g /16m )'+'), not O((g /16m )'+'), but the

difference will be small unless some coupling blows up (where

our approximation itself does not make sense).
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III. MODIFIED MASS-DEPENDENT SCHEME

In this section we give a definition of the modified MD
scheme (MD scheme). For the theory (2.1), we define the
MD renormalization scheme by the following renormal-
ization conditions. For the scalar two-point vertex I

&
',

we impose

I ~' =—lim (I ~'~, )=0,
m ~0

(3.1)

(3.2}

r(2)
~

lP2 — 2 (3.3}

The fermion two-point vertex takes the form
I &)= A(p )P due to the chiral-parity symmetry, for
which we require

P = P
(3.4)

quantities. So to obtain the boundary function for an
lth-to-leading logarithmic potential, it would be neces-
sary and sufficient [7] to retain these logarithmic factors
up to 1 loops, just as in Eq. (2.17).

Unfortunately, such a condition (2.16), or an even
weaker one (2.18), cannot always be satisfied simultane-
ously since the difference s~ —sF becomes of order 1 when

g ((() « m . The RGE (2.4) enables us to set just a single
variable to the desired value, but not several variables.
So one cannot find a solution to (2.16) or (2.18}and is left
with the infinite summation in (2.14). This is the problem
of multimass scales in the context of the RG improve-
ment of the effective potential.

Now we examine whether the MD scheme provides us
with a solution to this problem. Even in the MD scheme,
one will have a similar structure of the leading 1ogarith-
mic series expansion as in Eq. (2.13). However, there ex-
plicitly appears the renormalization point p in the
effective potential, other than in@. Such explicit p depen-
dence is closely related to the existence of the quadratic
running of the scalar mass and makes perturbation
theory unreliable. In particular, in the context of the
leading logarithmic series expansion, it may make the
coefBcient functions v' ' arbitrarily large. In fact, as we
shall show in the following sections, we remedy this point
by modifying the renormalization conditions in the MD
scheme.

I (0)i — I (0)i —0
m =0

0~ 2 m =0
OPl

(0)—I = —h.
8pl

(3.6)

Clearly, the vacuum-energy term 03=hm, which played
an important role in the MS scheme, is completely in-

dependent of the renormalization point and is irrelevant
for later discussions. (Instead, one can simply impose
r(0) = —03.)

The new set of the renormalization conditions
(3.1)—(3.5) is a modified version of the MD ones. We
have modified the conditions on the scalar two-point ver-

tex, Eqs. (3.1) and (3.2), which take the place of a single
condition

(3.7)

in the conventional MD scheme. With this modification
the MD scheme enjoys the properties announced in the
Introduction; to be precise, (i) in the high-energy region
)u2 »m2, the RGE's in the MD scheme approach those
in a certain mass-independent scheme —in particular, the
mass parameter runs at most logarithmically, and (ii) in

the low-energy region )u «m, decoupling effects are au-

tomatically taken into account in the RGE's and the ver-

tex functions. As we shall see, it is crucial to separate the
condition (3.7) into Eqs. (3.1) and (3.2) in order to realize

property (i), which will play an important role in Sec. V.
Before showing properties (i} and (ii}, let us take a close

look at the renorrnalization conditions (3.1}-(3.5). First,
they differ from those in the MI scheme [14]. In the MI
scheme, one treats a one parameter family of theories
with difFerent values of mass and renormalizes them at a
certain value such as m =0, m =)u; one imposes, for in-

stance for I ~& ', the condition (3.1) and

= —1(2)

()I '
m =0

r(2)
()p p =2

rn 2=0

(3.8}

Clearly all the renormalization constants are independent
of the renormalized mass parameter m . On the other
hand, in our MD scheme, we are still treating, in a sense,
a one parameter family of theories with different values of
mass in order to impose the conditions (3.1} and (3.2).
With the renormalization conditions (3.2}—(3.5), however,
the renormalization constants Zx for X =(((, g, m, g, A.

generally depend on the ratio p lm:
Finally, for the Yukawa vertex I z

' and the scalar four-
point vertex I

&
', we impose

pg I
Zx =Zz X,g,ln; z

p p
(3.9)

pp = —ps, +p() —s, )/3

(3.5)

where we see the boson external momentum equal to zero
in r")

g
To be precise these renormalization conditions

(3.1)—(3.5) should be supplemented with that for the
zero-point vertex I' ':

The RG coefficient functions (P and y functions), which
are calculated from the Z's, also depend on the mass pa-
rameter.

Second, the renormalization constants Zz are con-
sistently determined in the MD scheme. A complication
occurs only in the scalar two-point vertex, while other
vertices can be treated in the same manner as in the MD
scheme. Let us write the scalar two-point vertex as
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I'~&'(p, —p;m )=Z&p —Z m +II(p;m ) . (3.10)

As usual, the wave-function factor Z& is determined by
the condition (3.3):

0.8-

(3.11)

lim m Z =II~,
m ~02

m p=m =0' (3.12)

As for Z, the renormalization conditions (3.1) and (3.2)
yield, respectively,

0.2-

0 -10 -5 5
1nz

10 15

1+m Z
FIG. 1. "Interpolating" functions K& (solid line), Kg (dashed

line), and Kq (dot-dashed line).

=1+ II
Bm

1 —p
Bp 2 2

(3.13)

where we have used Eq. (3.11) in deriving Eq. (3.13). Ob-
serve that Eq. (3.13), being a difFerential equation, does
not completely determine Z . This is most evident by
noting that a piece Z -p /m drops from the I.HS of
Eq. (3.13). What determines this piece is precisely Eq.
(3.12). Thus we see that the renormalization condition
(3.1) provides the condition (3.2) with a boundary condi-
tion and that all the renormalization constants are
uniquely determined in the MD scheme.

Now, let us look at one-loop examples and confirm that
properties (i) and (ii) actually hold. (See the Appendixes
for more details. } The P and y functions are given by

2 2

16m y~=2Ng, 16/y~= Kg

2

16rry = 4Ng, 16vr Ps
=—6g Ks z +4Ng

m
I

(3.14)
2

16&y„=O, 16'&=3k, K& 2 +8Ng (A, —6g ) .

The functions Kx(z) (X =P,g, A, ) are defined by

K (z) = 1+———1+— ln(z + 1 ),2 2 1

z z z

K (z)=1+ — 1+ ln(z+1),2 4 1

3z 3z 2z

3 1 &1+3/z+I
2z V'I+ 3/z &1+3/z —1

(3.15)

which are normalized to be 1 in the high-energy limit
z(=p /m )~oo and, remarkably, vanish in the low-
energy limit z ~0 (see Fig. 1):

16/y = 4Ng z,—16' Ps =6g +4Ng

16m y„=——' 16'~=3k, +8Ng (A, 6g ) .—
(3.17)

In the low-energy efFective theory, we keep only the terms
proportional to N in Eqs. (3.17) and have the RGE's

16&yp=2Ng, 16rry~=0,

16/y = 4Ng, 16&—P =4Ng

16m y„=O, 16/P&=8Ng (A.—6g ) .

(3.18)

By comparing Eqs. (3.14) with Eqs. (3.17) and (3.18), one
clearly sees that the ROE's in the MD scheme interpolate
those in the MI scheme for the high- and low-energy re-
gions.

At one-loop order, the y in the MD scheme is the
same as in the MI scheme:

p m'= g m'd 4N

dp 16m'
(3.19)

which means that the mass parameter in the MD scheme
runs logarithmically, as claimed in (i). (See Fig. 2.} This
is the result of our modification of the renormalization
conditions. This is in sharp contrast to the case of the
conventional MD scheme. Indeed, with the MD renor-
malization condition (3.7), a fermion one-loop contribu-
tion to I &2' produces [15,16] a piece proportional to

(3.16). This is nothing but the decoupling of heavy-
particle loops, as claimed in (ii).

In the MI (or MS) scheme, the RGE's do not have such
a property of the automatic decoupling. Instead, one has
to switch from the full theory to the low-energy efFective
theory. In the MI scheme, the RGE's for the full theory
are

2

16rr yp=2Ng, 16&y~=

~1 as z~oo,
Kx(z)~ (3.16)

Recall that the terms proportional to N come solely from
the light-particle (fermion) loops. Others come from the
heavy-particle (boson) loops. The latter terms are accom-
panied by the functions Ex, which have the property

Here we adopt the renormalization condition as in Eq. (3.8).
If we renormalize I

&
' at m =p, instead of m =0, then the y

in such a MI scheme coincides with that in the MS scheme:
lory = 4Ng A,. But the di—fference—is not so important
here.
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I
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I
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I
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i

I
I

I

30

p+@ ~
—p m

p P IM

Now we use the RGB for I ~&
'..

0= n —2y —y m' I "',

—f (0,0)

(4.2)

(4.3)

FIG. 2. Typical behavior of R in the MD (solid line), MS
(dashed line), and MD (dot-dashed line) schemes. All schemes
as well as the full and e6'ective theories in the MS scheme are
matched at ln(p/m ) =O.

8 8
2)= jt2 +P& +Ps

Bp BA, Qg
(4.4)

Inserting the general form (4.2) into Eq. (4.3) and taking a
limit m ~0 after setting p =0, we obtain that

p /m iny

2

O=limmy 1 —p f 0,
m

p Bm p
(4.5)

d 2 4' 2 2
p m = (m+@).

dp 16~'
(3.20)

Since the quantity in the square brackets does not vanish
(at least perturbatively), Eq. (4.5) implies that

One sees that the running of the mass parameter is com-
pletely different from that in Eq. (3.17) since the second
term on the RHS of Eq. (3.20) dominates in the high-
energy region [while it approaches that in Eq. (3.18) in
the low-energy region]. If such quadratic running is

present, the ROE's never interpolate the MI ones in the
high- and low-energy regions.

IV. LOGARITHMIC RUNNING
AND AUTOMATIC DECOUPLING IN THE RGK

In the last section, we illustrated properties (i) and (ii)
of the MD scheme by one-loop examples. %e now
present the general argument to show that these proper-
ties hold to any loop order.

Basically, property (i) follows from the fact that we in-
troduce the p dependence only through the dimensionless
combinations of vertex functions I'"' (nWO), such as
(Blam )I' '. In other words, we never introduce the p
dependence in the renormalization condition (3.1) on I ~&

'

which has dimension 2. Since the dependence on p is in-
troduced only through quantities which are at most loga-
rithmically divergent, we do not meet the quadratic
dependence on p.

This property (i) can be confirmed directly as follows.
First, condition (3.3) determines the momentum depen-
dence of the two-point vertex to be

r(2)= 2 —m2 —2C
m + P P

2
( 2+ 2)2—p Pl pC

p p

—p m

p p

(4.1)

Condition (3.2) implies that the unknown function c is in-
dependent of m, and condition (3.1) determines it to be
f (0,0). Note that the function f should be nonsingular
in the limit m —+0 since I

&
' has a massless limit. Then

the renormalized scalar two-point vertex in the MD
scheme takes the form

0= limm y
m ~0

(4.6)

pgp& p
m m

(4.7)

where b and 2f stands for the number of external bosons
and fermions, respectively: n =b +2f. I"'"' does not de-

pend on N except for n =2.
Originally, the low-energy effective theory is not com-

pletely 6xed by specifying the Lagrangian itself. So we fix
it by imposing the same MD renormalization conditions
as (3.1)—(3.5). Then, let us look at the scalar two-point
vertex

Since the quadratic running of the mass parameter corre-
sponds to the behavior y -p lm, Eq. (4.6) proves the
absence of the quadratic running in the MD scheme.

Next, we turn to property (ii). Let us examine the rela-
tion between the full theory in the low-energy region and
the low-energy effective theory. Here the low-energy
effective theory is obtained from the full theory by re-
garding heavy fields as external fields (instead of quantum
fields), i.e., by taking out heavy-field internal lines. What
we want to prove is that, in the MD scheme, the full

theory in the low-energy region will automatically go
over into the 1ow-energy effective theory.

In order to find such a relation, we make use of the
decoupling theorem [8-10]: The contributions due to
heavy particles, aside from those which are suppressed by
the inverse power of the heavy mass, can be renormalized
into the parameters of the low-energy efFective theory.
Let I '"' be the n-point vertex in the full theory and I '"
the corresponding vertex in the low-energy effective
theory. (We denote the quantities in the low-energy
effective theory by the tilde. } Then, according to the
decoupling theorem, when all the external moments p; as
we11 as the renormalization point p are small compared
with the mass m; i.e., for ~p, p ~, p ((m,
1'"'(p, ,g, A, , m;p)=Z~ Z~~l '"'(p;,g, X,m;p)
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2 2I' '(p —p)=Z I' '(p —p)+0

X[—p2 or p~], (4.8)

the RG coefBcient functions in both theories are the same
modulo O(p /m ) corrections: For X =g, A, and
Y=g, f,m, we have

where we have retained a factor —p or p . (m never
appears here. ) By differentiating this equation with

res~ect to
g

and setting p = —p, conditions (3.3) for
I

&
and I

&

' lead to

2

Z =1+O
2

(4.9)

Similarly, one can use the conditions (3.4) to show that

2

Z =1+O
2 (4.10)

Thus the relation (4.7) between I'"' and I'"' reduces sim-

ply to

I'"'(p, g2, A, , m~ p, )

Px Px+0, y) =ye+0p p
m m

(4.15)

r' ' =p —m +O((p +p ) ) . (4.16)

Inserting this into the RGE (4.3) and setting p = —p,
we obtain

This completes the proof of property (ii).
It is instructive here to see how the MD scheme

modifies the conventional MD one. Let us apply the
same reasoning as above in the proof of (i) to the conven-
tional MD scheme. Again, because of condition (3.3), the
renormalized two-point vertex takes the form (4.1). Now,
the renormalization condition (3.7) determines the un-
known function c(g, A, ;m /p, ) tobe zero:

2
=I'"'(p, ,g', X,m';q)+O ',', ", . (4.11) y = —2 1+ yp.p (4.17)

As for the dimensionless couplings g and A, , we set
p = —

lu in Eqs. (4.11) with n =3,4 and use conditions
(3.5) in the full and the low-energy effective theories to
obtain

2 2

g =g+0, , A, =X+0 (4.12)

In this way the finite renormalizations are not necessary
also in the coupling constants. It remains to show that
the same is true for the mass parameters

2

m =m +O(p )=m 1+0
m

(4.13)

We use the general form of the scalar two-point vertex
I I,

' [Eq. (4.2)], from which we have, by setting p = —p,
I P'~ &,= —

IM
—m —p f(0,0) . (4.14)

We also have the same expression for I'& '. Inserting both
expressions into Eq. (4.11) with n =2 and p = —p, we
have

—p —m —p f(0,0)

2

p m pj(0, 0—)+p—0—
m

which is nothing but the desired result (4.13). Thus, once
the low-energy effective theory is renormalized by the
same MD conditions, we no longer need the finite renor-
malization relating the ful1 theory in the low-energy re-
gion to the low-energy elective theory; all parameters in
the MD scheme automatically go over into those in the
low-energy effective theory.

Since the parameters in high- and low-energy theories
are related in a way described above, it is easy to see that

This clearly shows that the mass parameter in the MD
scheme runs quadratically in the high-energy region (as
long as the wave-function renormalization y& does not
vanish).

Let us recapitulate this in a different way. In the MD
scheme, the scalar two-point vertex (4.16) satisfies all the
MD renormalization conditions except the condition
(3.1), and we meet the quadratic running of the mass pa-
rameter mMD. Now, we finitely renormalize the two-
point vertex so that the condition (3.1) is satisfied. By re-
quiring the equality between the expressions (4.16) and
(4.2) atp = —p, we have

mMD=mMD+p f(0,0) . (4.18)

V. IMPROVING THE EFFEt.l'IVE POTENTIAL
IN THE MD SCHEME

We now turn to our main task of how to improve the
effective potential in the presence of several mass scales
by using the RGE in the MD scheme. Let us first de-
scribe the structure of the effective potential for the sys-
tem (2.8) in the MD scheme. This can be done by apply-
ing almost the same reasoning as reviewed in Sec. II for
the MS case. A difference arises from the finite part of

This shows that the mass parameter m MD is just the loga-
rithmic part of mMD. We have succeeded in separating
the logarithmic and quadratic parts in m MD by dividing
the MD renormalization condition (3.7) into the MD
ones (3.1) and (3.2). This is property (i).

In this way we conclude that the present MD scheme
simultaneously enjoys the "automatic" decoupling of
heavy particles (as in the conventional MD scheme) and
logarithmic RG running (as in the MI scheme).
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counterterms: There appears another type of logarithmic factor ln(m /(M ) and nonlogarithmic dependence on (M. So
the L-loop contribution now takes the form

4
(L) F

L 2 2
~

MF M~ m 2

Lth order polynomial in ln, ln, ln
16~ p p p

MF' X P'
whose coefficients depend on

M g m
(5.1)

Introducing the variables

MF'
X=

M

MF
ln

p
m

ln
p

M~
s, ——g, ln

16~ p

p
Z 7

m

(5.2)

(5.3)

we rewrite Eq. (5.1) (L ~ 1) as

i+j +k +L
V(L)—

2
i j,k ~0

L —(i +j+k)

16~

x v,', )k(x,y, z)SFS)(S" . (5.4)

Then we dejfne the leading logarithmic series expansion
in the MD scheme by

00 4 'I
V= g V' )=co+ g f

L =0 g I 0 16m

fl(SF,sB,sm', x,y&z)

(5.5)

v
(l+ i+j+k)(,y, z)s i

sg k, (5.6
ij,k ~0

where we have again included the tree part into the sum-
mation and we have defined the order 1 of this expansion
as1=L (i +j+k)—.

The leading logarithmic series expansion (5.5) is the
I

I

power series expansion in a small coupling constant

g /(16m. ), as before. Compared with (2.14) in the MS
scheme, however, the coefficient functions U .

k have a
dependence on the new variable z =p /m, which poten-
tially makes U J k large. So we do not know, at this stage,
whether or not the expansion (5.5) is a sensible one; we do
not know whether or not terms in the (1+1)th-to-leading
logarithmic order are smaller than those in the 1th-to-
leading logarithmic order. Furthermore, we have a loga-
rithmic factor s -ln(m /(M ) in addition to the "origi-
nal" ones (2.11) SF and Ss. So it is not obvious how one
can sum up these logarithms simultaneously by using the
RGE, which can eliminate just a single variable.

At first sight the situation in the MD scheme appears
to be worse than in the MS scheme due to the new vari-
ables s and z. What saves the day are the properties es-

tablished in the last section. Based on properties (i) and
(ii) as well as the fact that the model has a well-defined
massless limit, we claim that the single condition

sF(t) =0 (5.7)

is enough to determine the correct boundary function
over the whole region of field space. The potentially
dangerous variable z =((t /m is in fact harmless and the
remaining logarithms sz and s are automatically
summed up; otherwise, they decouple. As a result, with

the 1-loop effective potential VL l and ( I + 1)-loop
RGE's in the MD scheme at hand, the 1th-to-leading log-
arithmic potential is given simply by

4 1+1
MF(to) g (t())

V((p, k,g, m, to;p, )= VL, ( (p(t), X(t),g (t), m (t),co(t);e'(t)~ (,) o+ XO'F'"
g (t() ) 16m.

(5.8)

The proof of the statement proceeds in a regionwise
manner; we divide the field space into the larger (p (high-
energy) region g qr &)m, the small y (low-energy) re-
gion g y «m, and the intermediate region g y -m,
and prove that the statement holds region by region. We
should stress here that the final answer (5.8) does not re-

Loop corrections themselves depend on m only through the
combination Mz =m +A,y /2 since we evaluate the potential
in the background y=(P). But since the renormalizatiou con-
stants are determined in the symmetric phase y=O, counter
terms produce the dependence on ln{m /p ) and p /m .

quire us to divide the region of field space unlike the pro-
cedure in the MS scheme.

First, the proof is rather simply in the intermediate re-
gion g y -m . In this region, sz and s are of
O(g /16m ) from Eq. (5.7) and the weak condition as in

Eq. (2.18) is satisfied. So st) and s are already summed

together with sF by the single condition (5.7) and the
correct choice of the boundary function is the same as in

the single-mass-scale case, i.e., VL F

4This is why we have used the logarithmic factor of the lightest

particle in the condition (5.7).
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Concerning the asymptotic regions (g y »m and

g gP«m ), we make an observation needed for the
proof. The boundary function is defined by setting

p =M+ (=g qr ) and depends on m only through the
ratio m jp . It follows that as far as the boundary func
tion is concerned, taking the high-energy limit

p =g y ~00 is equivalent to considering the massless
limit ~ ~0, while the low-energy limit p =g y ~0
corresponds to the limit m ~~.

It should be noted that the validity of this equivalence
between the high-energy and massless limits heavily de-
pend on property (i). If m run quadratically, then the
ratio m jp would approach a finite value in the high-
energy limit, and the equivalence would break down.

A. High-energy region (g qP »m )

Now, let us begin with the large qr region, g y &&m .
The second logarithmic factors sz becomes asymptotical-
ly equal to the first logarithm sF:

g A, 2m
B F 2 -2 + + -216' 2g A, ip

g'
16m

(5.9)

as is the case in the MS scheme [7]. (Recall that

y =A, /g —1.) So setting sF equal to zero is equivalent to
setting s~ equal to zero, modulo the quantities of
O(g /166), which is of higher order in the leading loga-
rithmic series expansion. Physically, we can regard the
massive particle (here P) as massless. Thus the condition
(5.7) automatically sums up the second logarithmic factor
ski as well as the first one sz.

Next, let us make sure that the variable z =p jm
does not make the coefficient functions v' ' large in the
high-energy limit z~ &e. To this end it is enough to see
that there is no positive power term in z when the poten-
tial is expanded asymptotically in z '

( «1). As noted
above, this limit is equivalent to the massless limit m ~0
in our boundary function and we know that there arises
no singularity in the latter limit. This establishes that
powerlike pieces of p /rn vanish in this region.

As for the third logarithmic factor s, we show that it
does not contribute to the boundary function. Since we
know that the massless limit is regular, the dangerous
variable s in this limit disappears in our boundary func-
tion like

B. Lowwnergy region (g qP &&m )

Next, we turn to the small y region. Now, s~=0 no
longer implies sB=O since their difFerence sz —sF be-
comes of order 1. Furthermore, s is also large. So we

m m
ln ~0 .

p p
Thus we no longer need to sum up this logarithmic factor
in the high-energy l&mit g p =p &)~ . This establishes
our claim in the large y region.

cannot sum up these two logarithmic factors s~ and s
simultaneously. Instead, we shall show that in the low-

energy limit g qP~O, the logarithmic factors ski and s
as well as z =p, /m decouple so that we no longer need
to sum them up.

This can be seen by using the decoupling theorem. As
in Eqs. (4.12), (4.13), and (4.15), all the parameters as well
as the P and y functions of the full theory approach, in
the low-energy limit, those of the low-energy efFective
theory. In particular,

SF YF +0 p
m

(5.10)

This property of the automatic decoupling holds also for
the effective potential itself. In particular, the boundary
function Vl, o satisfies

F

2 2

VI, ,=VI, ,+M,'xO g ~
sF 0 yF 0 F

m
(5.11)

VI. COMPARISON WITH OTHER SCHEMES:
NUMERICAL STUDY

In this section we work with the leading logarithmic
order and demonstrate the results of the RG improve-
ment. At the leading logarithmic order, we use the tree
potential V' ' as the boundary function and one-loop
ROE's.

Note that our procedure is such that, at an individual
point y in field space, the value V(y) of the improved po-
tential is evaluated by Eq. (5.8). Actually, this is not
economical since we solve the running equations at each

As explained in Ref. [4], one can avoid this duplica-
tion by Snding the value of p corresponding to the solu-
tion to sz(t) =0 for each value of the running distance t
Namely, as we solve the running equations, we simultane-
ously obtain the value of the effective potential at

2

2 2f2 1 (0)

g (r) q(r)

The last factor p(0)/g(t) does not depend on the initial
value qr(0). We set p=m for later convenience. Then,

Here V is the efFective potential in the low-energy
efFective theory fixed by the same MD renormalization
conditions and we have replaced sF =0 with fz =0 'by us-

ing Eq. (5.10). (A one-loop example can be found in Ap-
pendix A. ) From this expression we see that there is no
contribution from the potentially large variables ss and
s as well as negative power terms in p /ni . The first
term V does not contain loop efFects due to heavy parti-
cles by definition. Furthermore, the remaining terms are
small by themselves. Thus we need not sum up sB and
s . This establishes the correctness of our boundary
function in the low-energy asymptotic region

g p =p &(m . Together with the automatic decou-
pling (ii) in P and y functions, this completes the proof of
our assertion in this region.

In this way we establish the procedure to improve the
effective potential. The final answer is given by Eq. (5.8).
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Eq. (6.1) becomes

g'q'
2 +1 g'(0) y'(0)

m g (t) {p~(r)
—2t, (6.2)

so that the region g y ~m corresponds to t &0.
We compare the improved potential in the MD scheme

with those in the MS and MD schemes. For this purpose
we should match the renormalized parameters in
difFerent schemes in order to guarantee that we are treat-
ing the same system. For the leading logarithmic poten-
tial, the parameter relations should be exact also in the
leading logarithmic order. By using the fact that the im-
proved potential exactly satisfies the RGE (2.4) with one-
loop P and y functions, we match the parameters at
p=m. Then the parameter relations reduce to the tree-
level ones since s -ln(m /p )=0.

We now show the result of our numerical calculations.
We present it in a moderate case (a}g =0.55, A, =2.3 and
in extreme cases (b) g =0.5, A. =2.5, in which A, blows
up, and (c) g =0.7, A, =2.0, in which the vacuum be-2=
comes unstable. We set m =1 (as the mass unit), N =1,
and the vacuum energy to co=0 so that V(p=0)=0.
Figure 3 shows the asymptotic behavior of the leading
logarithmic potentials in the MD, MS, and MD schemes
for case (a}. (Other cases are similar and so are omitted. )
The horizontal and vertical axes are ln(y /m ) and
1n~ V/m ~, respectively. We find that the scheme depen-
dence is quite small. This can be understood from the
fact that since we are using the tree potential as the
boundary function, the asymptotic behaviors in the large
and small q regions are mainly determined by the quartic
coupling A, and mass m, respectively.

The behaviors of g (t) and A, (t) in the MD scheme are
shown in Fig. 4. The horizontal axis is the same as in
Fig. 3. The scheme dependence is mild even in the ex-

treme case (b) where the quartic coupling A, blows up in
the high-energy region and the case (c) where X becomes
negative and a vacuum instability occurs.

In order to examine how much the RG improvement is
obtained, we evaluate the difference of the improved po-
tential V from the tree one V' ' normalized by V' ':

(6.3)

10
(a)

)~ 6.

—10

10

s (b)

10 20 30
in(y'/m')

4.
2.

Figure 5 show the results of yMD, yMs, and yMD, respec-
tively, for each case of the parameter choices. As expect-
ed, the longer distance we run from t =0, the larger im-
provement is obtained. The large improvement ~y~ -1 is
obtained for 2t -30 since the variables sF and sz become
of order 1 for our parameter choices. In extreme cases,
an even larger improvement is obtained, but the leading
logarithmic approximation itself breaks down for these
cases.

60

= "'0

E 30-
20-

t

0 10
(c)

10 20 30
ln(y'/m')

10 20
in (p'/m')

FIG. 3. Asymptotic behavior of the leading logarithmic po-
tential in the MD (solid line) MS (dotted line), and MD schemes
(dot-dashed line). The inputs at p=m are g =0.55, k=2. 3
[case (al]. V-g& in the large p region and V-qP in the small y
region.

4.

—10 10 20 30
1n(p~/m~)

5A rather good coincidence is found between the MS and MD
schemes. It is not clear to us that this persists to higher leading
logarithmic order since the reasoning presented in Sec. V will
not apply to the conventional MD scheme.

FIG. 4. (a) Behavior of A, (solid line) and g (dashed line) in
the MD scheme. The input is moderate one: g =0.55, A, =2.3.
(b) Same as (a) for the extreme case g~=0. 5, A, =2.5. A, hits Lan-
dau singularity in the high-energy region. (c) Same as (a) for the
extreme case g =0.7, A, =2.0. I, becomes negative to cause the
vacuum instability.
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Finally, we add a remark. We can further improve the
approximation by requiring that the potential be correct
not only in the leading logarithmic order, but also in the
one-loop level [4,7]. For this combined approximation,
we should use the one-loop potential as the boundary
function while one-loop RGE's are enough. Also, the pa-
rameter should be matched at the one-loop level by per-
forming a finite renormalization at p= m.

2

(a)

0.5.

0

-0.5

—10 10 20 30
1n(p'/m~)

1.5 (b)

0.5-

0

-0.5

-10 10 20 30
ln(rp~/m2)

2.
(c)

0. 5

-0.5

-10 10 20 30
ln(rp'/m2)

By matching at p, =m, higher-order terms are small in the MS
and MD schemes. This might not be the case in the convention-
al MD scheme.

FIG. 5. (a) "Character" yMD (solid line), y—
s (dashed line),

and yMD (dot-dashed line) for the moderate case (a). The large
improvement is obtained in asymptotic regions. (b) Same as (a)
for the extreme case (b). Because of Eq, a sizable scheme depen-
dence is observed near Landau singularity. (c) Same as (a) for
the extreme case (c). Since the mass term dominates the quartic
term in V, a sizable difference from the MS and MD schemes is
observed in the MD scheme.

VII. CONCLUSIONS AND DISCUSSIONS

We have discussed the issues concerning the RG im-

provement of the eS'ective potential in the presence of
several mass scales. Originally, the coexistence of mul-
timass scales causes trouble in determining the boundary
function needed for the general solution of the RGE. By
adopting a simple model possessing two mass scales, we
have seen in this paper that the MD scheme provides us
with a suitable choice of boundary functions without di-
viding the field space: The correct boundary function for
the Ith-to-leading logarithmic potential is just the I-loop
potential evaluated at sz =0.

The MD scheme is the new renormalization scheme
proposed in this paper. Its crucial properties are the au-
tomatic decoupling of heavy particles and the absence of
quadratic running of scalar mass. These properties en-
able us to show that the leading logarithmic series expan-
sion is well defined even in the presence of nonlogarithm-
ic corrections. Then the procedure can be stated by a sin-
gle condition over the entire region, which is the same as
in the single-mass-scale case.

We make a comment on other possible methods to
handle multimass-scale systems. First, we already have
the procedure in the MS scheme [7]. Such a regionwise
procedure will be cumbersome especially when there are
many mass thresholds. In the MD scheme, calculations
of the RGE's become harder, but once they are calculat-
ed, then various threshold efFects are automatically taken
care of. Our method will be more useful when some in-
tensive investigations will be needed, such as scanning for
large parameter space. On the other hand, Einhorn and
Jones proposed [17] to introduce several renormalization
points p; by which the multilogarithmic factors are
simultaneously summed up. Their method is interesting,
but the RGE's become partial differential equations. Our
method described here involves solving ordinary
differential equations, which will be a much easier task.

Finally, we comment on possible applications of the
method in this paper. Among them, it is interesting to
apply our procedure to the analysis of the Higgs potential
in the supersymmetric standard model, in which many
mass scales are present. When the supersymmetry-
breaking scale is rather high, we expect a large improve-
ment to the usual analyses which make use of at most a
one-loop potential [18,19].
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APPENDIX A

We gather one-loop results by dimensional regulariza-
tion. We first determine the renormalization constants
Zx = 1+RZX"'+ 0(I ) from the MD renormalization
conditions (3.1)—(3.5). We then calculate one-loop
RGE's and the one-loop contribution V'" to the effective
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potential. Our conventions are d =4—2e,
1/e —= 1/e —y+1n4m. , and TrI =4. A mass scale po is in-
troduced so that the dimensionality becomes correct. po
always appears as po'f d k/(2m)i . and is identified with

the renormalization point p in the MS scheme. Other-
wise, po has nothing to do with p, which is introduced
through the renormalization conditions.

As usual, we renormalize the theory (2.1) in the sym-
metric phase, (P) =0. First, the vacuum energy at one
loop is

The vertex correction to the quartic scalar coupling,
I &"'= —Z&A. +A&, is a little bit complicated. We
separate the boson- and fermion-loop contributions:
A&=A~+ AF. Let p; be the incoming external momenta
(i =1 to 4) and s =(p, +p2), t =(p, +p4) and
u =(p, +p3) . The boson contribution consists of the s-,
t-, and u-channel ones as

As( —s)+As( —t)+As( —u),
where

I = —
cob,„,+—

2
m —+——ln . (A 1)(o) 1 1 4

16m. p 2 po

From cob„,=to+Ate'"+O(fi ), the simplified condition
I' '= —co leads to

A /2 1 Po
As( —s)—: —+ln I&—

16m p m m

Iz ——f dain 1+ a(1 —a)
—s s

m m

(A8)

2

N
1 1 4 1 3 po

m —+—+ln
4 1677 E 2 m

Second, the boson self-energy

I
&

'(p, —p) =Z&p —Z m +II(p )

(A2)
1/2

4m s

1/2

—L 1+
s

(A9)

is given by

2Ã 1
2

II( ) = —+2+inP 2P
p

2

+ A, /2 2 1 ijo

1677 F m
(A3)

The renormalization constant Z&" is determined as usual
by Eq. (3.11), while Z is determined by solving the
differential equation (3.13) and imposing the boundary
condition (3.12) to be

A~(p, ) = —
2 Io(p; )+ [permutatio inn p, ],Ng

16m

1 po
2

Io(p, )—:—+2+in
-(p, +p, )'

+J( —pf —pz' —(pt+P2)')

1 22 22.
4

I(p Ip 3 p 2p4 (pl +p2 ) (P2+P3 )

(A 10)

(Al 1)

where L(g)—=g(in( —1). The fermion contribution is
evaluated in Appendix B,

2 2
2Ng 1 Po

16m p p
2

() A/ 1

m

(A4)

and the function J (g, ri; g) is defined in the Appendix B.
Both Az and AF are completely symmetric in p;
(i =1—4). Then, we impose the condition (3.5) at the
symmetric point, p; = —p and s = t =u = ——', p, to ob-
tain

The fermion self-energy I ~& '(p, —p) =Z&It —X(p) is simi-
lar:

3A. /2 1 Io 4p,

16772 ~ m 2 3m 2

2 2 2
g /2 1 Po p
162 — 2 0 2

(A5) 4!Ng 1 Po

16m g p
(A12)

where

where Is(z) —= (1+1/z) ln(z+ 1). From the condition
(3.5), we obtain

2

Z,'"= —+ln —Ig 1 Po p
16~

(A7)

I&(z)= (1+1/z) ln(z+—1)—(1/z) —2 .

The vertex correction to the Yukawa coupling is
r,"'(p, p;o) = z,g+A—,(p, p;o—), —

2
A"'(p, —p;0)=g —+ln I,(A—6)

1677 g m m

I ~in, p I& ~1 . (A13)
m m dp m

An important point is that in the low-energy limit

p /m —+0 they all approach constant values,
I&(0)= —

—,', I (0)= 1, and I&(0)=0, as

Ix (A14)
m

2p
m

Ix(0» u, Ix2 d

dp

with a constant I' =3.021 98. . . .
Some remarks are in order. First, observe that the

functions Ix (contained in Zz~'~ for X =P,g, A, ) behave in
the high-energy (massless) limit p /m ~ ~ as
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lnz'Z 'Z '2= Pdpn g ~

2 d=2P
2dp

—2Z'"+Z"'+2Z'" +O(fi )g

r

4Ng'+ 2g' 2 d 2I P +I P
16m 16m dp, m m

p
I J

+O(fi ) .

By looking at the asymptotic behavior (A13} and (A14),
we introduce the "interpolating" functions (3.15) with the
property (3.16) by

Note also that we have to renormalize I I
' at the sym-

metric point in order that all the s-, t-, and u-channel bo-
son loops equally contribute to I&.

Now, we turn to the RG coeScient functions and the
effective potential. The P and y functions are obtained by
noting that the bare parameters are independent of p.
For instance, from gb.„=zgz~ 'Z~ 'g',

d 4z
K&(z)—:z I&(z), K&(z}=—z I&

dz
'

dz 3

Kg(z) =—z [2Ig(z)+I&(z)] .1 d
dz

(A15)

()) 4N M4
100P 64 2 F

+ MB
1 4

64m

MF'————+1n
2 pp

MB————+1n
e 2 pp

(A16)

while the contribution from counterterms are, from Eqs.
(A2), (A4), and (A12),

With these definitions we finally obtain the RGE's (3.14).
Next, we discuss the effective potential V (y) for

y = ( P ) . The one-loop contribution to the effective po-
tential takes the form V'"= VI,", +6V"', where

hV")=co")+Z("—m y +Z")—Alpm 2 A, 4~

2
4N 4 1 Po

MF —+ln
2 24N 44 1 4 1

1
Po

1
p,

64~2 64~2 ~ p2 m 2B

T '2

+ —m +m A,qr
— —y Iz

1 3 4 z z A, z 4p,

64m 3m

Thus the final form of V'" in the MD scheme is

(A17)

MB+
2 MB ln

64m p
2

MV'"=—
64m lt4

2

+ m A,qP ln 2+1 + —qP
64 m 64m

2 4 2

ln" —I,
m 3m

4N 44

+3 1 4 p 3
m ln +—

2 64' m 2

(A18)

Note that the first two terms in Eq. (A18) take just the same form as V"' in the MS scheme, while the remaining terms
are extra contributions to it in the MD scheme.

From expression (A18) we can explicitly confirm what we have generally argued in Sec. V. Expression (A18) is suit-
able in the large q region. In the low-energy region }I4 «m, we rewrite it, by combining ln(jt4 /m 2) with ln(Ms/p2),
into the form

M MV"'= — MF 1
— ——+F + MB ln

647T p 2 647T m

'2

+3 1 3 4 z z A,—m +m Atp — —
qr XO

64m 2 m
(A19}

2 2
V(1) V(&)+ ~ 2 X0 P

64H m m
(A20)

where we used I&(0)=0. When the second term is ex-

panded in the small y region y &(m, terms proportion-
al to m and m tp cancel, so that we have

APPENDIX B

We evaluate the fermion one-loop contribution AF to
the four-point vertex I

&
'= —Z&A, +AB+AF. The gen-

eric one-loop integral can be reduced to the scalar-loop
integral [20] and expressed in terms of a Spence function,
but we give another expression for AF.

where we denote the first term in Eq. (A19) as V' ",which
is just the potential of the low-energy effective theory.
This is an example of the "automatic" decoupling.

7The authors are grateful to T. Kugo for discussions on this
calculation.
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The fermion one-loop contribution to the four-point
vertex I

&

' is given by

Ng
AF(pl &P2&P3&P4) (Pl &P2&P3&P4 }

16m

d4k
I4 = 16m

(2n. } i

r (p —q) +p (q r—) q—(r —p)
DoD D D„

(B6)

I (P 1 «P 2 ~p 3 ~P4 )

+ [permutation in p2 p3,p4],
(B1)

ddk Tr 1

(2~) 1 k'(1+Ii }(I/+g }(1+2/)

which can also be expressed in terms of J by making a
conformal change [20] of the integration variable
k„=(((40/k )k„. ((M() is an arbitrary scale. ) Under the
conformal transformation a„=(((40/a )a„, (k +a)
=(a2/k )(k+(2), we have

where p =p &, q =p
& +p2, and r =p

& +p2+p3 = —p4.
This integral can be reduced to the scalar-loop integral by
carrying out the trace and making use of the identity

2(k+a)(k+b)=(k+a) +(k+b) (a —b)—
for any momenta a and b. As a result, the integral I
decomposes into three parts I=I2+I3+I4, where I„
contains n propagators. We denote as D, =(k +a) .

The first integral I2 is evaluated in cyclically sym-
metric way by making a suitable shift in the loop momen-
tum as

d'k 1

(21r)4l DODFDqD„

Po dk 1

p'q r' (2m)'i DF-DqD

2 4p— q2q @2+ p —p2
(2m)4i D (- -)DOD-„,—

4

=J( — (p —q)', — (q —r)';-
p 2q 2

q 2p 2

4

(r —p) )
f 2p 2

J(p(p—3
—p2p4'(p'1+p2)'(P2+P3}'}

1

By applying formula (B5), we evaluate the integral (B6) as

I2 —16m po'
d

2 +
(2m ) ~i DFD„DODq
d'k—16' po

(2n )di DODF, +F,
+ [cyclic in p, ]

1 Po
2

—+2+in +[cyclic in p;] .—(P 1+P»'
(B2)

+ [cyclic in p, ], (B7)

where we have used the definition (B4) and the definition
ofp, q, and r in the last equality so that the cyclic symme-
try becomes manifest.

Thus the final forms of the integral I =I2+I3+I4 and
the fermion one-loop contribution AF are, from Eqs. (B2},
(B3},and (B7),

Similarly, the second one I3 is evaluated symmetrically as
I =I . . . )+ [cyclic in p. (B8)

d 'k —P 1
—P2+(Pi+P2 }'

I3 ——16+2
(2n }4i D F DODF

+ [cyclic in p, ]

=J(—pi, —p2', —(p, +p2) }+[cyclic in p, ] . (B3)

AF(p, ) = —
2 IO(p, ,p2, p3,p4)+ [permutation in p, ],Ng

16~

(B9)

with Io given in Eq. (All). At the symmetric point, Io
reduces to the second term in Eq. (A12) with

F—:2+in —,'+J(1,1;—', )
—

—,
' J(1,1; —", )

We have introduced the function J((,21;g)=J(2},gg)
defined for g, ri, g &0 as =3.021 98. . . , (B10)

J(g, ri;g)=— da
0 pa+2}(1—a) —ga(1 —a)

pa+2)(1 —a)
ga(1 —a)

in terms of which we have the useful formula

1 6m.
d k —a —b +((2+b)

(21r)"i D,D()D(,

=J( —a, b; —((2+b) )—.

Finally, the I4 is

(B4)

(B5}

f 'da—
0

1 1
lnaE(a) E(0)

+ 1 1
ln(1 —a)E(a) E(l)

(B1 1)

where we numerically integrate the function
J(g, g;g):(g+ri g)JO(g, —ri, g), [—Eq. (B4)] by using
E(a)=(a+2)(1—a) ——ga(1 —a) and

(~ () g+q I id 1
1

(a+2}(1—a)
0 E(a)

T
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